首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wide-band source (WBS) signals measured in the Asian Seas International Acoustics Experiment (ASIAEX) in the East China Sea (ECS) were used to invert for geoacoustic parameters. Sound speed and density were inverted using the matched-field processing method combined with the vertical reflection coefficients and sea-bed attenuation coefficients were inverted from the vertical correlation data. For a half infinite liquid sea-bottom model, the inverted equivalent bottom sound speed is 1610/spl plusmn/12 m/s and the bottom density is 1.86 g/cm/sup 3/. The inverted attenuation coefficients are well described by a nonlinear relationship of the form /spl alpha//sub b/=0.28f/sup 1.58/ dB/m (f is in units of kilohertz) in the frequency range of 100-600 Hz.  相似文献   

2.
The acoustic properties of seafloor sediments are of great importance in geoacoustic modeling, detecting, and oceanic engineering. The methods based on the first arrival cycle are investigated to calculate sound speed and attenuation of sediment more precisely in in situ measurements. The comparison of different data analysis methods based on the first arrival cycle approach for in situ measurement results in the following conclusions: (1) the calculated methods can help find the effective cycles and reduce the errors in calculating sound speed and attenuation; (2) using this approach, the point judgment method-based data analysis has the same effectiveness as the cross-correlation method-based data analysis in calculating group sound speed and has the same effectiveness in calculating attenuation in the time domain as the spectrum analysis method-based data analysis has in calculating attenuation in frequency domain; and (3) measurement in water can help not only calibrate the transmitting distance but also can calculate the time delay for the sound speed and the attenuation loss in the transmitting process. Finally, theoretical calculation was used to calculate the measured results, indicating a good agreement, which supports that first arrival cycle-based calculated methods can be used to analyze the measured data and the effective density fluid model can be used to analyze more acoustic properties and invert several physical properties in this experiment.  相似文献   

3.
4.
An asymptotic-numerical model for low-frequency, bottom-interfacing pulse propagation in the ocean is derived. This model, referred to as the progressive wave equation (PWE), works in the time domain using an approach analogous to the parabolic equation method that is commonly used in the frequency domain. The mode handles depth and range variations in the speed of sound, density, and attenuation. The attenuation is assumed to depend linearly on frequency in the sediment. A numerical solution for the PWE was derived, and the accuracy of the asymptotics, numerics, and starting field was demonstrated with a benchmark  相似文献   

5.
A method for estimating properties of the ocean bottom such as bathymetry and geoacoustic parameters such as sound speed, density and attenuation, using matched-field inversion is considered. The inversion can be formulated as an optimization problem by assuming a discrete model of unknown parameters and a bounded search space for each parameter. The optimization then involves finding the set of parameter values which minimizes the mismatch between the measured acoustic field and modeled replica fields. Since the number of possible models can be extremely large, the method of simulated annealing, which provides an efficient optimization that avoids becoming trapped in suboptimal solutions, has been used. The matching fields are computed using a normal mode model. In inversions for range-dependent parameters, the adiabatic approximation is employed. This allows mode values to be precomputed for a grid of parameter values and stored in look-up tables for fast reference, which greatly improves computational efficiency. Synthetic inversion examples are presented for realistic range-independent and range-dependent environments  相似文献   

6.
多频海底声学原位测试系统研制和试用   总被引:11,自引:2,他引:9  
海底沉积物的声学特性(最重要的是声速和声衰减)以及它们与物理(包括土力学)特性之间的关系是沉积物声学中两个重要的研究项目.介绍了新研制的实时监控多频海底声学原位测试系统.该系统可测量浅表层沉积物的声速.探测频率为8,10,12,15 kHz,可根据实际情况选择发射波形、接收增益和采样长度,采样率为0.5~2.0 MHz,工作水深为300 m.系统具有倾斜传感器、8通道扩充等功能.用该系统在杭州湾测得了四种频率的沉积物原位声速.  相似文献   

7.
为准确建立海底地声模型,本文探讨地声模型的基本组成和基本结构。通过样品实验室测量,分析南海海底表层沉积物的密度、孔隙度与声速随着埋深变化的关系,得出海底实际存在的低声速表面–声速缓慢变化类型、低声速表面–声速增大类型、高声速表面–声速缓慢变化类型和高声速表面–声速增大类型4种典型地声结构;对比钻探测量,分析黄海海底沉积物的密度、孔隙度与声速随埋深变化关系,得出海底地声模型分层特征与地声结构组合特征。研究表明,地声模型可以归结为4种基本地声结构的组合,通过与底层海水声速、同层内声速剖面以及与上层海底沉积物下表面声速的比较,可以建立各种海底地声模型;基于实验室测量法建立的地声模型可以作为参考地声模型,但需要考虑实际海底温度和压力梯度以及海底沉积物的频散特性等,借助于声速比校正法和频散性理论模型进行计算及修正。  相似文献   

