首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
High‐resolution snow depth (SD) maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small‐scale variability of the snowpack at the catchment and sub‐grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49, and 99 × 99 m) and eight different days in two snow seasons (2011–2012 and 2012–2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small‐scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small‐scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub‐grid variability. Topographic variables including slope, wind sheltering, sub‐grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99 × 99 m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25 × 25 m resolution they explained slightly more than 50%. The results highlight the importance of considering small‐scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The spatial variation of soil moisture over very small areas (<100 m2) can have nonlinear impacts on cycling and flux rates resulting in bias if it is not considered, but measuring this variation is difficult over extensive temporal and spatial scales. Most studies examining spatial variation of soil moisture were conducted at hillslope (0.01 km2) to multi-catchment spatial scales (1000 km2). They found the greatest variation at mid wetness levels and the smallest variation at wet and dry wetness levels forming a concave down relationship. There is growing evidence that concave down relationships formed between spatial variation of soil moisture and average soil moisture are consistent across spatial scales spanning several orders of magnitude, but more research is needed at very small, plot scales (<100 m2). The goal of this study was to characterise spatial variation in shallow soil moisture at the plot scale by relating the mean of measurements collected in a plot to the standard deviation (SD). We combined data from a previous study with thousands of new soil moisture measurements from 212 plots in eight catchments distributed across the US Mid-Atlantic Region to (1) test for a generalisable mean–SD relationship at plot scales, (2) characterise how landcover, land use, season, and hillslope position contribute to differences in mean–SD relationships, and (3) use these generalised mean–SD relationships to quantify their impacts on catchment scale nitrification and denitrification potential. Our study found that 98% of all measurements formed a generalised mean–SD relationship like those observed at hillslope and catchment spatial scales. The remaining 2% of data comprised a mean–SD relationship with greater spatial variation that originated from two riparian plots reported in a previous study. Incorporating the generalised mean–SD relationship into estimates of nitrification and denitrification potential revealed strong bias that was even greater when incorporating mean–SD observations from the two riparian plots with significantly greater spatial variation.  相似文献   

4.
5.
We analyzed the structure of the megabenthic gastropod assemblages on the Uruguayan and northern Argentinean shelf and slope. Our analysis determined that there are two major biologically distinct assemblages which occurred in a 210,000 km2 area showing conspicuous environmental gradients and large frontal areas: (a) an assemblage associated with the zone under the influence of the freshwater discharge of Río de la Plata and the shallow waters of the inner shelf and (b) an assemblage associated with marine zone in the outer shelf, which includes Magellanic (Subantarctic) and subtropical faunas. A multivariate analysis demonstrated a significant correlation between the environmental and biological matrix. This evidence suggests a noticeable effect of the physical environment on the spatial structure of the assemblage. We suggest that the current distribution patterns are caused by two different processes operating together: while processes operating at ecological time scales (e.g. differential tolerances to salinity and depth) determine most of the structure observed at the inner shelf, the presence of two contrasting water masses over the outer shelf determine a biogeographic boundary for the benthic fauna, linked to shifting climatic factors influencing species niche dynamics over evolutionary time scales. Thus, at the spatial scale here considered, ecological and historical processes must be considered when attempting to understand which factors determine the current structure of benthic assemblages at regional scales.  相似文献   

