首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The solar-wind interacts directly with the lunar surface due to tenuous atmosphere and magnetic field. The interaction results in an almost complete absorption of the solar-wind corpuscles producing no upstream bowshock but a cavity downstream. The solar-wind oxygen ionic species induce and undergo a complex set of reactions with the elements of the lunar minerals and the solar-wind derived trapped gases. The oxygen concentration indegeneous to the lunar surface material is about 60 at.%. Some of these oxygen are displaced from their crystal lattice locations by interactions of the solar-wind corpuscles. A small fraction of these displaced oxygen is in active state. The solar-wind oxygen species flux is about 6×104 cm–2 s–1. Besides inducing and undergoing various reactions these species become trapped as oxygen atoms in the lunar grains. Only a portion of these trapped oxygen atoms is in active state. For the contribution of oxygen atoms and molecules from the lunar surface grains to the atmosphere and their reactions with other species, the diffusion coefficients of oxygen atom and molecule should be known. However their values in the highly radiation-damaged lunar surface material are not known. The coefficients are calculated by using the apparent lifetimes of atomic and molecular oxygen in the lunar material. The atmospheric concentration of oxygen atoms and molecules near the lunar surface are found to be about 20 and 3 cm–3, respectively. These values appear to be very reasonable in comparison with the experimental data. The Apollo 17 lunar orbital UV spectrometer data indicate the atomic oxygen concentration is <8×101 cm–3. The Apollo 17 lunar surface mass spectrometer (sensitivity: 1 count=2×102 molecules cm–3) did not detect any oxygen molecules on the dayside of the Moon, but the sunrise concentration was reported to be 1±×103 cm–3. At the time of the sample collection on the Moon the oxygen content in the trapped gas layer was partly as oxygen atoms and partly as oxygen molecules. At the time of sample analysis on the Earth the concentrations of these two species did not change appreciably.  相似文献   

2.
The solar wind interacts directly with the lunar surface material resulting in an essentially complete absorption of the corpuscles producing no upstream bowshock but a cavity downstream from the Moon. The main source of most neutral species of the atmosphere, except probably40Ar, is the solar-wind interaction products. The other sources which appear to be minor contributors to the atmosphere are the interaction products of cosmic rays, planetary degassing, effects of meteorite impacts and radioactive decays. Most of the hydrogen atoms derived from the solar-wind protons contribute to the atmosphere as hydrogen molecules rather than atoms. Only on the basis of the solar-wind protons, alpha particles and ions of oxygen and carbon, the atmospheric species concentration (cm–3) near the lunar surface at 300K are as follows: H2 3.3 to 9.9 × 103; He 2.4 to 4.7 × 103; H 3.7; OH 0.25; H2O 0.24; and O2, O, CO, CO2 and CH4 in concentrations smaller than H2. Whatever the source, the OH and H2O concentrations in the atmosphere are about the same. The calculated concentrations are in good agreement with the observations by the Apollo 17 lunar surface mass spectrometer and the Apollo 17 orbital UV spectrometer. At the time of sample collection from the Moon, the hydrogen content in the trapped gas layer of the lunar surface material was partly as hydrogen atoms and partly as hydrogen molecules, but at the time of sample analysis hydrogen was mostly in molecular form. The H2O content at the time of sample analysis was only a few parts per million by weight.Paper presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon, sponsored by the Lunar Science Institute, Houston, Texas and held at the Lake Geneva Campus of George Williams College, Wisconsin, between September 30 and October 4, 1974.  相似文献   