8.
This paper describes results from an experiment carried out to investigate geoacoustic inversion with a bottom-moored hydrophone array located in the shallow waters of the Timor Sea off the northern coast of Australia. The array consisted of two arms in a V shape, horizontally moored at a site that was essentially flat over a large area. Hydrophone positions were estimated using an array element localization (AEL) technique that established relative uncertainties of less than 1 m on the seafloor. The data used for geoacoustic inversion were from experiments with continuous wave (CW) tones in the 80- to 195-Hz band transmitted from a towed projector. A hybrid search algorithm determined the set of geoacoustic model parameters that maximized the Bartlett fit (averaged coherently spatially at each tone and incoherently over frequency) between the measured and modeled data at the array. Due to the long range experimental geometry, the inversion was sensitive to attenuation in the sediment. The inverted geoacoustic profile performed well in a simple test for localizing the sound source at other sites in the vicinity of the array. Range-depth localization performance for the horizontal array was comparable to that for an equivalent vertical array.  相似文献   

9.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

10.
In this study an attempt has been made to extract sediment geoacoustic properties using ambient noise measured from a vertical hydrophone array. Time series noise data recorded from three shallow water sites (Chennai, Cuddalore and Cochin) along the Indian continental shelf were used for the analysis. The compressional sound speed of sediment for all the sites was estimated from the vertical directionality of ambient noise. Using the value of the compressional sound speed remaining wave properties and material properties were deduced from the Grain-Shearing (G-S) theory of wave propagation in saturated granular media. The type of sediment extracted from the G-S theory correlates well with the results obtained from sieve and particle size analysis of grab samples, collected from all the sites. The study clearly shows the application of ambient noise in extracting environmental information in shallow water, and further applying it to improve sonar performance modeling.  相似文献   

11.
Optimal array-processing techniques in the ocean often require knowledge of the spatial coherence of the reverberation. A mathematical model is derived for the reverberation vertical coherence (RVC) in shallow water (SW). A method for analysis of RVC data is introduced. Measured reverberation cross-correlation coefficients as a function of time and frequency, obtained during the Asian Seas International Acoustic Experiment (ASIAEX) in the East China Sea, are reported. SW reverberation from a single shot provides a continuous spatial sampling of the surrounding sound field up to several tens of kilometers and holds valuable information on the geoacoustic properties of the sea floor over this distance. SW reverberation data can, therefore, be used as the basis for a quick and inexpensive method for geoacoustic inversion and has the obvious advantage that acquiring the data in situ requires only a single platform. This paper considers the use of the vertical coherence of the reverberation as the starting point for such an inversion. Sound speed and attenuation in the sea bottom at the ASIAEX site are obtained over a frequency range of 100-1500 Hz by finding values that provide the best match between the measured and predicted RVC.  相似文献   

12.
Abstract

The high-frequency acoustic properties of seafloor sediments are very significant in seafloor study and underwater acoustic study field. In order to measure the sound speed and the attenuation for the small-scale sediment cores more accurately, this study developed a water coupled acoustic laboratory measurement system based on Richardson-Briggs technique. This method used the correlation comparison of waveforms received in sediment core and in identical reference tubes filled with water to measure sound speed and attenuation. The sound speed and attenuation of a clayey silt sediment sample were measured using the water coupled acoustic laboratory measurement system. This frequency dependence of the sound speed and attenuation showed that the clayey silt sediment has a weak positive sound speed dispersion, while the attenuation increases with a strong positive gradient within the measurement frequency range. This study also noted that the measured sound speed ratio match well with the empirical equations from literature. The measured attenuation factor data can fall in the Hamilton’s empirical prediction range.  相似文献   

