共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhenshan Pang Yangsong Du Yi Cao Fuping Gao Gongwen Wang Qian Dong 《Journal of Earth System Science》2014,123(4):875-885
The Pulang complex is located tectonically at the southern margin of the Yidun–Zhongdian island arc belt in Yunnan province, China, and is closely related to formation of the Pulang copper deposit, which is the largest copper deposit in Asia. The Pulang complex can be divided into three intrusion stages based on contact relationships and petrological characteristics: (1) a first stage of quartz dioritic porphyry; (2) a second stage of quartz monzonitic porphyry; and (3) a third stage of granodioritic porphyry. The crystallization ages of these intrusion stages were determined by single-zircon U–Pb dating, yielding ages of 221.0 ± 1.0, 211.8 ± 0.5, and 206.3 ± 0.7 Ma for the first, second, and third stages, respectively. These dates, integrated with previous geochronological data and field investigations, indicate that the second-stage quartz monzonitic porphyry has a close spatial and temporal relationship with the large Pulang porphyry copper deposit. These age data, geochemical and Sr–Nd isotopic results suggest that the Pulang complex formed in the Indo-Chinese epoch (257 ~ 205 Ma) by multiphase intrusion of a mixture of mantle- and crust-derived magmas. 相似文献
2.
The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime.Volcanism produced a wide range of intermediate-silicic magmas including medium-to high-K calc-alkaline andesites,dacites,and rhyolites.A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins(Nurra,Perdasdefogu,Escalaplano,and Seui-Seulo),and contains substantial stratigraphic,geochemical,and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic.Based on major and trace element data and LA-ICP-MS U-Pb zircon dating,it is possible to reconstruct the timing of postVariscan volcanism.This volcanism records active tectonism between the latest Carboniferous and Permian,and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides.In particular,igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between299±1 and 288±3 Ma,thereby constraining the development of continental strike-slip faulting from south(Escalaplano Basin)to north(Nurra Basin).Notably,andesites emplaced in medium-grade metamorphic basement(Mt.Cobingius,Ogliastra)show a cluster of older ages at 332±12 Ma.Despite the large uncertainty,this age constrains the onset of igneous activity in the mid-crust.These new radiometric ages constitute:(1)a consistent dataset for different volcanic events;(2)a precise chronostratigraphic constraint which fits well with the biostratigraphic data and(3)insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain. 相似文献
3.
《Journal of Asian Earth Sciences》2011,40(6):668-683
This paper presents geochemical, Sr–Nd isotopic, and U–Pb zircon geochronological data on the Alvand plutonic complex in Sanandaj–Sirjan zone (SSZ), Western Iran. The gabbroic rocks show a trend of a calc-alkaline magma suite and are characterized by low initial 87Sr/86Sr ratios (0.7023–0.7037) and positive εNd(t) values (2.9–3.3), which suggest derivation from a moderately depleted mantle source. Geochemical features of the granites illustrate a high-K calc-alkaline magma series, whereas the leucocratic granitoids form part of a low-K series. Granites have intermediate 87Sr/86Sr ratios (0.707–0.719) and negative εNd(t) values (−1.0 to −3.4), while leucocratic granitoids have higher initial 87Sr/86Sr ratio (0.713–0.714) and more negative εNd(t) values (−3.5 to −4.5). Potential basement source lithologies for the granites are Proterozoic granites and orthogneisses, and those for the leucocratic granites are plagioclase-rich sources such as meta-arkoses or tonalites. The U–Pb dating results demonstrate that all granitoids were exclusively emplaced during the Jurassic instead of being Cretaceous or younger in age as suggested previously. The pluton was assembled incrementally over c. 10 Ma. Gabbros formed at 166.5 ± 1.8 Ma, granites between 163.9 ± 0.9 Ma and 161.7 ± 0.6 Ma, and leucocratic granitoids between 154.4 ± 1.3 and 153.3 ± 2.7 Ma. Granites and leucocratic granitoids show some A-type affinity. It is concluded that the Alvand plutonic complex was generated in a continental-arc-related extensional regime during subduction of Neo-Tethyan oceanic crust beneath the SSZ. The U/Pb zircon age data, recently corroborated by similar results in the central and southern SSZ, indicate that Jurassic granitoids are more areally extensive in this belt than previously thought. 相似文献
4.
《Chemie der Erde / Geochemistry》2022,82(3):125882
The Southeast Anatolian Orogenic Belt (SAOB), the most extensive segment of the Alpine-Himalayan Orogenic Belt, resulted from the northward subduction of the southern branch of the Neotethys oceanic crust beneath the Anatolian micro-plate. We present new whole-rock geochemistry, zircon U–Pb ages, and Lu–Hf isotope data from the stocks and dykes with a length of up to tens of meters belonging to the Keban magmatic rocks, eastern Turkey. These rocks are represented by syenite and quartz monzonite intruded into the Keban metamorphic complex. The geochemistry data indicates that the samples bear mostly metaluminous, variably high alkalines (K2O + Na2O), Ga/Al ratios and zircon saturation temperature, and typically the A-type granite characters. According to the Y/Nb vs Yb/Ta diagram, the Keban magmatic rocks show A1-type geochemical signatures modified by crustal melts. Syenite and quartz monzonite samples from Keban magmatic rocks give zircon U–Pb ages of 77.4 ± 0.34 Ma, 76.3 ± 0.3 Ma and 76.36 ± 0.34 Ma, respectively. On the primitive mantle-normalised trace element patterns, the Keban magmatic rocks show enrichment in large-ion lithophile elements (LILEs) relative to high field strength elements (HFSEs). They are coupled with slightly negative Nb–Ta anomalies. Chondrite-normalised rare earth-element patterns show strong enrichment in LREEs relative to HREEs, a typical A-type granites feature. The zircons have negative εHf(t) values that vary from ?2.68 to ?0.41, and Hf model ages (TDM2) range from 1171.54 to 1329.26 Ma, indicating the enriched lithospheric mantle sources and crustal contribution. The sources and evolution of the alkaline magmas might be related to the post-collisional tectonic setting. 相似文献
5.
