首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The southern Sinai Peninsula, underlain by the northernmost extension of the Arabian-Nubian Shield, exposes post-collisional calc-alkaline and alkaline granites that represent the youngest phase of late Neoproterozoic igneous activity. We report a petrographic, mineralogical and geochemical investigation of post-collisional plutons of alkaline and, in some cases, peralkaline granite. These granites intrude metamorphosed country rocks as well as syn- and post-collisional calc-alkaline granitoids. The alkaline and peralkaline granites of the southern tip of Sinai divide into three subgroups: syenogranite, alkali feldspar granite and riebeckite granite. The rocks of these subgroups essentially consist of alkali feldspar and quartz with variable amounts of plagioclase and mafic minerals. The syenogranite and alkali feldspar granite contain small amounts of calcic amphibole and biotite, often less than 3%, while the riebeckite granite is distinguished by sodic amphibole (5–10%). These plutons have geochemical signatures typical of post-collisional A-type granites and were most likely emplaced during a transition between orogenic and anorogenic settings. The parental mafic magma may be linked to lithospheric delamination and upwelling of asthenospheric mantle material. Differentiation of the underplated basaltic magma with contributions from the juvenile crust eventually yielded the post-collisional alkaline granites. Petrogenetic modelling of the studied granitic suite shows that pure fractional crystallization cannot quantitatively explain chemical variations with the observed suite, with both major oxides and several trace elements displaying trends opposite to those required by the equilibrium phase assemblage. Instead, we show that compositional variation from syenogranite through alkali feldspar granite to riebeckite granite is dominated by mixing between a low-SiO2 liquid as primitive or more primitive than the lowest-SiO2 syenogranite and an evolved, high-SiO2 liquid that might be a high-degree partial melt of lower crust.  相似文献   

2.
The Sahara–Umm Adawi pluton is a Late Neoproterozoic postcollisional A-type granitoid pluton in Sinai segment of the Arabian–Nubian Shield that was emplaced within voluminous calc-alkaline I-type granite host rocks during the waning stages of the Pan-African orogeny and termination of a tectonomagmatic compressive cycle. The western part of the pluton is downthrown by clysmic faults and buried beneath the Suez rift valley sedimentary fill, while the exposed part is dissected by later Tertiary basaltic dykes and crosscut along with its host rocks by a series of NNE-trending faults. This A-type granite pluton is made up wholly of hypersolvus alkali feldspar granite and is composed of perthite, quartz, alkali amphibole, plagioclase, Fe-rich red biotite, accessory zircon, apatite, and allanite. The pluton rocks are highly evolved ferroan, alkaline, and peralkaline to mildly peraluminous A-type granites, displaying the typical geochemical characteristics of A-type granites with high SiO2, Na2O + K2O, FeO*/MgO, Ga/Al, Zr, Nb, Ga, Y, Ce, and rare earth elements (REE) and low CaO, MgO, Ba, and Sr. Their trace and REE characteristics along with the use of various discrimination schemes revealed their correspondence to magmas derived from crustal sources that has gone through a continent–continent collision (postorogenic or postcollisional), with minor contribution from mantle source similar to ocean island basalt. The assumption of crustal source derivation and postcollisional setting is substantiated by highly evolved nature of this pluton and the absence of any syenitic or more primitive coeval mafic rocks in association with it. The slight mantle signature in the source material of these A-type granites is owed to the juvenile Pan-African Arabian–Nubian Shield (ANS) crust (I-type calc-alkaline) which was acted as a source by partial melting of its rocks and which itself of presumably large mantle source. The extremely high Rb/Sr ratios combined with the obvious Sr, Ba, P, Ti, and Eu depletions clearly indicate that these A-type granites were highly evolved and require advanced fractional crystallization in upper crustal conditions. Crystallization temperature values inferred average around 929°C which is in consistency with the presumably high temperatures of A-type magmas, whereas the estimated depth of emplacement ranges between 20 and 30 km (upper-middle crustal levels within the 40 km relatively thick ANS crust). The geochronologically preceding Pan-African calc-alkaline I-type continental arc granitoids (the Egyptian old and younger granites) associated with these rocks are thought to be the crustal source of f this A-type granite pluton and others in the Arabian–Nubian Shield by partial melting caused by crustal thickening due to continental collision at termination of the compressive orogeny in the Arabian–Nubian Shield.  相似文献   