13.
In this paper, we use matched-field inversion methods to estimate the geoacoustic parameters for three synthetic test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001 in Gulfport, MS. The objective of this work is to use a sparse acoustic data set to obtain estimates of the parameters as well as an indication of their uncertainties. The unknown parameters include the geoacoustic properties of the sea bed (i.e., number of layers, layer thickness, density, compressional speed, and attenuation) and the bathymetry for simplified range-dependent acoustic environments. The acoustic data used to solve the problems are restricted to five frequencies for a single vertical line array of receivers located at one range from the source. Matched-field inversion using simplex simulated annealing optimization is initially used to find a maximum-likelihood (ML) estimate. However, the ML estimate provides no information on the uncertainties or covariance associated with the model parameters. To estimate uncertainties, a Bayesian formulation of matched-field inversion is used to generate posterior probability density distributions for the parameters. The mean, covariance, and marginal distributions are determined using a Gibbs importance sampler based on the cascaded Metropolis algorithm. In most cases, excellent results were obtained for relatively sensitive parameters such as wave speed, layer thickness, and water depth. The variance of the estimates increase for relatively insensitive parameters such as density and wave attenuation, especially when noise is added to the data.  相似文献   

14.
This paper presents the results obtained using the adaptive simulated annealing (ASA) algorithm to invert the test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001. The ASA algorithm was chosen for use in our inversion software for its speed and robustness when searching the geoacoustic parameter solution space to minimize the difference between the observed and the modeled transmission loss (TL). Earlier work has shown that the ASA algorithm is approximately 15 times faster than a modified Boltzmann annealing algorithm, used in prior versions of our TL inversion software, with comparable fits to the measured data. Results are shown for the synthetic test cases, 0 through 3, and for the measured data cases, 4 and 5. The inversion results from the synthetic test cases showed that subtle differences between range-dependent acoustic model version 1.5, used to generate the test cases, and parabolic equation (PE) 5.0, used as the propagation loss model for the inversion, were significant enough to result in the inversion algorithm finding a geoacoustic environment that produced a better match to the synthetic data than the true environment. The measured data cases resulted in better fits using ASTRAL automated signal excess prediction system TL 5.0 than using the more sophisticated PE 5.0 as a result of the inherent range averaging present in the ASTRAL 5.0 predictions.  相似文献   

15.
During the sediment acoustics experiment in 1999 (SAX99), several researchers measured sound speed and attenuation. Together, the measurements span the frequency range of about 125 Hz-400 kHz. The data are unique both for the frequency range spanned at a common location, and for the extensive environmental characterization that was carried out as part of SAX99. Environmental measurements were sufficient to determine or bound the values of almost all the sediment and pore water physical property input parameters of the Biot poroelastic model for sediment. However, the measurement uncertainties for some of the parameters result in significant uncertainties for Biot-model predictions. Here, measured sound-speed and attenuation results are compared to the frequency dependence predicted by Biot theory and a simpler "effective density" fluid model derived from Biot theory. Model/data comparisons are shown where the uncertainty in Biot predictions due to the measurement uncertainties for values of each input parameter are quantified. A final set of parameter values, for use in other modeling applications e.g., in modeling backscattering (Williams et al., 2002) are given, that optimize the fit of the Biot and effective density fluid models to the sound-speed dispersion and attenuation measured during SAX99. The results indicate that the variation of sound speed with frequency is fairly well modeled by Biot theory but the variation of attenuation with frequency deviates from Biot theory predictions for homogeneous sediment as frequency increases. This deviation may be due to scattering from volume heterogeneity. Another possibility for this deviation is shearing at grain contacts hypothesized by Buckingham; comparisons are also made with this model.  相似文献   

16.
两种基于贝叶斯点估计理论的多声源定位方法研究   总被引:1,自引:1,他引:0  
海洋环境参数失配是制约匹配场定位性能的主要因素之一。为了克服环境失配,本文基于贝叶斯理论,将环境参数与声源的距离和深度一起作为未知量进行反演。然而在进行多声源定位时,反演参数的维数几何增长,极大地增加了反演问题的复杂性和计算量。为此本文将声源强度和噪声方差表示成其极大似然估计值,从而将这些参数进行隐式采样,大大降低了反演的维数和难度。文章比较了两种贝叶斯点估计方法,最大后验概率密度方法和最大边缘后验概率密度方法。最大后验概率密度方法的解是令后验概率密度取得最大值的参数组合,可以利用优化算法快速获得。最大边缘后验概率密度法将其他参数积分,得到目标参数的一维边缘概率分布,分布的最大值为反演结果。该方法得到最优估计值的同时可以获取参数估计的不确定信息。在环境参数和声源参数都未知的情况下,利用蒙特卡洛法在不同信噪比情况下对两种声源定位方法进行分析,实验结果表明:(1)对于敏感参数,如声源距离、水深和海水声速,最大边缘后验概率密度法比最大边缘后验概率密度方法的性能好。(2)对于较不敏感的参数,如海底声速、海底密度和海底声衰减,当信噪比较低时,最大边缘后验概率密度方法能较好地平滑噪声,从而比最大边缘后验概率密度法具有更好的性能。由于声源距离和深度是敏感参数,研究表明最大边缘后验概率密度法提供了一种在不确知环境下更可靠的多声源定位方法。  相似文献   

