首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical anomaly separation and identification using the number–size (N–S) model at Bardaskan area, NE Iran is studied in this paper. Lithogeochemical data were used in this study which was conducted for the exploration for Au and Cu mineralization and enrichments in Bardaskan area. There are two major mineralization phases concluded epithermal gold and a disseminated systems. N–S log–log plots for Cu, Au, Sb, and As illustrated multifractal natures. Several anomalies at local scale were identified for Au (32 ppb), Cu (28 ppm), As (11 ppm), and Sb (0.8 ppm) and the obtained results suggest existence of local Au and Cu anomalies whose magnitudes generally are above 158 and 354 ppm, respectively. The most important mineralization events are responsible for presence of Au and Cu at grades above 1,778 and 8,912 ppm. The study reveals threshold values for Au and Cu are a consequence of the occurrence of anomalous accumulations of phyllic and silicification alteration zones and metamorphic rocks especially in tuffaceous sandstones and sericite schist types. The obtained results were correlated with fault distribution patterns, revealing a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

2.
《Comptes Rendus Geoscience》2018,350(4):180-191
The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C–A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene–Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.  相似文献   

3.
The Takab area in NW of Iran is an important gold mineralized region with a long history of gold mining. In this study ASTER data is used to evaluate environmental effects of gold mining. The results show that mining activities have resulted in release of…  相似文献   

4.
The goal of this study is to separate different mineralized zones in Dareh-Ashki gold deposit located in Muteh Complex, Central Iran, by using number–size (N-S) fractal model. The N-S log–log plot shows seven geochemical populations and four Au-mineralized zones. Based on obtained results, Au thresholds are 0.17, 0.32, 6.3, and 12.6 ppm which represent weakly, moderately, highly, and extremely mineralized zones in terms of Au grades, respectively. Au values lower than 0.17 ppm illustrate wall rocks. Main mineralization stage of gold commences from 6.3 ppm in this deposit. The moderately mineralized zone with Au values between 0.32 and 6.3 ppm has occupied the biggest part of the studied deposit. However, highly (with Au values between 6.3 and 12.6 ppm) and extremely (higher than 12.6 ppm) mineralized zones have small extension. Correlation between geological model and results from N-S fractal model reveals that the gold mineralized zones specifically the moderately mineralized zone are situated in green schist units.  相似文献   

5.
The Neo-Tethyan subduction in Iran is characterized by the Urumieh–Dokhtar magmatic arc (UDMA), formed by northeast-ward subduction of the oceanic crust beneath the central Iran. This belt coincides with the porphyry copper metallogenic belt that comprises several metallogenic zones, including Ahar–Jolfa in northwest Iran. The Ahar–Jolfa metallogenic zone encompasses two main batholiths of Qaradagh and Sheyvardagh and numerous intrusive bodies of Cenozoic, which have produced many base and precious metal deposits and prospects. The former is considered as continuation of the Meghri–Ordubad pluton in South Armenian Block (SAB), which also hosts porphyry copper deposits (PCDs). The Sungun PCD is the largest occurrence in northwest Iran. Rhenium-Osmium ages of Sungun molybdenites are early Miocene and range between 22.9 ± 0.2 and 21.7 ± 0.2 Ma. Comparison of the ages obtained here with published ages for mineralization across the region suggests the following sequence. The earliest porphyry Cu–Mo mineralization event in northwest Iran is represented by Saheb Divan PCD of late Eocene age, which is followed by the second epoch of middle Oligocene, including the Cu–Mo–Au mineralization at Qarachilar and the Haftcheshmeh PCD. Mineralization in Sungun, Masjed Daghi, Kighal and Niaz deposits corresponds to the third mineralization event in northwest Iran. The first epoch in northwest Iran postdates all Eocene mineralizations in SAB, while the second epoch is coeval with Paragachay and the first-stage of Kadjaran PCDs. Its third epoch is younger than all mineralizations in SAB, except the second stage in Kadjaran PCD. Finally, the Cu mineralization epochs in northwest Iran are older than nearly all PCDs and prospects in Central Iran (except the Bondar Hanza PCD), altogether revealing an old to young trend along the UDMA and the porphyry Cu belt towards southeast, resulted from diachronous, later closure of the Neo-Tethyan oceanic basin in central and SE Iran.  相似文献   