3.
《Gondwana Research》2014,26(4):1570-1598
Granitic rocks are commonly used as means to study chemical evolution of continental crust, particularly, their isotopic compositions, which reflect the relative contributions of mantle and crustal components in their genesis. New SIMS and K–Ar geochronology, isotope, geochemical, and mineral chemistry data are presented for the granitoid rocks located in and around Gabal Dara in the Northern Eastern Desert of Egypt. The granitoid suite comprises quartz diorites, Muscovite (Mus) trondhjemites, and granodiorites intruded by biotite-hornblende (BH) granites and alkali feldspar (AF) granites. Mus trondhjemite, granodiorite and BH granite exhibit I-type calc alkaline affinities. Mus trondhjemite and granodiorite show medium-K calc-alkaline and metaluminous/mildy peraluminous affinities, whereas BH granites have high-K calc-alkaline and metaluminous character. Concordant 206Pb/238U weighted mean ages together with geochemical peculiarities suggest that Mus trondhjemites (741 Ma) followed by granodiorites (720 Ma) are genetically unrelated, and formed in subduction-related regime by partial melting of lower oceanic crust together with a significant proportion of mantle melt. The genesis of Mus trondhjemites is correlated with the main event in the evolution of the Eastern Desert, called “~750 Ma crust forming event”.The field and geochemical criteria together with age data assign the high-K calc-alkaline BH granites (608–590 Ma) and alkaline AF granites (600–592 Ma) as post-collisional granites. The differences in geochemical traits, e.g. high-K calc-alkaline versus alkaline/peralkaline affinities respectively, suggest that BH granites and AF granites are genetically unrelated. The age overlap indicating coeval generation of calc-alkaline and alkaline melts, which in turn suggests that magma genesis was controlled by local composition of the source. The high-K calc-alkaline BH granites are most likely generated from lithospheric mantle melt which have been hybridized by crustal melts produced by underplating process. AF granites exhibit enrichment in K2O, Rb, Nb, Y, and Th, and depletion in Al2O3, TiO2, MgO, CaO, FeO, P2O5, Sr, and Ba as well as alkaline/peralkaline affinity. These geochemical criteria combined with the moderately fractionated rare earth elements pattern (LaN/YbN = 9–14) suggest that AF granite magma might have been generated by partial melting of Arabian–Nubian Shield (ANS) arc crust in response of upwelling of hot asthenospheric mantle melts, which became in direct contact with lower ANS continental crust material due to delamination. Furthermore, a minor role of crystal fractionation of plagioclase, amphibole, biotite, zircon, and titanomagnetite in the evolution of AF granites is also suggested. The low initial 87Sr/86Sr ratios (0.7033–0.7037) and positive εNd(T) values (+ 2.32 to + 4.71) clearly reflect a significant involvement of depleted mantle source in the generation of the post-collision granites and a juvenile nature for the ANS.  相似文献   

4.
The Taoshan uranium ore district is one of the most important granite-hosted uranium producers in South China. The Taoshan granitic complex can be petrographically classified into several units of Caijiang, Huangpi, Daguzhai, and Luobuli, but the uranium deposits only occur within the Daguzhai granite unit. LA-ICP-MS zircon U–Pb dating indicates that both the Daguzhai granite and the Huangpi granite were emplaced at 154 ± 2 Ma. U contents (average 19.5 ppm) of the Daguzhai granite are higher than those of the Huangpi granite (average 7.3 ppm). The Daguzhai granite is composed of medium-grained two-mica granite, and the Huangpi granite is composed of medium- to coarse-grained biotite granite. These two granites show obvious differences in major element, trace element and isotopic geochemical characteristics. Compared to the Huangpi granite, the Daguzhai granite has higher A/CNK ratios, higher P2O5 contents and lower CaO contents, and is more enriched in Rb, Ba, U, and more depleted in Sr, Eu and Ti. The εNd(t) values of the Daguzhai granite vary from − 12.2 to − 11.0 with two-stage model ages of 1.84 to 1.93 Ga. The εNd(t) values of the Huangpi granite are slightly higher (− 9.7 to − 8.6) and the Nd model ages are younger (1.64 to 1.73 Ga). Comparative studies imply that the Daguzhai granite belongs to typical S-type and might be derived from the partial melting of parametamorphic rocks from metamorphic basement of the Zhoutan Group. In contrast, the Huangpi granite belongs to fractioned I-type, which might be derived from the partial melting of a mixture of ortho- and para-metamorphic rocks of the Zhoutan Group. These different magma sources might explain the different U contents of the two granites. In general, the source factor is an important controlling factor for the genesis of U-bearing granites in South China. U-bearing granites in South China show some common mineralogical and geochemical characteristics, which can be used to guide further exploration of granite-hosted U deposits.  相似文献   