6.
Fault surface roughness is a principal factor influencing earthquake mechanics, and particularly rupture initiation, propagation, and arrest. However, little data currently exist on fault surfaces at seismogenic depths. Here, we investigate the roughness of slip surfaces from the seismogenic strike-slip Gole Larghe Fault Zone, exhumed from ca. 10 km depth. The fault zone exploited pre-existing joints and is hosted in granitoid rocks of the Adamello batholith (Italian Alps). Individual seismogenic slip surfaces generally show a first phase of cataclasite production, and a second phase with beautifully preserved pseudotachylytes of variable thickness. We determined the geometry of fault traces over almost five orders of magnitude using terrestrial laser-scanning (LIDAR, ca. 500 to <1 m scale), and 3D mosaics of high-resolution rectified digital photographs (10 m to ca. 1 mm scale). LIDAR scans and photomosaics were georeferenced in 3D using a Differential Global Positioning System, allowing detailed multiscale reconstruction of fault traces in Gocad®. The combination of LIDAR and high-resolution photos has the advantage, compared with classical LIDAR-only surveys, that the spatial resolution of rectified photographs can be very high (up to 0.2 mm/pixel in this study), allowing for detailed outcrop characterization. Fourier power spectrum analysis of the fault traces revealed a self-affine behaviour over 3–5 orders of magnitude, with Hurst exponents ranging between 0.6 and 0.8. Parameters from Fourier analysis have been used to reconstruct synthetic 3D fault surfaces with an equivalent roughness by means of 2D Fourier synthesis. Roughness of pre-existing joints is in a typical range for this kind of structure. Roughness of faults at small scale (1 m to 1 mm) shows a clear genetic relationship with the roughness of precursor joints, and some anisotropy in the self-affine Hurst exponent. Roughness of faults at scales larger than net slip (>1–10 m) is not anisotropic and less evolved than at smaller scales. These observations are consistent with an evolution of roughness, due to fault surface processes, that takes place only at scales smaller or comparable to the observed net slip. Differences in roughness evolution between shallow and deeper faults, the latter showing evidences of seismic activity, are interpreted as the result of different weakening versus induration processes, which also result in localization versus delocalization of deformation in the fault zone. From a methodological point of view, the technique used here is advantageous over direct measurements of exposed fault surfaces in that it preserves, in cross-section, all of the structures which contribute to fault roughness, and removes any subjectivity introduced by the need to distinguish roughness of original slip surfaces from roughness induced by secondary weathering processes. Moreover, offsets can be measured by means of suitable markers and fault rocks are preserved, hence their thickness, composition and structural features can be characterised, providing an integrated dataset which sheds new light on mechanisms of roughness evolution with slip and concomitant fault rock production.  相似文献   

7.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Light within the littoral zone affects the productivity and interaction between periphyton and its macrophyte substrate. The effect of periphyton on macrophyte photosynthesis, seasonal variation and vertical distribution of periphyton on artificial substrates (plastic strips), and the effect of periphyton on the light environment was studied in Lake Balaton. Data showed that an average of 4.1 ± 0.4 mg (dry weight) cm?2 of periphyton had accumulated on the plastic strips after 8.8 ± 0.4 days. This biomass corresponded to 294 ± 30 μg m?2 chl-a of epiphytic algae and blocked 92.3 ± 0.8 % of the depth specific radiation. Seasonal variation and specific vertical distribution of periphyton were observed. The most active time of periphyton accumulation corresponded to spring up until mid-June. Later in the year, the amount of periphyton significantly decreased. The optimal conditions for periphyton accumulation were at 30–40 cm depth. Most of the light reaching the adaxial leaf surface was attenuated by periphyton, decreasing the production of Potamogeton perfoliatus by 60–80 %. This increased the importance of backscattered light that corresponded to 10–15 % of the macrophyte production. A smaller part of the periphyton consisted of precipitated inorganic material, while epiphytic algae, making up the majority of the periphyton, were connected to both benthic (dominantly benthic penales) and pelagic (very close seasonal dynamics of pelagic and epiphytic biomass) algae. Periphyton affects macrophyte production especially in spring and in the upper water layers even in a mesotrophic water body. This increases the importance of the light absorbed through the abaxial side of the leaf and confirm the role of periphyton in transition from clear to turbid water states.  相似文献   