6.
This method of assigning weights based on expert opinion introduces bias when we are evaluating the relative importance of evidence values. In this paper, we used a prediction–area (P–A) plot method and content–area (C–A) fractal model to estimate the weight of each evidence map. In this paper, we used the content region (C–A) fractal model to divide the evidence maps to the threshold of the corresponding dimensions. The P–A plot approach is an objective data-driven approach for evaluating map weights. Using geochemical layer and remote sensing, hydroxyl layers as weight evidence maps are the highlights of this study. We use the P–A method from which we can evaluate the predictive ability of each evidence map with respect to the known ore occurrences. We used the P–A plot for weighting each evidence map and choosing the appropriate threshold for predictor maps in the Luchun area of Yunnan Province, China. The method adopted in this paper can improve the prediction efficiency of ore prospecting.  相似文献   

7.
The Ni, Co, As, and Cu deposit of Gowd-e-Morad is located 20 km northwest of Anarak in Central Iran. In this hydrothermal deposit, mineralization occurs as veins in a fault breccia zone hosted by the Chahgorbeh (schist and metabasite) complex. The main ores are made up of Ni, Co, and Cu arsenides. Petrologic studies and results obtained from geochemical analyses have indicated that the Ni, Co, As, and Cu are derived from ultramafic rocks while Pb and Zn are likely to be derived from schist. Based on the geochemical evidence, particularly the high correlation between Ni, Co, and As, it is proposed that this deposit be categorized as a “five elements” mineral deposit. Fluid inclusion studies have shown homogenization temperatures (TH) in the range 113?206 ?C and salinity 3?13.5 % wt eq. NaCl. Therefore this “five elements” mineral deposit has been determined as a low temperature, epithermal deposit type. It is proposed that the low fluid temperatures are a result of an environment of formation which was distal to a volcanogenic source systems and the major influence of meteoric waters in the hydrothermal system.  相似文献   

8.
9.
We studied primary ore samples from Kalmakyr, a giant Cu–Au–Mo porphyry deposit in eastern Uzbekistan. Disseminated and stockwork-type high-grade Cu–Au–Mo mineralization showed average concentrations of 55 ppb Pd, 5.5 ppb Pt, 0.95 ppb Rh, 0.49 ppb Ir, and 4.1 ppm Au (n = 8). This type of mineralization is characterized by the presence of pyrite, chalcopyrite, molybdenite, and gold. A peak Pd content of 292 ppb was determined in a base-metal-rich quartz vein in granodiorite porphyry, which contains galena, sphalerite, chalcopyrite, tetrahedrite, and gold. Palladium correlates with Cu, Ag, Se, and S. Mineralogical and laser ablation ICP-MS study confirmed that Pd is homogeneously distributed in chalcopyrite, which contains up to 110 ppm Pd, and tetrahedrite, containing up to 20 ppm Pd. An assessment of the Pd and Pt budget at Kalmakyr showed the potential of approximately 17 t of Pd and 1.7 t of Pt.  相似文献   