5.
The Archean granites exposed in the Mesorchean Rio Maria granite-greenstone terrane (RMGGT), southeastern Amazonian craton can be divided into three groups on the basis of petrographic and geochemical data. (1) Potassic leucogranites (Xinguara and Mata Surrão granites), composed dominantly of biotite monzogranites that have high SiO2, K2O, and Rb contents and show fractionated REE patterns with moderate to pronounced negative Eu anomalies. These granites share many features with the low-Ca granite group of the Yilgarn craton and CA2-type of Archean calc-alkaline granites. These granites result from the partial melting of rocks similar to the older TTG of the RMGGT. (2) Leucogranodiorite-granite group (Guarantã suite, Grotão granodiorite, and similar rocks), which is composed of Ba- and Sr-rich rocks which display fractionated REE patterns without significant Eu anomalies and show geochemical affinity with the high-Ca granite group or Transitional TTG of the Yilgarn craton and the CA1-type of Archean calc-alkaline granites. These rocks appear to have been originated from mixing between a Ba- and Sr-enriched granite magma and trondhjemitic liquids or alternatively product of interaction between fluids enriched in K, Sr, and Ba, derived from a metasomatized mantle with older TTG rocks. (3) Amphibole-biotite monzogranites (Rancho de Deus granite) associated with sanukitoid suites. These granites were probably generated by fractional crystallization and differentiation of sanukitoid magmas enriched in Ba and Sr.The emplacement of the granites of the RMGGT occurred during the Mesoarchean (2.87–2.86 Ga). They are approximately coeval with the sanukitoid suites (∼2.87 Ga) and post-dated the main timing of TTG suites formation (2.98–2.92 Ga). The crust of Rio Maria was probably still quite warm at the time when the granite magmas were produced. In these conditions, the underplating in the lower crust of large volumes of sanukitoid magmas may have also contributed with heat inducing the partial melting of crustal protoliths and opening the possibility of complex interactions between different kinds of magmas.  相似文献   

6.
New fieldwork, mineralogical and geochemical data and interpretations are presented for the rare-metal bearing A-type granites of the Aja intrusive complex(AIC) in the northern segment of the Arabian Shield. This complex is characterized by discontinuous ring-shaped outcrops cut by later faulting. The A-type rocks of the AIC are late Neoproterozoic post-collisional granites, including alkali feldspar granite, alkaline granite and peralkaline granite. They represent the outer zones of the AIC, surrounding a core of older rocks including monzogranite, syenogranite and granophyre granite. The sharp contacts between A-type granites of the outer zone and the different granitic rocks of the inner zone suggest that the AIC was emplaced as different phases over a time interval, following complete crystallization of earlier batches. The A-type granites represent the late intrusive phases of the AIC, which were emplaced during tectonic extension, as shown by the emplacement of dykes synchronous with the granite emplacement and the presence of cataclastic features. The A-type granites consist of K-feldspars, quartz, albite, amphiboles and sodic pyroxene with a wide variety of accessory minerals, including Fe-Ti oxides, zircon, allanite, fluorite, monazite, titanite, apatite, columbite, xenotime and epidote. They are highly evolved(71.3–75.8 wt% SiO_2) and display the typical geochemical characteristics of post-collisional, within-plate granites. They are rare-metal granites enriched in total alkalis, Nb, Zr, Y, Ga, Ta, REE with low CaO, MgO, Ba, and Sr. Eu-negative anomalies(Eu/Eu* = 0.17–0.37) of the A-type granites reflect extreme magmatic fractionation and perhaps the effects of late fluid-rock interactions. The chemical characteristics indicate that the A-type granites of the AIC represent products of extreme fractional crystallization involving alkali feldspar, quartz and, to a lesser extent, ferromagnesian minerals. The parent magma was derived from the partial melting of a juvenile crustal protolith with a mantle contribution. Accumulation of residual volatile-rich melt and exsolved fluids in the late stage of the magma evolution produced pegmatite and quartz veins that cut the peripheries of the AIC. Post-magmatic alteration related to the final stages of the evolution of the A-type granitic magma, indicated by alterations of sodic amphibole and sodic pyroxene, hematitization and partial albitization.  相似文献   