3.
The solar and galactic cosmic rays interact directly with lunar surface materials, and the dominant nature of interactions is essentially the complete absorption of corpuscles. These corpuscles damage the lattice structure, and induce a complex set of reactions in the materials producing various species. The cosmic ray damage of the lattice would not produce an amorphous layer, similar to that produced by the solar wind, because the solar wind erosion rate is faster than the cosmic ray-induced amorphous layer formation rate. The species formation rate considered in this paper are those produced by protons, the dominant component of cosmic rays. Protons produce H, H2, OH, H2O, and hydrogenated species of carbon, nitrogen, sulfur, etc. These species, while migrating in the material, encounter oncoming cosmic ray corpuscles, and undergo a complex set of reactions. Although a variety of species are produced by protons, the dominant contributor to the atmosphere is H2. The H2 flux (molecules cm–2 sec–1) is about 1.5 × 105 as compared to the H flux of 8.4 × 101 and the H2O flux of 4.6 × 10–2. These fluxes are about 10–3 smaller than the fluxes of the same species produced by the solar wind protons. Thus the contributions of the cosmic ray-induced species to the atmosphere is very small compared to the solar wind-induced species. Although simulated experiments showed high concentractions of OH and H2O in the terrestrial materials of lunar type, these species concentrations in the lunar materials under the lunar environment is much smaller than those observed in the simulated experiments.  相似文献   

4.
A new method is developed to determine the concentration profiles of chemical species from satellite measurements. The method takes into account the interaction of photochemical and radiative processes in the stratosphere and is applied for chemical species (nitric oxide and nitrogen dioxide) experiencing large diurnal changes. It is found that if the interaction of the photochemical and radiative processes is neglected, that is if the temporal and spatial variations of NO and NO2 are not considered in the radiative transfer calculations, the resulting errors for the concentration profiles for altitudes less than 20 km reach 100 and 5% respectively, for both sunset and sunrise. A photochemical scheme is developed capable of providing the mixing ratio profiles of NO and NO2 for different latitudes, altitudes and seasons and a retrieval code combining an iterative inversion algorithm, working from top of the atmosphere downwards, and a parameterization of the variability of NO and NO2 is also constructed. The method is used to examine the accuracy of the retrieval of the vertical concentration profiles and the new results show that the recovered profiles are in good agreement (error 5–15%) with measured profiles (WMO, 1985) and reflect the trends of NO and NO2 at sunset and sunrise.  相似文献   

5.
We report on the detection of H2 as seen in our analysis of twilight observations of the lunar atmosphere observed by the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. Using a large amount of data collected on the lunar atmosphere between September 2009 and March 2013, we have detected and identified, the presence of H2 in the native lunar atmosphere, for the first time. We derive a surface density for H2 of 1.2 ± 0.4 × 103 cm−3 at 120 K. This is about 10 times smaller than originally predicted, and several times smaller than previous upper limits from the Apollo era data.  相似文献   

6.
There is good evidence for the existence of very small amounts of methane, ammonia and carbon dioxide in the very tenuous lunar atmosphere which consists primarily of the rare gases helium, neon and argon. All of these gases, except40Ar, originate from solar wind particles which impinge on the lunar surface and are imbedded in the surface material. Here they may form molecules before being released into the atmosphere, or may be released directly, as is the case for rare gases. Evidence for the existence of the molecular gas species is based on the pre-dawn enhancement of the mass peaks attributable to these compounds in the data from the Apollo 17 Lunar Mass Spectrometer. Methane is the most abundant molecular gas but its concentration is exceedingly low, 1 × 103 mol cm?3, slightly less than36Ar, whereas the solar wind flux of carbon is approximately 2000 times that of36Ar. Several reasons are advanced for the very low concentration of methane in the lunar atmosphere.  相似文献   

7.
A one-dimensional, time-dependent model of the neutral and ion composition of the middle atmosphere is used to study the processes controlling the production and loss of odd nitrogen species during particle ionization events. From consideration of the cross-sections for the relevant ionization and dissociation reactions we conclude that between 1.3 and 1.6 odd nitrogen atoms per ion pair are produced in the middle atmosphere. The value in the thermosphere is larger due to the role of atomic oxygen. The time-dependent mutual destruction of odd nitrogen by the reaction N(4S) +NO→ N2+O must be included and the assumption of a nitric oxide production normalized to the ionization rate is invalid. A simulation of the 1972 August solar proton event is presented. The calculated ozone depletion occurring during the event due to the increase in odd nitrogen agrees well with the measured ozone changes.  相似文献   