10.
The Saf’yanovka copper massive sulfide deposit is situated 10 km northeast from the town of Rezh, on the eastern slope of the Central Urals. The ore-hosting plagiorhyolite-dacitic sequence consists of tephrites and tuffites with interlayers of dark gray siliceous-carboniferous pelites and psephytes from 0.1 to 1.5 m thick. The shells of the Parathurammina tamarae L. Petrovae, 1981 foraminifer were identified in one of the lightened interlayers in the siliceous-carboniferous sequence. The samples for study were taken from the southern part of the orebody in the open-pit between prospecting lines 2 and 3, horizons 170 and 157. The inner part of the shell is composed of quartz and apatite, and the wall, by apatite with rare calcite grains. One shell contains a tacking disk allowing us to refer these foraminifers to the attached benthos typical of the shallow marine basin (sublitoral). In the Urals, the Parathurammina tamarae L. Petrovae, 1981 foraminifer is known in limestones from the Eifel-Givetian (Langurskii and Vysotinskii Horizons); the siliceous-carboniferous rocks from the ore-hosting sequence from the Saf’yanovka deposit has the same age.  相似文献   

11.
In this study, we developed a physiographic soil erosion–deposition model to simulate sediment yield from a watershed into Agongdian reservoir and sediment flushing to estimate the efficiency of empty flushing. The model was verified using data related to Typhoons Morakot and Fanapi. Thereafter, we calculated the sediment flushing efficiency of empty storage under the conditions of 1- and 2-day storms with seven return periods. The simulated results revealed that the amount of sediment yield from Joushui River watershed was approximately 70% on average, whereas that from Wanglai River watershed was approximately 30%. These results are consistent with those of a government research report, which suggested that the sediment yield figures from Joushui and Wanglai River watersheds were 72 and 28%, respectively. Furthermore, the efficiency of empty flushing was more than 55% when using the shaft spillway pipe, suggesting that the model can be applied to estimate sediment yield and flushing efficiency.  相似文献   

12.
In this paper, a model geosynthetic-reinforced soil retaining walls (GRS-RW) is tested by vertically loading it through a rough footing on the top near the retaining wall and the results are simulated by a sophisticated nonlinear Finite Element Method (FEM) having a novel rate dependent constitutive model for both the backfill material and the geosynthetic reinforcement. Usually, polymer geosynthetic reinforcement is known to exhibit more-or-less rate-dependent stress–strain or load–strain behavior due to their viscous properties. The geomaterials (i.e., clay, sand, gravel and soft rock) also exhibit viscous properties. The viscous behavior of geometrials are quite different from that of the polymer based geosynthetic-reinforcements. It has been revealed recently that viscous behavior of sand is a kind of temporary effect, which vanishes with time. So the rate-dependent deformation of backfill reinforced with polymer geosynthetic reinforcement becomes highly complicated due to interactions between the elasto-viscoplastic properties of backfill and reinforcement. In the present study, a scaled model geosynthetic-reinforced soil retaining wall is tested with a vertically loaded rough rigid footing. The results of the model test are simulated by using an appropriate elasto-viscoplastic constitutive model of both sand and geogrid embedded in a nonlinear plane strain FEM.  相似文献   

13.
A collection of 235 samples were taken from 115 sites (representing a density of 1 sampling site ca. 130 km2) on rural soils derived from the major rock types in the southern Iberian Massif. The geochemical baselines of selected trace elements (As, Co, Cr, Cu, Ni, Pb and Zn) were determined on the < 2 mm soil fraction. The sampling sites were not directly influenced by external pollution. Soil geochemical baseline and threshold values were calculated for each element in two geologically different zones: the Ossa-Morena Zone (OMZ) and the South-Portuguese Zone (SPZ).  相似文献   