7.
The Central Eastern Desert (CED) of Egypt, a part of Neoproterozoic Arabian Nubian Shield (ANS), embraces a multiplicity of rare metal bearing granitoids. Gabal El-Ineigi represents one of these granitic plutons and is a good example of the fluorite-bearing rare metal granites in the ANS. It is a composite pluton consisting of a porphyritic syenogranite (SG; normal granite) and coarse- to medium-grained highly evolved alkali-feldspar granite (AFG; fluorite and rare metal bearing granite) intruded into older granodiorite and metagabbro-diorite rocks. The rock-forming minerals are quartz, K-feldspar (Or94-99), plagioclase (An0-6) and biotite (protolithonite-siderophyllite) in both granitic types, with subordinate muscovite (Li-phengite) and fluorite in the AFG. Columbite-(Fe), fergusonite-(Y), rutile, zircon and thorite are the main accessory phases in the AFG while allanite-(Ce) and epidote are exclusively encountered in the SG. Texture and chemistry of minerals, especially fluorite, columbite and fergusonite, support their magmatic origin. Both granitic types are metaluminous to weakly peraluminous (A/CNK = 0.95–1.01) and belong to the post-collisional A2-type granites, indicating melting of underplated mafic lower crust. The late phase AFG has distinctive geochemical features typical of rare metal bearing granites; it is highly fractionated calc-alkaline characterized by high Rb, Nb, Y, U and many other HFSE and HREE contents, and by extremely low Sr and Ba. Moreover, the REE patterns show pronounced negative Eu anomalies (Eu/Eu1 = 0.03 and 0.06) and tetrad effect (TE1,3 = 1.13 and 1.27), implying extensive open system fractionation via fluid–rock interactions that characterize the late magmatic stage differentiation. The SG is remarkably enriched in Sr, Ba and invariably shows a relative enrichment in light rare-earth elements (LREEs). The SG rocks (569 ± 15 Ma) are characterized by relatively low initial 87Sr/86Sr ratios (0.7034–0.7035) that suggest their derivation from the mantle, with little contamination from the older continental crust. By contrast, the AFG has very high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for the high temperature magma-fluid interaction. The positive εNd(t) values of AFG (+7.40) and SG (+5.17), corresponding to young Nd-TDM2 ages ranging from 707 to 893 Ma, clearly reflect the juvenile crustal nature of Gabal El-Ineigi granitoids and preclude the occurrence of pre-Neoproterozoic continental crust in the ANS. The field relationships, chemical, petrological and isotopic characteristics of El-Ineigi SG and AFG prove that they are genetically not associated to each other and indicate a complex origin involving two compositionally distinct parental magmas that were both modified during magmatic fractionation processes. We argue that the SG was formed by partial melting of a mid-crustal source with subsequent fractional crystallization. In contrast, the AFG was generated by partial melting and fractionation of Nb- and Ta-rich amphibole (or biotite) of the lower crust. The appreciable amounts of fluorine in the magma appears to be responsible for the formation of rare metal element complexes (e.g., Nb, Ta, Sn and REEs), and could account for the rare metal mineralization in the El-Ineigi AFG.  相似文献   

8.
To date, few adakitic rocks have been reported in direct association with contemporary intra-continental extensional structures, which has cast doubt on genetic models involving partial melting of the lower crust. This study presents Early Cretaceous (143-129 Ma, new Sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages) adakitic granites, which are directly associated with a contemporary metamorphic core complex (i.e., the Northern Dabie Complex in the Dabie area). These granites exhibit relatively high Sr contents, negligible to positive Eu and Sr anomalies, high La/Yb and Sr/Y ratios, but very low Yb and Y contents, similar to subducted oceanic crust-derived adakites. They are also characterized, however, by very low MgO or Mg# and Ni values, and Nd-Sr isotope compositions (εNd(t) = −14.6 to −19.4 and (87Sr/86Sr)i = 0.7067-0.7087) similar to Triassic continent-derived eclogites subducted in the Dabie-Sulu Orogen. Additionally, late granitic dikes in the adakitic intrusions exhibit low Sr contents, clearly negative Eu and Sr anomalies, low La/Yb and Sr/Y ratios, but relatively high Yb and Y contents, similar to 118-105 Ma granites in the Northern Dabie Complex. Based on composition and geochronology data of Neoproterozoic amphibolites and orthogneisses, Triassic high- to ultra-high pressure metamorphic rocks, and Early Cretaceous mafic-ultramafic intrusive rocks, and the constraints provided by experimental melt data for tonalites, metabasaltic rocks and eclogites, we suggest that the adakitic granites were most probably generated by partial melting of thickened amphibole or rutile-bearing eclogitic lower crust as a consequence of Triassic-Middle Jurassic subduction and thrusting. The late dikes probably originated from plagioclase-bearing intermediate granulites. Moreover, we suggest that late Mesozoic delamination or foundering of thickened eclogitic lower crust is also a more plausible mechanism for the petrogenesis of Early Cretaceous mafic-ultramafic intrusive rocks in the Dabie area, and probably involved partial melting of a mixed source comprising eclogitic lower crust that had delaminated or foundered into upper lithospheric or asthenospheric mantle peridotite. Asthenospheric upwelling in response to post-collisional delamination of lithospheric mantle was likely to have provided the heat source for the Cretaceous magmatism.  相似文献   

