首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2017年8月8日四川省九寨沟县发生了7.0级地震,中国大陆构造环境网络与北斗地基增强系统的GNSS连续观测共同监测到了此次地震的同震位移(坐标:东向为正,北向为正),结果显示:3个站点记录到了明显的同震位移,距离震中43 km的九寨沟台站(SCJZ)在东西向的位移为-9.8±1.5 mm,在南北向的位移为3.3±0.7 mm;距离震中65 km的松潘站(SCSP)在东西向的位移为-1.8±0.7 mm,在南北向的位移为-7.7±0.6 mm;距离震中77 km的舟曲站(GSZQ)在东西向的位移为0.4±1.2 mm,在南北向的位移为3.6±0.8 mm.通过同震位移分布特征,可以推测此次地震为一次左旋走滑型事件,引起水平向同震位移大致不超过150 km范围,地震对东南侧的龙门山断裂带影响非常小,对北侧的塔藏断裂和西侧的岷江断裂处引起的同震位移为厘米级.同震位移的反演结果显示:断层面上滑动量主要集中在7 km深度,最大量值约为0.4 m,平均滑动角为-15°,利用滑动分布计算的相应矩震级为MW6.4,与地震波反演结果相当.结合同震滑动分布、同震主应变分布、余震分布和震源机制解等特征,推测此次地震破裂极值区累积的能量得到较充分释放,进一步分析得出此次地震在塔藏断裂、岷江断裂和虎牙断裂处产生了一定的应力变化,值得持续关注.  相似文献   

2.
Long-term repeated measurements of microdisplacements in tectonic fault structures of various parts of Central Europe and the Balkan Mountains showed that displacement trends changed significantly at several points in the period from 1997 through 2000; afterward, long-term trends were restored. This phenomenon took place in the periods of strong (M > 7) earthquakes in Iran (1997) and in the North Anatolian fault zone in Turkey (1999). Two strong Izmit earthquakes of 1999 in Turkey at distances of 600 km from the Balkan Peninsula and 1400 km from observation points in Central Europe were the main seismic events of the period studied. Apparently, the crustal deformation due to the sources of the aforementioned earthquakes reaches the central part of the European craton. Anomalous displacements in some areas occurred due to deformation propagating for great distances in the heterogeneous block medium of the West European part of the Eurasian plate. Changes in stresses can be caused by impulsive deformations of various intensities acting on some structural units (fault segments) at various distances.  相似文献   

3.
Since March 2014, an unusually large amount of earthquakes occur southeast of the city of Darmstadt in the northern Upper Rhine Graben. During the period, until April 2015, we have recorded 356 earthquakes with magnitudes ranging from ML?=??0.6 to 4.2. We identified two source clusters separated laterally by about 5 km. The hypocentres within these clusters are aligned vertically extending over a depth range from 1 to 8 km with a lateral extent of about 1 to 2 km. Focal mechanisms show left-lateral strike-slip movements; b values are changing with time between b?=?0.6 and b?=?0.9. This is the first time in almost 150 years that such high earthquake rates have been observed in the region. Historical accounts dating back to the nineteenth century report of over 2000 felt earthquakes over a time span from 1869 to 1871. From these, maximum intensities of VII have been estimated. Other seismic activities in the region were reported in the 1970s. The observations of the 2014–2015 earthquake series do not completely match a typical main shock–aftershock sequence or a typical earthquake swarm. Especially the activity at the beginning of the earthquake series may be considered as a mixture of a main shock–aftershock sequence and a short-lasting swarm event. Whether or not the time gap between the current seismic activity, which actually takes place at the same locations as parts of the seismic swarm in 1869–1871, and the seismic activity in the nineteenth century or the seismic activity in the 1970s can be interpreted as a seismic cycle remains unclear.  相似文献   