14.
Geochemical anomaly separation using the concentration–number (C–N) method at the Haftcheshmeh porphyry system in NW Iran is the aim of this study. We used lithogeochemical data sets to explore Cu, Mo, Au and Re mineralization in gabbroic, dioritic and monzonitic units at the Haftcheshmeh Cu–Mo porphyry system. The obtained results were interpreted using a rather extensive set of information available for each mineralized area, consisting of detailed geological mapping, structural interpretation and alteration data. Threshold values of elemental anomalies for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analyses of samples for the lithological units. Several anomalies at local scale were identified for Cu (40 ppm), Mo (12 ppm), Au (79 ppb), and Re (0.02 ppm), and the results suggest the existence of local Cu anomalies whose magnitude generally is above 500 ppm. The log–log plots show the existence of three stages of Cu and Mo enrichment, and two enrichment stages for Au and Re. The third and most important mineralization event is responsible for presence of Cu at grades above 159 ppm. The identified anomalies in Haftcheshmeh porphyry system, and distribution of the rock types, are mainly gabbrodiorite–monzodiorite, granodiorite and monzodiorite–diorite that have special correlation with Cu–Mo and gabbroic and monzonitic rocks, especially the gabbrodiorite–monzodiorite type, which is of considerable importance. The study shows that these elemental anomalous parts have been concentrated dominantly by potassic and phyllic, argillic and propylitic alterations within the gabbroic, monzonitic and dioritic rocks especially in the gabrodioritic type in certain parts of the area. The results, which were compared with fault distribution patterns, revealed a positive correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

15.
This preliminary work reported here dealt with potential impacts of wastewater irrigation on soils and crops sampled along the Koshk River canal in the suburban area of Shiraz City, Iran. It also attempts to assess the extent of heavy metal contamination in soils and crops and human exposure risk. For this purpose, samples including soils and plants were collected from two wastewater irrigated sites and a tubewell-irrigated site (marked by A, B and C). Concentrations of the six heavy metals Ni, Pb, Cd, Zn, Cr and Cu were determined by AAS. Physical and chemical properties of soil samples were also determined. The PLIs and CF for soils and HQ (Hazard quotient) for some vegetables were calculated. The results showed that organic matter content increased from 22% to 30 % in wastewater-irrigated soils as compared to tubewell water irrigated and admixture water irrigated ones. The soil pH was raised by 2 units as a result of wastewater irrigation at site A compared to sites B and C. Wastewater irrigation also result in relatively high concentrations of Ni, Pb and Zn (275.5, 441.3 and 177 mg/kg, respectively) in wastewater irrigated soils over tubewell water irrigated soils. These levels are higher than the maximum permissible limits in unpolluted soils, indicating that a degree of contamination has occurred. This was confirmed by calculated PLIs and contamination factors in soil samples, The results also showed some crops cultivated at sites A and B contained high levels of Ni and Cd beyond the maximum permissible concentrations and those cultivated at site C. The concentrations of these heavy metals are within or very close to the critical levels. HQ indices and daily intake calculated in respect of metal contents in some vegetables (spinach, lettuce and celery) showed that toxic risk due to Cd in these vegetables and crops was greater than one. This study generally concludes that although the content of heavy metals did not reach toxic level, extensive use of untreated wastewater drawn from the Koshk River has obviously increased the contamination of Ni and Pb in soils and Cd in some vegetables cultivated along the canal, causing potential health risk in the long-term scense for consumers or local residents.  相似文献   

16.
The Aolunhua porphyry Mo–Cu deposit is located in the northern margin of the North China Craton (NCC), and belongs to the northern part of the Xilamulun metallogenic belt. More than 90% of the mineralization occurs within the Aolunhua monzogranite-porphyry; a small part is hosted within quartz veins that crosscut Late Permian strata. The syenogranite, occurring as dikes and cutting through the Aolunhua monzogranite-porphyry, is radially distributed in the mining district. Zircon U–Pb ages show that the Aolunhua monzogranite-porphyry and the post-ore syenogranite have concordant 206Pb/238U ages of 138.7 ± 1.2 Ma and 131.4 ± 2.8 Ma, respectively. Based on analyses of major, trace elements and Hf-isotopes, the Aolunhua porphyry is characterized by high Sr low Y with high La/Yb and Sr/Y ratios typical of adakitic granites, whereas the post-ore syenogranite has lower Sr and higher Y values, showing apparently negative Eu anomalies (δEu = 0.26 to 0.31). The Hf isotopic composition of the Aolunhua porphyry [εHf(t) = + 3.6 to + 9.2] and the post-ore syenogranite [εHf(t) = + 3.6 to + 8.7] indicates that both juvenile crustal sources and depleted mantle contributed to their origin. The regional geological setting together with the discrepancy of geochemistry between the Aolunhua porphyry and the post-ore syenogranite probably indicates that they formed in different tectonic regimes. The Aolunhua porphyry is derived from partial melting of the thickened crust due to underplating of the basaltic magma under the transformation tectonic regime, while the post-ore syenogranite comes from the crustal root melting during the lithospheric delamination stage under the lithosphere thinning regime of northeast China.  相似文献   