9.
The present study focuses on four A-type fluorite-bearing granitic plutons in the Eastern Desert of Egypt which are classified into post-orogenic subsolvus (Homrit Waggat, 535 Ma; Homer Akarem, 541 Ma and Ineigi, 571 Ma) and anorogenic hypersolvus (Gabal Gharib, 476 Ma) granites. All the granites are Si- and alkali-rich and MgCaTi poor. Whereas both granite types appear relatively homogeneous in terms of most of their major and trace elements, they differ in that the subsolvus granites are depleted in TiO2, FeO*, Ba, Sr and Zr and enriched in Rb and Y with respect to the hypersolvus granites. The two granite types, however, can be distinguished more easily by their rare-earth element (REE) patterns. Chondrite-normalized REE patterns of the hypersolvus granite display a gull-wing shape, characterized by a large negative Eu anomaly and moderate-to-high LREE contents. Relative to the hypersolvus granite, subsolvus granite is depleted in LREE and more enriched in HREE contents. The increase of HREE in the subsolvus granite is presumably caused by F complexing during the late stage of its evolution. This is supported by the abundance of fluorite veins cross-cutting the subsolvus granite. The negative Eu anomalies in the subsolvus granite point to the role of feldspars as residual phase in the source, and as a crystallizing phase during magmatic differentiation.Field relations, textural, mineralogical and geochemical data of the post-orogenic subsolvus granite are consistent with its derivation from a parental basic magma through crystal-liquid fractionation of alkali feldspar, plagioclase, amphibole, FeTi oxides, titanite, zircon, monazite and allanite. Crystallization occurred in a water-enriched and rather oxidizing environment, as a result of which the entire suite has a transitional character between that of a post-orogenic and an anorogenic setting. On the other hand, the most credible mechanism for the origin of the anorogenic hypersolvus granite is partial melting of I-type granodiorite-monzogranite source rocks in the study area.  相似文献   

10.
澜沧江南段临沧花岗岩的锆石U-Pb年龄及构造意义   总被引:7,自引:5,他引:2  
王舫  刘福来  刘平华  施建荣  蔡佳 《岩石学报》2014,30(10):3034-3050
临沧花岗岩是滇西地区出露面积最大的复式岩基,它是特提斯构造域的重要组成单元,是研究古特提斯俯冲-碰撞的重要窗口。本文通过对澜沧江南段澜沧-景洪地区广泛出露的临沧花岗岩的岩石学、地球化学以及锆石年代学综合分析,系统阐述该区花岗岩的原岩性质以及其形成的构造背景。临沧花岗岩主要岩石类型为黑云母二长花岗岩和花岗闪长岩。锆石LA-ICP-MS U-Pb年代学结果表明,该区临沧花岗岩侵位时代为217~233Ma。前人在澜沧江北段花岗岩也获得相似的侵位年龄,表明临沧花岗岩的南段与北段在形成时代上具有一致性。继承锆石U-Pb年龄主要峰期集中在2494Ma、1832Ma、1382Ma、959Ma、774Ma、482Ma,指示临沧花岗岩具丰富的物质来源。全岩主微量元素分析结果显示,临沧花岗岩的Na2O/K2O比值低,铝饱和指数(A/NCK值)大于1,属高钾钙碱性系列,过铝质花岗质岩石。轻重稀土分异明显,轻稀土相对富集,具有明显的铕负异常(Eu/Eu*=0.39~0.63);相容元素Cr和Ni含量较低,富集大离子亲石元素Rb和Ba,亏损高场强元素Nb-Ta和Zr-Hf。地球化学特征显示,临沧花岗岩来源于地壳沉积物的部分熔融,属S型花岗岩,形成于古特提斯洋闭合后的构造伸展阶段。  相似文献   

11.
Precambrian granites of the Sharm El-Sheikh area in south Sinai, Egypt belong to collisional and post-collisional Magmatism (610–580 Ma). The granites are widely distributed in the northern part of the Neoproterozoic Arabian-Nubian Shield. South Sinai includes important components of successive multiple stages of upper crust granitic rocks. The earliest stages include monzogranite and syenogranites while the later stages produced alkali feldspar granites and riebeckite-bearing granites. Numerous felsic, mafic dikes and quartz veins traverse the study granites. Petrographically, the granitic rocks consist mainly of perthite, plagioclase, quartz, biotite and riebeckite. Analysis results portray monzogranites displaying calc-alkaline characteristics and emplaced in island-arc tectonic settings, whereas the syenogranites, alkali-feldspar granites and the riebeckite bearing-granites exhibit an alkaline nature and are enriched in HFSEs similar to granites within an extensional regime. Multi-element variation diagrams and geochemical characteristics reinforce a post-collision tectonic setting. REEs geochemical modeling reveals that the rocks were generated as a result of partial melting and fractionation of lower crust basaltic magma giving rise to A1 and A2 subtype granites. They were subsequently emplaced within an intraplate environment at the end of the Pan-African Orogeny.  相似文献   