9.
ABSTRACT

The MHD-INPE model was applied in the Ji-Parana Basin, a 30 000 km2 catchment located in the southwest of the Amazon Basin which has lost more than 50% of its forest since the 1980s, to simulate land use and land cover change impacts on runoff generation process and how they are related to basin topography. Simulation results agree with observational studies in the sense that fast response processes are significant in sub-basins with steep slopes while in basins with gentle topography, the impacts are most visible in slow-response hydrological processes. On the other hand, the model is not able to capture the dependence of LUCC impacts on spatial scales. These discrepancies are probably associated with limitations in the spatial representation of heterogeneities within the model, which become more relevant at larger scales. We also tested the hypothesis that secondary forest growth should be able to compensate the decrease in evapotranspiration due to forest–cropland or forest–grassland conversion at a regional scale. Results showed that despite the small fraction of secondary forest estimated on the basin, the higher evapotranspiration efficiency of this type of forest counterbalances a large fraction of the LUCC impacts on evapotranspiration. This result suggests that enhanced transpiration due to secondary forest could explain, at least in part, the lack of clear LUCC signals in discharge series at larger scales.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR T. Wagener  相似文献   

10.
Based on the hydrologic and meteorological data in the Yarkand River Basin during 1957–2008, the nonlinear hydro-climatic process was analyzed by a comprehensive method, including the Mann–Kendall trend test, wavelet analysis, wavelet regression analysis and correlation dimension. The main findings are as following: (1) The annual runoff, annual average temperature and annual precipitation showed an increasing trend during the period of 1957–2008, and the average increase extent in runoff, temperature and precipitation was 2.234 × 10m3/10 year, 0.223 °C/10 year, and 4.453 mm/10 year, respectively. (2) The nonlinear pattern of runoff, temperature and precipitation was scale-dependent with time. In other words, the annual runoff, annual average temperature and annual precipitation at five time scales resulted in five patterns of nonlinear variations respectively. (3) Although annual runoff, annual average temperature and annual precipitation presented nonlinear variations at different time scales, the runoff has a linear correlation with the temperature and precipitation. (4) The hydro-climatic process of the Yarkand River is chaotic dynamic system, in which the correlation dimension of annual runoff, annual average temperature and annual precipitation is 3.2118, 2.999 and 2.992 respectively. None of the correlation dimensions is an integer, and it indicates that the hydro-climatic process has the fractal characteristics.  相似文献   

11.
Deep circulation driven by strong vertical mixing in the Timor Basin   总被引:1,自引:1,他引:0  
The importance of deep mixing in driving the deep part of the overturning circulation has been a long debated question at the global scale. Our observations provide an illustration of this process at the Timor Basin scale of ~1000 km. Long-term averaged moored velocity data at the Timor western sill suggest that a deep circulation is present in the Timor Basin. An inflow transport of ~0.15 Sv is observed between 1600 m and the bottom at 1890 m. Since the basin is closed on its eastern side below 1250 m depth, a return flow must be generated above 1600 m with a ~0.15 Sv outflow. The vertical turbulent diffusivity is inferred from a heat and transport balance at the basin scale and from Thorpe scale analysis. Basin averaged vertical diffusivity is as large as 1 × 10?3 m2 s?1. Observations are compared with regional low-resolution numerical simulations, and the deep observed circulation is only recovered when a strong vertical diffusivity resulting from the parameterization of internal tidal mixing is considered. Furthermore, the deep vertical mixing appears to be strongly dependent on the choice of the internal tide mixing parameterization and also on the prescribed value of the mixing efficiency.  相似文献   