4.
西淋岗第四纪错断面位于佛山市顺德区陈村镇,有研究者认为这是晚第四纪活动断裂。为了进一步探明该错断面形成的机理,进行了大比例尺地质地貌填图、探槽开挖、浅层地震探测和第四纪地层年代测定等工作。结果表明,该点及其周边地貌上没有最新构造活动的迹象,但符合重力活动的特征。第四纪地层的错断和基岩中的断裂不能配套,不是统一构造应力场的产物。两侧物探反射特征表明,基岩断裂并未错断第四纪地层。根据基础地质条件、工程地质类比和高陡稳定性计算结果判断,该错断面的产生具备重力活动的条件,是重力失衡的结果,而并非由构造作用形成。  相似文献   

5.
通过卫星影像解译、野外实地调查与地质填图,对滇西南地区黑河断裂中西段晚第四纪构造活动特征进行了研究.结果表明,黑河断裂为一条规模较大的区域性活动断裂带,西起沧源县南,向东南止于澜沧江断裂,全长约168 km,走向280°~310°.该断裂晚第四纪新活动性具有一定的差异性和分段性.根据其几何结构、最新活动性及1988年澜沧7.6级地震破裂带特征,可将黑河断裂从西向东划分为沧源-木戛、木戛-南代和南代-勐往三条次级断裂段.其中的中、西段长约88 km,全新世活动显著,活动性质以右旋走滑为主.沿断裂形成了丰富的断错地貌现象.西段断裂的最新活动断错了全新世晚期地层;中段是1988年澜沧7.6级地震的发震断裂之一.根据对断错冲沟的测量和年代测试,得到其全新世以来右旋滑动速率为(3.54±0.78)mm/a,与区域上其它断裂的滑动速率大致相当,反映了其区域构造活动的整体性和协调性.  相似文献   

6.
The slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes were estimated from tsunami and coastal geodetic data. These two earthquakes generated transoceanic tsunamis, and the waveforms were recorded around the Pacific Ocean. In addition, coseismic coastal uplift and subsidence were measured around the source areas. For the 27 February 2010 Maule earthquake, inversion of the tsunami waveforms recorded at nearby coastal tide gauge and Deep Ocean Assessment and Reporting of Tsunamis (DART) stations combined with coastal geodetic data suggest two asperities: a northern one beneath the coast of Constitucion and a southern one around the Arauco Peninsula. The total fault length is approximately 400 km with seismic moment of 1.7 × 1022 Nm (Mw 8.8). The offshore DART tsunami waveforms require fault slips beneath the coasts, but the exact locations are better estimated by coastal geodetic data. The 22 May 1960 earthquake produced very large, ~30 m, slip off Valdivia. Joint inversion of tsunami waveforms, at tide gauge stations in South America, with coastal geodetic and leveling data shows total fault length of ~800 km and seismic moment of 7.2 × 1022 Nm (Mw 9.2). The seismic moment estimated from tsunami or joint inversion is similar to previous estimates from geodetic data, but much smaller than the results from seismic data analysis.  相似文献   

7.
2017年8月8日的九寨沟MS7.0地震发生在岷江断裂、塔藏断裂及虎牙断裂交汇地区,地处青藏高原东北部的川甘交界地区,位于巴颜喀拉地块的东缘,地质构造复杂,对于九寨沟地震震中位置和发震断层的确定,存在不同意见.本文利用GNSS及升降轨InSAR观测,在获取九寨沟地震同震形变场的基础上,基于均匀弹性半无限位错模型,联合反演了发震断层的滑动分布模型,并计算了同震库仑应力变化.InSAR同震形变场显示,视线向最大沉降量和抬升量分别为0.21 m和0.16 m,形变场长轴为NW向,形变主要集中在断层西侧.距震中40 km和65 km的九寨和松潘两县,水平向的GNSS同震位移分别达14.31 mm和8.22 mm.联合GNSS和InSAR同震形变场反演得到的滑动分布主要集中在沿走向5~33 km,倾向2~20 km的范围内,平均滑动量为0.18 m,最大滑动量为0.91 m.发震断层长40 km,宽30 km,走向155°,倾角81°,滑动角-9.56°.同震位移场及滑移分布模型表明此次地震为一次左旋走滑为主的地震事件,地震破裂并未完全到达地表,与虎牙断裂北段的几何产状和运动学性质更为接近,结合精定位余震的分布,我们确定虎牙断裂北段为此次地震的发震断层,震中位于北纬33.25°,东经103.82°,震源深度10.86 km,矩震量为7.754×1018 Nm,相应的矩震级为MW6.5,与美国地调局和哈佛大学给出的震源机制解基本一致.同震库仑应力导致了虎牙断裂北段延长线的东北和西南两端应力增强,其中塔藏断裂的罗叉段和马磨段未来强震的危险性值得关注.  相似文献   