17.
The Pol Dokhtar section of southern Lorestan, faulted Zagros range of southwestern Iran, contains one of the most complete Early Campanian to Danian sequences. The lack of a good fundamental paleontological study is a strong motivation for investigating calcareous nannofossils in southwestern Iran. The majority of the section is made of shale, marl, and partly of marly limestone and clay limestone, respectively. As a result of this study, 24 genera and 45 species of nannofossils have been identified and presented for the first time. This confirms the existence of biozone CC18 of zonation scheme of Sissingh (Geologie en Minjbouw 56:37–65, 1977) to NP1 of zonation of Martini, which suggests the age of Early Campanian to Danian. All Early Campanian to Danian calcareous nannofossil biozones from CC18 (equivalent to the Aspidolithus parcus zone) to NP1 (equivalent to the Markalius inversus zone) are discussed. Also, the zonal subdivision of this section based on calcareous nannofossils has shown continuity in Cretaceous/Paleocene boundary in south part of Lorestan Province. We can also learn about the predominant conditions of the studied sedimentary basin that was in fact part of the Neotethys basin with the existence of indexed species calcareous nannofossils that indicate warm climate and high water depths of the basin in low latitudes.  相似文献   

18.
The Aitik Cu–Au–Ag deposit in the Gällivare area in northern Sweden is Sweden's largest sulphide mine with an annual production of 35 Mt of ore, and the biggest open pit operation in northern Europe. It is proposed in the present study that the Aitik deposit represents a Palaeoproterozoic, strongly metamorphosed porphyry copper deposit that was affected ca. 100 Ma later by a regional IOCG-type hydrothermal event. Consequently, the Aitik deposit might represent a mixed ore system where an early copper mineralisation of porphyry type has been overprinted by later regional IOCG mineralisation.Several attempts have previously been made to genetically classify the Aitik Cu–Au–Ag deposit as a distinct ore type. New geochemical, petrographic, structural, and fluid inclusion results combined with published data have provided the opportunity to present new ideas on the genesis and evolution of the Aitik Cu–Au–Ag deposit. The emplacement of a ca. 1.9 Ga quartz monzodiorite that host the ore at Aitik was related to subduction processes and volcanic arc formation, and synchronous with quartz vein stockwork formation and porphyry copper mineralisation. Highly saline aqueous (38 wt.% NaCl) fluid inclusions in the stockwork veins suggest entrapment at 300 °C and a pressure of nearly 3 kbar, a high pressure for a typical porphyry copper ore, but consistent with conditions at associated deep root zones of intrusion-related magmatic–hydrothermal systems. The highly saline fluid formed disseminated and vein-type ore of mainly chalcopyrite and pyrite within comagmatic volcaniclastic rocks, and caused potassic alteration (biotite, microcline) of the host rocks. The early porphyry copper mineralising event was followed, and largely overprinted, by CO2 and aqueous medium- to high-salinity (16–57 wt.% salts) fluids related to a ca. 1.8 Ga tectonic and metamorphic event (peak conditions 500–600 °C and 4–5 kbar). Extensive deformation of rocks and redistribution of metals occurred. Magnetite enrichment locally found within late veins, and late amphibole–scapolite and K feldspar alterations within the deposit, are some of the features at Aitik implying that aqueous fluids responsible for IOCG-mineralisation (200–500 °C and ~ 1 kbar) and extensive Na–Ca alteration in the region during the 1.8 Ga tectonic event also affected the Aitik rocks, possibly leading to addition of copper ± gold.  相似文献   