8.
Images returned by the MESSENGER spacecraft from the Mercury flybys have been examined to search for anomalous high-albedo markings similar to lunar swirls. Several features suggested to be swirls on the basis of Mariner 10 imaging (in the craters Handel and Lermontov) are seen in higher-resolution MESSENGER images to lack the characteristic morphology of lunar swirls. Although antipodes of large impact basins on the Moon are correlated with swirls, the antipodes of the large impact basins on Mercury appear to lack unusual albedo markings. The antipodes of Mercury’s Rembrandt, Beethoven, and Tolstoj basins do not have surface textures similar to the “hilly and lineated” terrain found at the Caloris antipode, possibly because these three impacts were too small to produce obvious surface disturbances at their antipodes. Mercury does have a class of unusual high-reflectance features, the bright crater-floor deposits (BCFDs). However, the BCFDs are spectral outliers, not simply optically immature material, which implies the presence of material with an unusual composition or physical state. The BCFDs are thus not analogs to the lunar swirls. We suggest that the lack of lunar-type swirls on Mercury supports models for the formation of lunar swirls that invoke interaction between the solar wind and crustal magnetic anomalies (i.e., the solar-wind standoff model and the electrostatic dust-transport model) rather than those models of swirl formation that relate to cometary impact phenomena. If the solar-wind standoff hypothesis for lunar swirls is correct, it implies that the primary agent responsible for the optical effects of space weathering on the Moon is solar-wind ion bombardment rather than micrometeoroid impact.  相似文献   

9.
Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02–0.04 N cm–2 at bulk densities of 1.15 g cm–3 to 30-100 N cm–2 at 1.9 g cm–3. Deformation was by compression directly below the indentor at bulk densities below 1.61 g cm–3, by outward displacement at bulk densities over 1.62 g cm–3. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g cm–3 at 2.5 cm. depth; definitive comparison awaits both better data on bulk density of the undisturbed lunar soil and additional mechanical-property measurements on returned material.  相似文献   

10.
Each year the Moon is bombarded by about 106 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and “impact gardened” regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013.Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.  相似文献   

11.
A computer simulation of the sputtering of lunar soil by solar wind protons was performed with the TRIM program. The rate of the sputtering-induced erosion of regolith particles was shown to be less than 0.2 Å per year. A preferential sputtering of Ca, Mg, and O was found along with a less intense sputtering of Fe, Si, and Ti. However, with no other selection mechanisms, surface concentrations of the atoms would differ from the volume ones by no more than 6 %. The enrichment of rims of regolith particles with iron occurs as a result of selective removal of lighter atoms from the lunar surface because of different energies of escape from the Moon's gravity. The energy distributions proved to be the same for all sorts of the sputtered atoms, except for implanted hydrogen; thus, a greater fraction of the atoms left on the lunar surface corresponds to heavier elements. According to simulation results, the concentration of reduced iron observed in the mature regolith could be attained during the time of regolith particle exposure to the present flux of solar wind (105 years). Thus, sputtering can provide the concentration of Fe0 observed in regolith. On periphery of a cloud of impact vapor the temperature is too low for an irreversible selective removal of evaporation products; thus, a meteoritic bombardment contributes to the formation of composition of the rims of regolith particles mainly through enrichment of the rims with elements from the bulk of the particles. The estimates of fluxes of backscattered solar wind protons and of sputtered protons, earlier implanted to the regolith, demonstrated that their contribution to the proton flux near the poles is only 104 cm–2 s–1. This is by two orders of magnitude smaller than the proton flux from the Earth's magnetosphere which is, therefore, the main source of protons for permanently shaded polar craters of the Moon.  相似文献   