17.
In a shallow-water ocean environment, the range dependent variation of the geoacoustic properties of the seabed is one of the crucial factors affecting sound propagation. Since the local modes of propagation depend on the spatial changes in the bottom sediments, the local eigenvalues of these modes are useful as tools for examining the range dependence of the sediment properties. In order to extract the local eigenvalues from measurements of the pressure field in a laterally inhomogeneous waveguide, the zeroth-order asymptotic Hankel transform with a short sliding window is utilized. The local peak positions in the output spectra differ from the local eigenvalues due to both the range variation of the local modes and the interference of adjacent modes. The departure due to the former factor is evaluated analytically by using the stationary phase method. In order to reduce the error induced by the latter factor, mode filtering is utilized by incorporating data from a fixed vertical array of receivers. The methods developed are applied to simulated pressure field data as well as experimental field data, and it is shown that the range evolution of the local modes can be successfully estimated. In addition, field measurements are used to demonstrate that the modal trajectories in range can be used to infer the range-dependent geoacoustic properties of the seabed  相似文献   

18.
近海海上风电场水下噪声传播模型适用性研究   总被引:1,自引:0,他引:1  
章蔚  杨红  丁骏  吉新磊 《海洋科学》2017,41(7):78-86
通过现场采集近海海上风电场工程区运营期风机水下噪声和背景噪声数据,计算了噪声信号的倍频带声压级,功率谱级和峰值声压级,确定了海上风电场水下噪声总声源级为148.3 d B,以此开展近海海上风电工程风机水下噪声频域特性、功率密度谱特性等研究。在此基础上使用Kraken简正波模型和Bellhop射线模型对风电场运营期风机水下噪声在水平与垂直方向上的传播进行模拟,模拟了噪声在不同频带内的衰减程度,结果显示模型模拟结果在不同频率下的衰减趋势有着很大差异,产生了明显的多途干涉现象,通过实测数据对建立的噪声传播模型进行验证,发现Kraken简正波模型在500 Hz以下,Bellhop射线模型在500 Hz以上适合模拟实际水下噪声传播情形,同时海区本身背景噪声的存在会对预测的准确性产生影响。这些结论可用于进一步对近海海上风电场水下噪声传播的研究。  相似文献   

19.
When modeling sound propagation through the uppermost layers of the ocean, the presence of bubble clouds cannot be ignored. Their existence can convert a range-independent sound propagation problem into a range-dependent one. Measurements show that strong changes in sound speed and attenuation are produced by the presence of swarms of microbubbles which can be depicted as patchy clouds superimposed on a very weak background layer. While models suitable for use in acoustic calculations are available for the homogeneous bubble layer (which results from long time averages of the total bubble population), no similar parameterizations are available for the more realistic inhomogeneous bubble layer. Based on available information and within the framework of a classification scheme for bubble plumes proposed by Monahan, a model for the range and depth dependence of the bubbly environment is developed to fill this void. This model, which generates a possible realization of the bubbly environment, is then used to calculate the frequency-dependent change in the sound speed and attenuation induced by the presence of the bubble plumes. Time evolution is not addressed in this work  相似文献   

20.
In many strategic shallow water areas, the geoacoustic properties of the sub-bottom are largely unknown. This paper demonstrates that inverse theory and measured data from a single hydrophone can be used to accurately deduce the geoacoustic properties of the sub-bottom, even when the initial background geoacoustic model is a highly inaccurate estimate. Since propagation in shallow water is very sensitive to the geoacoustic properties of the sub-bottom the inverse technique is a vitally important, practical, and inexpensive means to improve sonar performance prediction in a potentially hostile environment. To provide ground truth for the inverse technique, measured data collected during Project GEMINI were compared to the inverse solutions. Detailed, site-specific geoacoustic models were developed for two array locations and the finite-element parabolic equation (FEPE) model was used to estimate transmission loss (TL). The model estimates from FEPE compared well with the measured data and the detailed geoacoustic models were considered as “ground truth.” To test the efficacy of the technique, initial background geoacoustic models were constructed assuming no a priori information of the bottom. The resultant inverse solution was used to predict the geoacoustic properties at each of the sites. The final results were in excellent agreement with the measured data and the resulting TL estimates derived from the inverse technique were as good or better than the TL estimates obtained from the detailed, site-specific geoacoustic models  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号