12.
In the current study, an integration of Enhanced Thematic Mapper Plus (ETM+), field, and laboratory data have been used for lithological mapping of different granitic phases in the Kadabora area, Eastern Desert, Egypt. Application of enhancement techniques, including a new proposed band ratio combination (ratio 5/3, 3/1, 7/5 in RGB, respectively) and supervised classification images are used in discriminating different granitic phases in the Kadabora pluton from each other and from their environs. The data have been proved with the help of field and geochemical investigations. The results revealed that: (1) the Kadabora granitic pluton could be distinguished into three phases that recognized by field and laboratory investigation including granodiorite (phase I), monzogranite (phase II), and syeno-alkali feldspar granite (phase III). These phases are arranged according to their relative ages while the country rocks include ophiolitic mélange and metagabbro–diorite complex. It is also confirmed that the granitic pluton is invaded by dyke swarms which is trending in N–S direction. Geochemically, results show that the granodiorite is calc-alkaline, I-type and formed under subduction tectonic regime. Monzogranite falls within the alkaline and highly fractionated calc-alkaline granites, whereas syeno-alkali feldspar granite extends into proper alkaline granitoids field. Monzogranite and syeno-alkali feldspar granite belong to the A2-subtype granite. This A2-subtype granite was probably formed in an extensional regime, subsequent to subduction which can lead to tensional break-up of the crust (i.e., post-collisional, post-orogenic granites). The monzogranite and the syeno-alkali feldspar granite were probably formed by partial melting of relatively anhydrous lower crust source and/or tonalite to granodiorite is viable alternative to the granulite source.  相似文献   

13.
Whole-rock and mineral samples from the Jabal al Wask and Jabal Ess ophiolites, northwestern Saudi Arabia, yield Sm-Nd isochron ages of 743+24 Ma and 782±38 Ma, respectively. These formation ages, which provide maximum limits for possible obduction ages, are in broad but not precise agreement with the previously known geologic history of the Arabian Shield. They indicate that the ophiolitic rocks are roughly coeval with nearby volcanic and plutonic rocks, supporting a back-arc origin for the two ophiolites. We suggest that the Jabal al Wask and Jabal Ess ophiolites were parts of the same northeast-southwest trending ophiolite belt, now offset along the Najd fault system. Initial Nd values range from +6.6 to+ 7.6, indicating derivation from a mantle source that has been LIL-depleted for at least 2 Ga. Reported Nd values from the Arabian Shield that are lower than this suggest the presence of older, reworked continental crust.  相似文献   

14.
新疆准噶尔地区也布山、庙儿沟两个晚古生代后碰撞准铝一过铝质花岗岩体中,广泛发育大量的暗色微粒闪长质包体。岩石学、矿物学、主量元素和微量元素地球化学研究表明,包体与其寄主岩存在明显的亲缘关系。东准噶尔也布山黑云母花岗岩体中的暗色微粒包体与寄主岩有相似的地球化学成分,表明它是与寄主花岗岩相同成因的同源包体,是来自上地幔的基性岩浆经过高度演化、结晶分异的产物;西准噶尔庙儿沟二长花岗岩体中含钾长石斑晶的微粒包体则主要是由幔源的下地壳基性岩部分熔融形成的残余体,被酸性岩浆携带并发生成分上的同化和混染,最后在上地壳侵位的产物。同准噶尔碱性花岗岩一样,载荷包体的准铝一过铝质花岗岩是晚古生代后碰撞阶段构造一岩浆活动的岩石类型之一,其形成和演化标志了准噶尔地区后碰撞幔源岩浆底侵作用导致大陆地壳垂向生长的过程。  相似文献   

15.
The Bafoussam area in western Cameroon is part of the Central African Orogenic Belt. It is dominated by granitoids which belong to the Pan-African syn- to post-collisional post-650 Ma group. Syenogranites are predominant, but alkali-feldspar granite, monzogranite, quartz-monzonite and quartz-monzodiorite occur as well. Four granitoid suites, biotite granitoids and deformed biotite granitoids with amphibole, megafeldspar granitoids with megacrysts and two-mica granitoids with primary muscovite and igneous garnet are distinguished. The granites can be assigned to high-K calc-alkalic to shoshonitic series. The partly shoshonitic biotite granitoids are metaluminous to weakly peraluminous and can be labelled as a highly fractionated I-type suite. The megafeldspar granitoids are weakly peraluminous with I-type character whereas the two-mica granitoids are weakly to strongly peraluminous and belong to an S-type suite. Emplacement ages at 558–564 Ma for the two-mica granitoids have been dated from monazite by the EMP Th–U–Pb method.The REE in the biotite granitoids are moderately fractionated with (La/Lu)N = 23–38. Enrichment of Nb and Ta varies by one order of magnitude. The megafeldspar granitoids show homogeneous and strongly fractionated REE patterns with (La/Lu)N = 27–42. The primitive mantle-normalized element patterns are homogeneous with marked negative Ba, Nb, Ta, Sr, Eu and Ti anomalies. The two-mica granitoids are characterized by low to moderate total REE contents with strongly fractionated REE expressed by (La/Lu)N ranging from 7 to 59. The negative Nb and Ta anomalies are less significant. Nd and Sr whole-rock isotope data confirm different sources for the granitoid suites. The source of the I-type biotite granitoids was probably a juvenile mantle which has been variably metasomatized. The source of the I-type megafeldspar granitoids is characterized by juvenile mantle and lower crust components. Anatectic melts of the upper continental crust with variable contribution of lower continental crust or mantle melts can explain the heterogeneous isotopic signatures of the S-type two-mica granitoids. It is suggested that the melting of these sources was successively initiated by the rising isotherms during a syn- to post-collisional setting which followed a subduction.  相似文献   