12.
Abstract— Several solar gas rich lunar soils and breccias have trapped 40Ar/36Ar ratios >10, although solar Ar is expected to yield a ratio of <0.01. Radiogenic 40Ar produced in the lunar crust from 40K decay was outgassed into the lunar atmosphere, ionized, accelerated in the electromagnetic field of the solar wind, and reimplanted into lunar surface material. The 40Ar loss rate depends on the decreasing abundance of 40K. In order to calibrate the time dependence of the 40Ar/36Ar ratio in lunar surface material, the period of reimplantation of lunar atmospheric ions and of solar wind Ar was determined using the 235U‐136Xe dating method that relies on secondary cosmic‐ray neutron‐induced fission of 235U. We identified the trapped, fissiogenic, and cosmogenic noble gases in lunar breccia 14307 and lunar soils 70001‐8, 70181, 74261, and 75081. Uranium and Th concentrations were determined in the 74261 soil for which we obtain the 235U‐136Xe time of implantation of 3.25+0.38‐0.60 Ga ago. On the basis of several cosmogenic noble gas signatures we calculate the duration of this near surface exposure of 393 ± 45 Ma and an average shielding depth below the lunar surface of 73 ± 7 g/cm2. A second, recent exposure to solar and cosmic‐ray particles occurred after this soil was excavated from Shorty crater 17.2 ± 1.4 Ma ago. Using a compilation of all lunar data with reliable trapped Ar isotopic ratios and pre‐exposure times we infer a calibration curve of implantation times, based on the trapped40 Ar/36Ar ratio. A possible trend for the increase with time of the solar 3He/4He and 20Ne/22Ne ratios of about 12%/Ga and about 2%/Ga, respectively, is also discussed.  相似文献   

13.
We simulate the OH/H2O production from the action of keV protons on the lunar regolith using a vacuum chamber and a mass analyzer to examine the molecular products released from olivine and SiO2 powders during their irradiation by deuterium ions. The measured mass spectra, showing the OD/D2O signature, confirm the possibility of OH/H2O formation on the lunar surface by solar-wind hydrogen.  相似文献   

14.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   

15.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   

16.
Measurements of40Ar and helium made by the Apollo 17 lunar surface mass-spectrometer are used in the synthesis of atmospheric supply and loss mechanisms. The argon data indicate that about 8% of the40Ar produced in the Moon due to decay of40K is released to the atmosphere and subsequently lost. Variability of the atmospheric abundance of argon requires that the source be localized, probably in an unfractionated, partially molten core. If so, the radiogenic helium released with the argon amounts to 10% of the atmospheric helium supply. The total rate of helium escape from the Moon accounts for only 60% of the solar windα particle influx. This seems to require a nonthermal escape mechanism for trapped solar-wind gases, probably involving weathering of exposed soil grain surfaces by solar wind protons.  相似文献   

17.
Wenzhe Fa 《Icarus》2007,190(1):15-23
3He (helium-3) in the lunar regolith implanted by the solar wind is one of the most valuable resources because of its potential as a fusion fuel. The abundance of 3He in the lunar regolith is related to solar wind flux, lunar surface maturity and TiO2 content, etc. A model of solar wind flux, which takes account of variations due to shielding of the nearside when the Moon is in the Earth's magnetotail, is used to present a global distribution of relative solar wind flux over the lunar surface. Using Clementine UV/VIS multispectral data, the global distribution of lunar surface optical maturity (OMAT) and the TiO2 content in the lunar regolith are calculated. Based on Apollo regolith samples, a linear relation between 3He abundance and normalized solar wind flux, optical maturity, and TiO2 content is presented. To simulate the brightness temperature of the lunar surface, which is the mission of the Chinese Chang-E project's multichannel radiometers, a global distribution of regolith layer thickness is first empirically constructed from lunar digital elevation mapping (DEM). Then an inversion approach is presented to retrieve the global regolith layer thickness. It finally yields the total amount of 3He per unit area in the lunar regolith layer, which is related to the regolith layer thickness, solar wind flux, optical maturity and TiO2 content, etc. The global inventory of 3He is estimated as 6.50×108 kg, where 3.72×108 kg is for the lunar nearside and 2.78×108 kg is for the lunar farside.  相似文献   