8.
Resulting from the seismotectonic study of the Sambian Peninsula based on the interpretation of remote sensing data (satellite images and digital elevation maps), lineaments have been identified. They may be interpreted as active faults and flexure-fracture zones. These active faults, which are expressed in the form of gentle linear swells or steps in the relief, have been found and studied during the carried out field works. There are many discovered paleoseismic dislocations in the studied areas of active faults: fracture displacements, marks of liquefaction (sand dykes), near-fault folds. These seismic dislocations may indicate seismic shocks of 7–8 intensity points occurring in the neighborhood of a modern Kaliningrad city in recent geological history. The identified active structures (Yantarny Fault Zone and Bakalino flexure-fracture zone) could control sources of the 2004 Kaliningrad earthquakes.  相似文献   

9.
The study and radiocarbon dating of the low alluvial terraces of the Chon-Aksuu River, in the Northern Issyk-Kul region, which were broken by the Kebin (Kemin) earthquake of 1911 (Ms = 8.2, Io = 10 to 11), are carried out. The obtained radiocarbon dated ages refer to the second half of the Holocene. Since that time, at least eight strong earthquakes took place along this (Chon-Aksuu) segment of the Aksuu border fault. Three seismic events, including the earthquake of 1911 occurred in the second millennium A.D. This outburst of seismic energy was preceded by two millennia of seismic quiescence, which set in after another pulse of seismic activation. The latter lasted for 1.5 millennia and included five strong earthquakes. The recurrence period of seismic events during the activations is 300–600 years. Hence, the seismic regime along the Chon–Aksuu segment of the Aksuu border fault in the second half of the Holocene was a succession of two seismic activations, each with a duration of 1.0–1.5 ka, which were separated by a 2-ka interval of seismic quiescence. Therefore, the absolute datings of the river terraces of different ages which have been broken by a seismogenic rupture can serve as a reliable source of information about the age of the strong earthquakes that occurred along the seismogenic fault.  相似文献   

10.
The 03 February 2002 Çay Earthquake (Mw ~6.7) occurred on the fault segment between Eber and Ak?ehir Lakes followed by a large aftershock (Mw ~5.6) near the western end of the fault and two sequential aftershocks. We computed the coseismic surface displacements from static GPS measurements to determine the fault geometry parameters and uniform slip components. The coseismic displacements were obtained through combining the regional pre-earthquake and post-earthquake GPS data. Fault geometry and slips were acquired through the inversion of GPS data modeling the events as elastic dislocations in a half-space and assuming all four events took place on the same fault plane. Results suggest that one-segment fault of ~33 km length and dipping ~43° northward suffices to model the dislocation, assuming uniform slip distribution with 0.51 m dip slip, 0.26 m left-lateral slip extending to a depth down to ~11.5 km which is consistent with seismological evidence. The results also verify the normal faulting in the eastern flank of Isparta Angle which has long been assumed as a thrusting structure. While the available data cannot identify the four individual events on the same day, an attempted distributed slip model differentiates dip slip and left-lateral slips near the hypocenter with maximum values of ~1 and 0.6 m, respectively.  相似文献   