16.
New data from a geochemical, geochronological and isotopic study of the Late Precambrian Timna igneous complex suggest the formation of alkali granites from a LIL-enriched, mantle derived, sanukitoid-type monzodiorite (a silica oversaturated rock with Mg# >60). These data also provide new insights into the petrology, timing and regional tectonic control of the transition from the calc-alkaline to the alkaline magmatic activity in the northern Arabian-Nubian Shield (ANS) during the Late Precambrian.

The Timna alkali granite was formed by fractional crystallization from the monzodioritic magma in a quasi-stratified magmatic cell which formed 610 Ma ago in the 625 Ma old calc-alkaline, porphyritic granite crust. These monzodiorites are mantle-derived, as demonstrated by their high Mg# (63), Cr (230 ppm), and Ni (120 ppm). They are characterized by initial 87Sr/86Sr of 0.7034, ε-Nd (610 Ma) = +3.4, and are enriched in K2O (2.9%), Sr (840 ppm), Ba (1290 ppm) and LREE [(La/Lu)n= 10–25]. The chemical characteristics and REE patterns of the monzodiorites and andesitic dykes of Timna are very similar to Dokhan andesites from northeastern Egypt and the Archean sanukitoids from Canada. The isotopic, geochemical and geochronologic data all indicate that Timna monzodiorites are comagmatic with the alkali granite. The alkali granite is a typical post-orogenic, borderline A-type granite. It is enriched in potassium (K2O=4.68–6.64%), has a negative europium anomaly (Eu/Eu*=0.058–0.38) and ε-Nd (610 Ma) of +3.9. The calc-alkaline granite is a typical I-type granite with a small positive europium anomaly (Eu/Eu*=1.02–1.16). Its age and the Sr, Nd and Pb isotopic characteristics with ε-Nd (625 Ma) of +5.6 to +5.9 are significantly different from these of the alkali granite and monzodiorites, and indicate little interaction with the monzodiorite during the formation of the alkali granite.

The alkali granites are correlative with the post-collisional extensional granites in Jordan and Egypt while the porphyritic granites can be correlated with the late orogenic types. Crustal thickening associated with orogenic compression resulted in crustal anatexis to form the I-type granitic rocks, whereas crustal thinning associated with extension allowed LIL-enriched mantle melts to rise very near to the surface, where space was available for these to pond and fractionate to alkali granite.  相似文献   


17.
熊子良  张宏飞  张杰 《地学前缘》2012,19(3):214-227
文中研究了北祁连东段冷龙岭地区毛藏寺岩体和黄羊河岩体的年代学、地球化学和Sr-Nd同位素组成。毛藏寺岩体主要岩石类型为花岗闪长岩。锆石U Pb定年获得花岗闪长岩岩浆结晶年龄为(424±4) Ma。花岗闪长岩具有高的Mg#(约55),K2O/Na2O=0.77~0.91,A/CNK=0.92~0.94,表明岩石属准铝质。在微量元素组成上,花岗闪长岩富集LILE、亏损HFSE,轻重稀土分异明显[(La/Yb)N=16.9~19.5],具有弱的Eu负异常(Eu/Eu*=0.75~0.83);花岗闪长岩具有ISr=0.706 3~0.706 5,εNd(t) =-1.5~-1.1,TDM=1.10~1.16 Ga。这些地球化学特征和Sr Nd同位素组成表明,花岗闪长岩岩浆源区为基性下地壳变玄武质岩石,但在成岩过程中有少量幔源物质的加入。黄羊河岩体主要由钾长花岗岩组成,其岩浆结晶年龄为(402±4) Ma。岩石富碱(K2O+Na2O=6.91‰~7.66%),K2O/Na2O>1,A/CNK=0.97~1.05。钾长花岗岩富集LILE及HFSE,轻重稀土元素分馏中等[(La/Yb)N =10.6~17.8],并具有明显的负Eu异常(Eu/Eu*=0.43~0.68),表明钾长花岗岩具有铝质A型花岗岩的地球化学特征。钾长花岗岩具有ISr=0.710 3~0.711 3,εNd(t)=-6.7~-6.0,TDM=1.46~1.55 Ga,反映岩浆主要来自地壳中长英质物质的部分熔融。冷龙岭地区花岗岩类的岩石成因及其岩浆演化揭示了北祁连山造山带从加里东早期的挤压构造体制向加里东晚期的伸展构造体制的演化。这些花岗岩类形成于碰撞后构造背景,岩浆的产生可能与俯冲的北祁连洋板片的断离作用有密切联系。  相似文献   