12.
Transpiration is an important component of soil water storage and stream‐flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro‐Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R2 = 0·32 and 0·29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200–1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800–2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150–2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600–4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Floodplains are depositional features of riverine landscapes that display complex sedimentation patterns that are amenable to multi‐scale approaches. We examined sedimentation in the Lower Balonne floodplain, Queensland, Australia, at three different spatial scales: the channel (103 km), floodplain process zone (10 km) and geomorphic unit (102 m) scales, and compared scale‐related patterns evident from stratigraphy with those evident from quantitative multivariate analysis. Three stratigraphic sequences were found in the Lower Balonne floodplain: generally fining upward, episodic fining upward, and mud‐dominated. Stratigraphical analysis revealed the detailed character of sedimentary sequences embedded within the scale patterns derived from multivariate analysis. Multivariate statistical analyses of a range of textural and geochemical data revealed different patterns of floodplain sedimentation at each scale. At the channel scale, sediment texture and geochemistry were more heterogeneous in the Culgoa River than in Briarie Creek. At the floodplain process zone scale clear patterns of sediment texture and geochemistry were observed along the upper, mid and lower floodplain process zones of Briarie Creek, but not along the Culgoa River. At the geomorphic unit scale, clear patterns of sediment texture and geochemistry were observed among the bank, buried channel and flat floodplain units of the Culgoa River, but were not as clear in Briarie Creek. Recognition of rivers as hierarchically organized systems is an emerging paradigm in river science. Our study supports this paradigm by demonstrating that different sedimentation patterns occur at different scales to reveal a hierarchically organized floodplain environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Stream invertebrate distribution patterns reflect local sedimentary and hydraulic conditions, which in turn are influenced by a range of factors operating at larger scales. We assessed whether spatial variation in invertebrate assemblages across a meso-scale catchment is best understood in terms of the characteristics of the study reaches themselves or the characteristics of respective upstream catchment areas. The study river experiences naturally high fine sediment loads as a result of the extraordinary supply of sediment from high erodible marls in its catchment. We hypothesized that between-reach variation in the volume of fine sediment stored within the channel results from a combination of reach and upstream catchment characteristics, and that these characteristics help explain variation in invertebrate assemblages. The storage of fine sediment in study reaches correlated with a number of upstream catchment characteristics, as well as reach-scale hydraulic conditions. Variability in invertebrate assemblages correlated most strongly (62% of variance explained) with the characteristics of the catchment upstream from each reach (area of contribution), with the characteristics of the reaches accounting for only 35% of the variability. The explanatory power of the reach-scale habitat variables was reduced when the effect of upstream catchment conditions was removed. This suggests inbuilt effects of larger scale conditions on reach habitat and invertebrate assemblages. Results lend support to theories of scale hierarchy within river systems and help emphasize the need to target management at upstream catchment areas.  相似文献   

15.
A review is presented of the basic scientific analysis of the behaviour of water at all scales from the molecular (10−8 m) to the catchment scale (105 m). The approach needed to make progress at the various scales is shown to be different and sometimes contradictory.  相似文献   

16.
Forty-six mining-induced seismic events with moment magnitude between ?1.2 and 2.1 that possibly caused damage were studied. The events occurred between 2008 and 2013 at mining level 850–1350 m in the Kiirunavaara Mine (Sweden). Hypocenter locations were refined using from 6 to 130 sensors at distances of up to 1400 m. The source parameters of the events were re-estimated using spectral analysis with a standard Brune model (slope ?2). The radiated energy for the studied events varied from 4.7 × 10?1 to 3.8 × 107 J, the source radii from 4 to 110 m, the apparent stress from 6.2 × 102 to 1.1 × 106 Pa, energy ratio (E s/E p) from 1.2 to 126, and apparent volume from 1.8 × 103 to 1.1 × 107 m3. 90% of the events were located in the footwall, close to the ore contact. The events were classified as shear/fault slip (FS) or non-shear (NS) based on the E s/E p ratio (>10 or <10). Out of 46 events 15 events were classified as NS located almost in the whole range between 840 and 1360 m, including many events below the production. The rest 31 FS events were concentrated mostly around the production levels and slightly below them. The relationships between some source parameters and seismic moment/moment magnitude showed dependence on the type of the source mechanism. The energy and the apparent stress were found to be three times larger for FS events than for NS events.  相似文献   