11.
The Anninghe fault is an important active fault along the eastern boundary of Sichuan-Yunnan active tectonic block, and the study of its surface deformation and rupture behavior during strong earthquake in the late Quaternary is of fundamental importance for understanding the future seismic risk of the fault zone or even the entire western Sichuan region. Using the methods of detailed geomorphic and geological survey, digital image analysis, total station instrument survey, excavation of combined trench and dating, we analyze the geomorphologic sequences of the offset strata at several sites where the late Quaternary deformation remnants are fairly well preserved and obtain some new results as follows: Strong earthquake events with left-lateral displacements of about 3 m occurred at the two sites of Zimakua and Yejitong at 1634-1811, 1030-1050 and 280-550 a BP, respectively, and the recurrence interval is 520-660 a; The youngest event in the area of Dahaizi-Ganhaizi should be the earthquake of 1536, other events are at 1768-1826, 2755-4108 and 4108-6593 a BP, respectively, with a recurrence interval of 1300-1900 a. The strong earthquake activity shows a clustering character. The possibility of occurrence of a strong earthquake exists on the north segment of the Anninghe fault sometime in the future.  相似文献   

12.
The Tyrrhenian portion of the Calabria region (southern Italy) is particularly prone to landslides as a consequence of intense morphodynamic processes. These processes affect the slopes that are composed of highly jointed metamorphic rock masses. Moreover, the frequent intense rainfalls and the up to Mw 7.0 regional earthquakes represent the main landslide triggering factors. An area of approximately $45\,\hbox {km}^{2}$ was selected as a test site in the context of a regional project aimed at reconstructing possible earthquake-reactivated landslide scenarios (i.e., referred to already existing landslide masses). An inventory map led to the identification of 175 landslides, including rock slides, earth slides and rock falls. Ground-motion scenarios based on a spectral-matching method were derived to evaluate the expected earthquake-induced displacements of the existing landslides. Naturally recorded acceleration time histories were selected from international ground-motion databases based on a similarity index and considered representative of the seismological features of the considered seismic sources (i.e., epicentral distance, magnitude, focal mechanism). Spectral attenuation was considered, according to well-established attenuation laws, to define the expected response spectrum at the outcropping bedrock corresponding to each existing landslide. Subsequently, the selected natural records were modified to guarantee spectral matching with the attenuated response spectra at each landslide site. The derived time histories were used to compute co-seismic displacements via the classic Newmark’s sliding-block method. Different scenarios of co-seismic landslide displacements or collapse were generated for different pore-water pressure hypotheses. The strongest $\hbox {Mw}>6$ seismic scenario (Messina Straits seismogenic source) indicated an exceedance probability of earthquake-induced co-seismic landslide collapse varying from 20 to 55 % with the increasing severity of the pore-water pressures. This probability corresponds to a percentage of co-seismic landslide displacements up to 40 % of the total inventoried landslides. The exceedance probability indicated that co-seismic landslide collapse drops below 20 % for $\hbox {Mw}<6$ seismic scenarios. In contrast, if a uniform probability is assumed for the seismic action occurrence, i.e., return periods of 475 and 2,475 years, the total percentage of landslide co-seismic displacements could be as high as 70 and 90 %, respectively, for the considered pore-water pressures.  相似文献   