18.
Origin of granites in an Archean high-grade terrane,southern India   总被引:4,自引:0,他引:4  
Archean deep-level granites in southern India are similar geochemically to young granites from continentalmargin arc systems. They exhibit light REE enriched patterns with variable, but chiefly positive Eu anomalies. This is in striking contrast to the negative Eu anomalies typical in high-level Archean granites. In addition, the deep-level granites are relatively enriched in Ba and Sr and depleted in total REE and high field strength elements (HFSE). One pluton, the Sankari granite, has unusually low contents of REE and HFSE. Most of the deep-level granites appear to represent cumulates with variable amounts of trapped liquid and of minor phases, resulting from fractional crystallization of a granitic parent. Such parental granitic magmas can be produced by batch melting of Archean tonalite at middle to lower crustal depths. The Sankari granite requires a tonalitic source depleted in REE and HFSE. Archean tonalites and tonalitic charnockites exhibit original igneous geochemical signatures and their average composition does not show a significant Eu anomaly. Hence, they cannot represent the positive Eu-anomaly complement to the negative Eu-anomaly, high-level granites. Our results suggest that Archean deep-level granites may represent this complement. Such granite may form in waterrich zones in the middle or lower crust and be produced in response to dehydration of the lower crust by a rising CO2-rich fluid phase.  相似文献   

19.
对南岭地区侏罗纪4个典型"铝质"A型花岗岩岩基——柯树北、寨背、西山和南昆山的成因分析表明:柯树北、寨背岩基中的低分异花岗岩SiO2≈70%,A/CNK<1.1,CaO≥1%,高Zr、Ba含量,是下地壳部分熔融产物;而SiO2含量较高者由低分异花岗岩岩浆通过分离结晶演化而来。西山花岗质火山-侵入杂岩也是下地壳部分熔融产物。南昆山花岗岩为高硅花岗岩,贫Zr、低Ba、Sr和Eu/Eu*值,但具有高的Nb、Ga、REE含量和Ga/Al比值,在Whalen等(1987)图解中地球化学参数落在A型花岗岩区域内。碱性玄武岩浆分离结晶的成岩模式无法解释南昆山岩基较大的体积、均一的成分和低的Nb/Ta比值。详细的成岩分析表明,南昆山花岗岩可能是先期侵入的(幔源)碱性正长岩在富水和相对低温低压条件下发生部分熔融的产物。由这些"铝质"A型花岗岩的熔融温压条件估算得出热流值达到80~95mWm-2的南岭地区侏罗纪古地温线。由古地温线推算出的岩石圈厚度45~75km。南岭侏罗纪高热流背景及其对应的花岗质岩浆活动可能与后碰撞造山阶段岩石圈地幔拆沉或被"热侵蚀"有关,但并不一定意味着岩石圈伸展的大地构造环境。  相似文献   

20.
哈尔里克山西段早志留世二长花岗岩和正长花岗岩呈北西西向带状展布,侵入奥陶系塔水组(O1-2t),LA-ICP-MS锆石U-Pb年龄为438.8±2.3~435.8±3.1 Ma。岩石高硅(SiO2含量73.0%~77.8%)、富钾(K2O含量3.31%~4.26%)、低镁(MgO含量0.03%~0.59%),铝饱和指数A/CNK值1.02~1.08,属高钾钙碱性弱过铝质岩石。二长花岗岩轻重稀土分馏显著,Eu异常中等,亏损Nb、Ta、Ti、P,富集Rb、Ba、K,表现为分异的Ⅰ型花岗岩特征,源区为基性下地壳;正长花岗岩强烈亏损Eu、P、Ti、Sr,不同程度富集Rb、K、Zr、Hf,表现为A型花岗岩特征,其源区为缺水的浅部长英质地壳。结合区域地层不整合资料,认为东准噶尔地区早志留世为后碰撞环境而非岛弧带,后碰撞软流圈上涌带来的热熔融准噶尔年轻地壳形成了岩性丰富的东准噶尔志留纪后碰撞岩浆岩组合。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号