18.
The mechanism of ion-stimulated erosion of atmosphereless solar system bodies is suggested and investigated. A theoretical model for the brittle surface erosion resulting under the effect of multicharge ion cosmic rays is analyzed. It is shown that the thermoelastic waves originated in the energetic track of a very heavy ion can result in the near-surface stresses exceeding the dynamic tensile strength of the surface material for any atmosphereless solar system body. The thermoelastic wave surface arrival yields brittle erosion of the material and ejection of this latter fragments (the track-breaking process). Thus ejected dust grains have plano-oblong shape, average mass on the order of 10–17 g and velocity up to 400 m/sec providing the surface erosion rate of 10–1 ÷ 3 · 102 »/year (near the Earth orbit) which depends upon the surface material (rock or ice). Possible track-breaking consequences, in particular, presence of the dust fraction of ultramicron grains and their aggregates on the lunar surface are discussed. Near the bodies with the radii from 10 to 300 km predicted is the existence of extended dust cocoons consisting of ultramicron and submicron grains. Smaller objects (asteroids, comets, smallest satellites of planets, meteoroids, etc.) can serve sources of permanent dust wind of ultramicron and submicron sized grains escaping from their surfaces. The interplanetary dust yield owing to the ion-stimulated erosion of these bodies is not less than 1012 g/year. Possible interpreting in the frames of track-breaking process some observational data and effects, including existence of dust grains with the mass of 10–18 ÷ 10–17 g near the Halley's comet and the nature of 2060 Chiron dust coma is discussed. To prove the theory, observational identification and investigation of dust phenomena complex related to the ion-stimulated erosion of atmosphereless bodies, suggested is employing extreme ultraviolet and far infrared/submillimeter wavelengths, as well as polarimetric methods.  相似文献   

19.
One of the most exciting recent developments in the field of lunar science has been the unambiguous detection of water (either as OH or H2O) or water ice on the Moon through instruments flown on a number of orbiting spacecraft missions. At the same time, continued laboratory-based investigations of returned lunar samples by Apollo missions using high-precision, low-detection, analytical instruments have for the first time, provided the absolute abundance of water (present mostly as structurally bound OH in mineral phases) in lunar samples. These new results suggest that the Moon is not an anhydrous body, questioning conventional wisdom, and indicating the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. However, not all recent results point to a wet Moon and it appears that the distribution of water on the Moon may be highly heterogeneous. Additionally, a number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar-wind hydrogen with the lunar soil. Water on the Moon has implications for future astrobiological investigations as well as for generating resources in situ during future exploration of the Moon and other airless bodies in the Solar System.  相似文献   

20.
A. Bar-nun 《Icarus》1980,42(3):338-342
The effects of the newly discovered thunderstorms on Venus upon the nitrogen and carbon species in its atmosphere were calculated. An Earth-like lightning frequency of 100 sec?1 was used for Venus, in accord with recent optical measurements by Pioneer-Venus (W. J. Borucki, J. W. Dyer, G. Z. Thomas, J. C. Jordon, and D. A. Comstock, submitted for publication). The rate of NO production by thunder shock waves, 2.5 × 1011 g year?1, is about an order of magnitude smaller than on the Earth. But on Venus, in the absence of precipitation, which is the major removal mechanism of odd nitrogen from the Earth's atmosphere, the mixing ratios of odd nitrogen species might be considerably higher. The global CO production is governed by CO2 photolysis rather than by CO2 pyrolysis by lightning. However, thunderstorms produce about 2.5 × 1011 g year?1 of CO in the cloud layer, far from the high altitude CO2 photolysis region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号