13.
A moderate-size earthquake (Mw = 6.2) occurred on 3 February 2002 (07:11:28 GMT) in the Sultanda??-Çay region of southwest Turkey. The mainshock was followed by a strong aftershock of Mw = 6.0 just 2 h after the mainshock, at 09:26:49 GMT. A temporary seismic network of 27 vertical component seismometers was installed to monitor aftershock activity. One thousand sixty nine aftershocks (0.2 < ML < 3.3) were recorded during the period from 5 to 10 February 2002. We analyzed the P and S arrival times and P wave first motion data to obtain high-quality hypocenters and focal mechanisms, which revealed fine details of the fault zone. We infer that the mainshock has ruptured a segment of the Sultanda? Fault Zone that is approximately 37 km long and 7 km wide at depth. The average slip over the rupture plane during the mainshock is estimated to be 32 cm. The linear distribution of the aftershocks and the location of the mainshock epicenter suggest that rupture has initiated in the eastern bending of the fault and propagated unilaterally to the west. The majority of fault plane solutions indicate E–W to ESE–WNW striking oblique–normal faulting mechanisms with an average dip angle of 62° N ± 10° . The high-resolution aftershock seismicity image also shows that faulting involved a complex array of synthetic and possibly antithetic structures during the evolution of the aftershock sequence. The steady increase of the b value towards the west implies that the highest moment release of the mainshock occurred to the west of the epicenter. The study clearly shows the activation of the WNW–ESE-trending Sultanda? Fault Zone along the southern margin of the Ak?ehir-Afyon Graben (AAG). The westernmost end of the aftershock activity corresponds to a structurally complex zone distinct from the main rupture. It is characterized by both ENE–WSW- and NNE–SSW-trending oblique-slip normal faulting mechanisms, the latter being associated with the NNE–SSW-trending Karam?k Graben. The intersection of these two grabens, AAG and Karam?k Graben, provides abundant faults available for failure in this region. The occurrence pattern of large events in recent years indicates a possible migration of earthquakes from east to west. Thus, we conclude that this has an important implication for earthquake hazard for the city of Afyon, which lies along the same fault line and only 20 km west of the termination point of the aftershock zone.  相似文献   

14.
— The study of surface deformation due to seismic activity is often made using dislocations with uniform slip and simple geometries. A better modeling of coseismic and postseismic surface displacements can be obtained by using dislocations with variable slip and nonregular shapes. This is consistent with the asperity model of fault surfaces, assuming a friction distribution on faults made of locked zones with much higher friction than surrounding zones. In this paper we consider the 1997–1998 Colfiorito seismic sequence. The coseismic surface displacements in the Colfiorito zone are used in order to infer the slip distribution on the fault surface at different stages of the sequence. The displacement field has been modeled varying the slip distribution on the fault, and comparing the deformation observed by SAR and GPS techniques with model results. The slip distribution is calculated by Monte Carlo simulations on a normal fault with the dip angle equal to 40°. A good approximation is obtained by using square asperity units of 1.5×1.5 km2. In the first stage, we employed a simplified model with uniform slip, in which each asperity unit is allowed to slip a constant amount or not to slip at all, and in the second stage, we evaluate the slip distribution in the dislocation area determined by the Monte Carlo inversion: in this case we allow unit cells to undergo different values of slip in order to refine the initial dislocation model. The results show that the 1997 seismic events of the sequence can be modeled by irregular dislocations, obtaining a good fit to the DInSAR and GPS observations. The model also confirms the results of previous studies by a different methodology, defining the distribution of asperities on the fault plane using the fault geometry, the geodetic data and the seismic moment of the 1997–1998 Colfiorito seismic sequence. Furthermore, the analysis of 1997 aftershocks in the seismogenic region shows a strong correlation between most events and the asperity distribution, which can be considered as an independent test of the validity of the model.  相似文献   

15.
郑州老鸦陈断裂的探测与活动性调查研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过浅层地震勘探、钻孔联合剖面分析、野外地貌调查以及新地质年代测定等技术方法,对原先认定的郑州老鸦陈断裂的活动性开展调查. 其中,浅层地震勘探结果表明,该断裂仅存在于新近纪以前的地层,而在新近纪地层内均未发现该断层错断和活动迹象. 同时,地表的地质地貌调查亦发现ldquo;地貌陡坎rdquo;与老鸦陈断裂的位置不一致. 另外钻探和钻孔联合剖面的分析也表明,地表的陡坎仅发育在马兰黄土中, 其下地层平缓,没有错断现象,认为该陡坎的形成与老鸦陈断层没有关系,但可能与黄河改道变迁的侵蚀作用有关. 因此,老鸦陈断裂不属于活动断裂.   相似文献   

16.
The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is ~ 8.0 × 1018 N·m (Mw?≈?6.5), and the centroid depth is ~ 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5–15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes >?6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is ~ 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in ~ 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 Mw7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.  相似文献   