19.
The Cenozoic Urumieh–Dokhtar Magmatic Belt (UDMB) of Iran is a major host to porphyry Cu ± Mo ± Au deposits (PCDs). Most known PCDs in the UDMB occur in the southern section of the belt, also known as the Kerman Copper Belt (KCB). Three major clusters of PCDs are distinguished in the KCB and include the Miduk, Sarcheshmeh and Daraloo clusters. The Daraloo and Sarmeshk deposits occur in a northwest–southeast-trending fault zone that is characterized by the presence of a narrow zone of alteration–mineralization that contains a series of Oligocene granitoids and Miocene porphyritic tonalite–granodiorite plutons that cut Eocene andesitic lava flows and pyroclastic rocks. Here we use various techniques, including different ratio images, minimum noise fraction, pixel purity index, and matched filter processing to process ASTER data (14 bands) and generate maps that portray the distribution of hydrothermal minerals (e.g., sericite, kaolinite, chlorite, epidote and carbonate) related to PCD alteration zones. In order to validate the ASTER data, follow-up ground proofing and related mineralogical work was done which, in all cases, proved to be positive. The results of this work have identified the regional distribution of hypogene alteration zones (i.e., phyllic, argillic, propylitic and silicic), in addition to areas of secondary Fe-oxide formation, which are coincident with known sites of PCDs. The regional distribution and extent of the alteration zones identified also highlighted the role of regional structures in focusing the mineralizing/altering fluids. These results demonstrate very convincingly that ASTER imagery that uses the appropriate techniques is reliable and robust in mapping out the extent of hydrothermal alteration and lithological units, and can be used for targeting hydrothermal ore deposits, particularly porphyry copper deposits where the alteration footprint is sizeable.  相似文献   

20.
Eastern and western portions of the Jinchuan ultramafic intrusion have previously been interpreted as dismembered segments of a single elongate intrusion by late faults. However, the different stratigraphic sequences of the two portions indicate that they are originally two separate intrusions, referred to as Eastern and Western intrusions in this study. The Eastern intrusion is characterized by a concentric distribution of rock types with a core of sulfide dunite enveloped by lherzolite, whereas the Western intrusion is composed of the Upper and Lower units, interpreted as magmatic mega cycles with regular variations in lithology and chemistry. In the Western intrusion, the Upper unit consists of fine-grained dunite, lherzolite, and pyroxenite from its base to its top. The MgO contents decrease upward from the dunites (42–45 wt.%) to the lherzolites (36–41 wt.%), while Al2O3 and incompatible elements increase upward. In contrast, the Lower unit consists of coarse-grained dunites and lherzolites containing 37–40 and 28–35 wt.% MgO, respectively. Sharp contacts between the Upper and Lower units and fine-grained dunite xenoliths at the top of the Lower unit indicate that the Lower unit intruded along the base of the Upper unit. Disseminated and net-textured sulfides primarily occur in the Lower unit and comprise the no. 24 ore body. Very low S contents (<100 ppm) of the wall rocks at Jinchuan indicate that they were not the source of S causing sulfide immiscibility. Sulfide segregation more likely occurred in deep-seated magma chambers, and sulfides were deposited in the Western intrusion when sulfide-bearing magmas passed through the intrusion. In contrast, the Eastern intrusion was formed by injections of sulfide-free and sulfide-bearing olivine-crystal mushes, respectively, from another deep-seated staging magma chamber. The Eastern and Western intrusions and the deep-seated magma chambers comprise a complicated magma plumbing system at Jinchuan. Normal faults played a significant role in the formation of the magma plumbing system and provided pathways for the magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号