17.
Artificial drainage of forested wetlands to increase timber production has profoundly altered the hydrology of North-European landscapes during the 20th century. Nowadays, drainage ditches and small dredged streams can comprise most fluvial water bodies there, but the resulting ecological effects are poorly documented. In the current study, we explored, using fish as an indicator group, consequences of the transformation of natural stream networks to a mixture of natural and artificial watercourses. We asked whether the transformation results in impoverishment, enrichment or re-assembling of the communities both at watercourse and the landscape scales. We sampled fish in 98 sites in five well-forested regions in Estonia where ditches formed 83–92%, dredged streams 4–7%, and natural streams 3–10% of the total length of small watercourses. Based on a total of 6370 individual fish of 20 species, we found that, compared to natural streams, ditches had an impoverished fauna at both scales and both in terms of species richness and assemblage composition. Only natural streams hosted characteristic species (with Barbatula barbatula, Lampetra planeri and Lota lota emerging as significant indicators), while dredged streams had intermediate assemblages. The habitat factors explaining those drainage-related differences included a reduced flow velocity, loss of stream channel variability, less transparent water, and abundant aquatic vegetation. Hence, for stream-dwelling fish, drained forest landscapes represent degraded habitats rather than novel ecosystems, which contrasts with the transformation of terrestrial assemblages. Future studies should address whether that reflects the situation for whole aquatic assemblages, and how is the functioning of the hydrological systems affected. We suggest that the critical management issues for environmental mitigation of ditching effects on fish include basin scale spatial planning, protecting of the remaining natural streams, and rehabilitation of ditch channels in flat landscapes lacking beavers.  相似文献   

18.
Many researchers have examined the impact of detailed soil spatial information on hydrological modelling due to the fact that such information serves as important input to hydrological modelling, yet is difficult and expensive to obtain. Most research has focused on the effects at single scales; however, the effects in the context of spatial aggregation across different scales are largely missing. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information: the 10‐m‐resolution soil data derived from the Soil‐Land Inference Model (SoLIM) and the 1:24000 scale Soil Survey Geographic (SSURGO) database in the United States. The study was conducted at three different spatial scales: two at different watershed size levels (referred to as full watershed and sub‐basin, respectively) and one at the model minimum simulation unit level. A fully distributed hydrologic model (WetSpa) and a semi‐distributed model (SWAT) were used to assess the effects. The results show that at the minimum simulation unit level the differences in simulated runoff are large, but the differences gradually decrease as the spatial scale of the simulation units increases. For sub‐basins larger than 10 km2 in the study area, stream flows simulated by spatially detailed SoLIM soil data do not significantly vary from those by SSURGO. The effects of spatial scale are shown to correlate with aggregation effect of the watershed routing process. The unique findings of this paper provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of soil data affects watershed modelling. Different views result from different scales at which those studies were conducted. In addition, the findings offer a potentially useful basis for selecting details of soil spatial information appropriate for watershed modelling at a given scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Little is known about the spatial and temporal scales of variation in aeolian processes. Studies that aim to investigate surface erodibility often sample aeolian sediment transport at the nodes of a regular grid of arbitrary size. Few aeolian transport investigations have the resources to obtain sufficient samples to produce reliable models for mapping the spatial variation of transport. This study reports the use of an innovative nested strategy for sampling multiple spatial scales simultaneously using 40 sediment samplers. Reliable models of the spatial variation in aeolian sediment transport were produced and used for ordinary punctual kriging and stochastic simulated annealing to produce maps for several wind erosion events over a 25 km2 playa in western Queensland, Australia. The results support the existence of a highly dynamic wind erosion system that was responding to possibly cyclic variation in the availability of material and fluctuations in wind energy. The spatial scale of transport was considerably larger than the small scale expected of the factors controlling surface erodibility. Thus, it appears that transport cannot be used as a surrogate of erodibility at the scale of this investigation. Simulation maps of transport provided considerably more information than those from kriging about the variability in aeolian sediment transport and its possible controlling factors. The proposed optimal sampling strategy involves a nested approach using ca 50 samplers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号