17.
The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses.  相似文献   

18.
Aftershock locations, source parameters and slip distribution in the coupling zone between the overriding North American and subducted Rivera and Cocos plates were calculated for the 22 January 2003 Tecomán earthquake. Aftershock locations lie north of the El Gordo Graben with a northwest-southeast trend along the coast and superimposed on the rupture areas of the 1932 (M w?=?8.2) and 1995 (M w?=?8.0) earthquakes. The Tecomán earthquake ruptured the northwest sector of the Colima gap, however, half of the gap remains unbroken. The aftershock area has a rectangular shape of 42?±?2 by 56?±?2?km with a shallow dip of roughly 12° of the Wadati-Benioff zone. Fault geometry calculated with the Náb??lek (1984) inversion procedure is: (strike, dip, rake)?=?(277°, 27°, 78°). From the teleseimic body wave spectra and assuming a circular fault model, we estimated source duration of 20?±?2?s, a stress drop of 5.4?±?2.5?MPa and a seismic moment of 2.7?±?.7?×?1020?Nm. The spatial slip distribution on the fault plane was estimated using new additional near field strong motion data (54?km from the epicenter). We confirm their main conclusions, however we found four zones of seismic moment release clearly separated. One of them, not well defined before, is located toward the coast down dip. This observation is the result of adding new data in the inversion. We calculated a maximum slip of 3.2?m, a source duration of 30?s and a seismic moment of 1.88?×?1020?Nm.  相似文献   

19.
The parameters of the earthquake that took place February 3, 2015, near the city of Sumy, Ukraine, were calculated from an analysis of records obtained by both Russian and Ukrainian seismic stations (Poltava, Skvira, Nikolaev, Dneropetrovsk, and Desna). The calculated hypocenter depth of 54 km was verified by several approaches: isolation of deep PP, SP phases from the records of remote stations and solution of the kinematic problem for the Poltava station. The focal mechanism as shear with a complex fault component was determined by the first arrivals of P-waves. The data on the azimuthal travel-time curve confirm the focal mechanism. We have calculated the earthquake parameters; they are as follows: length gap L1 = 8.08 km, L2 = 6.68 km, a destruction rate of C = 2 km/s. We have obtained the dynamic parameters of the event. The calculated fault length (L = 5.46 km) within the accuracy limits of the method coincides with the early result obtained by the azimuthal travel-time curve. On the basis of these results, we suggest that elastic energy release and formation of the dislocations in the earthquake source occurred on a smooth, prefractured fault (σr > 0). Association of the hypocenter with the tectonic node of the northern marginal fault of the Dnieper–Donets graben and northern branch of Kryvyi Rih–Kremenchuk suture confirm this. Here, we observe a considerable Moho depth, structural alteration, and high gradients of the temperature and magnetic and electric rock properties in the lower Earth’s crust and upper mantle. These circumstances are favorable for the earthquake occurring here.  相似文献   

20.
松原市扶余北断裂的发现及活动性鉴定   总被引:1,自引:0,他引:1  
万永魁  沈军  刘峡  尉洋  于晓辉  王雷  邵博 《中国地震》2016,32(3):477-484
通过对3D及大量2D石油勘探资料的精细解释,发现并确认了位于松原市主城区北侧、距主城区仅10km处的扶余北断裂。该断裂是扶余隆起的北部边界,走向近EW,全长26km,西起孙家围子,向东延伸至大洼镇附近;断层倾向南,视倾角较陡,约60°~80°,早白垩纪为正断层,新构造运动以来表现为逆冲作用。利用浅层人工地震勘探、钻探、释光测年等多重组合方式对扶余北断裂的活动性作了鉴定,结果表明,扶余北断裂最新活动距今(23.9±0.6)ka~(28.9±0.6)ka,为晚更新世活动断裂,断裂活动造成第四系底界位错2.5m,中晚更新世地层存在明显扰动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号