David Orejana Carlos Villaseca Pablo Valverde-Vaquero Elena A. Belousova Richard A. Armstrong 《International Journal of Earth Sciences》2012,101(7):1789-1815
The Spanish Central System (SCS) batholith, located in the Central Iberian Zone, is one of the largest masses of granite in the European Variscan Belt. This batholith is a composite unit of late- and post-kinematic granitoids dominated by S- and I-type series granite, with subordinate leucogranite and granodiorite. Zircon trace element contents, from two representative S-type and three I-type granitoids from the eastern portion of the SCS batholith, indicate a heterogeneous composition due to magma differentiation and co-crystallisation of other trace element-rich accessory phases. In situ, U–Pb dating of these zircons by SHRIMP and LA-ICP-MS shows 479–462-Ma inherited zircon ages in the I-type intrusions, indicating the involvement of an Ordovician metaigneous protolith, while the S-type intrusions exclusively contain Cadomian and older zircon ages. The zircon crystallisation ages show that these granites have been emplaced at ca. 300?Ma with a time span between 303?±?3?Ma and 298?±?3?Ma. Precise dating by CA-ID-TIMS reveals a pulse at 305.7?±?0.4?Ma and confirms the major pulse at 300.7?±?0.6?Ma. These ages match the Permo-Carboniferous age for granulite-facies metamorphism of the lower crust under the SCS batholith and coincide with a widespread granitic event throughout the Southern Variscides. Ti-in zircon thermometry indicates temperatures between 844 and 784°C for both the S- and I-type granites, reinforcing the hypothesis that these granites are derived from deep crustal sources. 相似文献
6.
The Capané ophiolite is a fragment of oceanic lithosphere obducted into the Ediacaran Porongos fold and thrust belt, southern Brasiliano Orogen. A studied rodingite blackwall contained in serpentinite has metasomatic zircon that displays multiple U–Pb ages from Tonian to Cryogenian (793 ± 0.9, 757 ± 2.1, 715 ± 2.2 Ma). The ages are interpreted as corresponding to multiple alteration events in the mantle. Multiple U–Pb–Hf isotopes and trace element analyses on the same crystals by laser ablation were controlled by backscatered electron images. Hf isotopes indicate zircon origin from a depleted mantle (εHf = +15 to +10.7), and trace elements point to an oceanic origin. The Capané ophiolite thus marks the evolution of the Adamastor ocean during the Tonian and Cryogenian, a significant result for the reconstruction of Rodinia and Gondwana supercontinents. 相似文献
7.
In the northern extension of the Famatina and the southern Puna (NW Argentina) prominent rhyolitic volcanic rocks traditionally referred to as Ordovician are exposed, resting on metamorphic basement and covered by thick Late Paleozoic siliciclastic successions. We report new U–Pb SHRIMP ages from these rhyolites that show them to be of Mississippian (348–342 Ma) age, thus identifying a previously unknown volcanic event in this portion of western Gondwana. Whole-rock geochemistry and Sr–Nd isotopic analyses suggest a crustal source for these rocks but with a juvenile input (εNd(t) between ? 2.91 and ? 0.3, and TDM values between 1.09 and 1.1 Ga). This is different from the Early Paleozoic magmatism of western Argentina where crustal recycling took place without any involvement of mantle material. The Carboniferous magmatism is compatible with an extensional environment developed along the Terra Australis accretionary orogen as a result of tectonic switching processes. These rhyolites may be related to the coeval Mississippian A-type granites exposed to the east, in the Sierras Pampeanas, confirming the regional character of this magmatism. 相似文献
8.
Trevor A. Dumitru W.G. Ernst Jeremy K. Hourigan Robert J. McLaughlin 《International Geology Review》2015,57(5-8):767-800
In northwestern California, the Franciscan subduction complex has been subdivided into seven major tectonostratigraphic units. We report U-Pb ages of ≈2400 detrital zircon grains from 26 sandstone samples from 5 of these units. Here, we tabulate each unit’s interpreted predominant sediment source areas and depositional age range, ordered from the oldest to the youngest unit. (1) Yolla Bolly terrane: nearby Sierra Nevada batholith (SNB); ca. 118 to 98 Ma. Rare fossils had indicated that this unit was mostly 151–137 Ma, but it is mostly much younger. (2) Central Belt: SNB; ca. 103 to 53 Ma (but poorly constrained), again mostly younger than previously thought. (3) Yager terrane: distant Idaho batholith (IB); ca. 52 to 50 Ma. Much of the Yager’s detritus was shed during major core complex extension and erosion in Idaho that started 53 Ma. An Eocene Princeton River–Princeton submarine canyon system transported this detritus to the Great Valley forearc basin and thence to the Franciscan trench. (4) Coastal terrane: mostly IB, ±SNB, ±nearby Cascade arc, ±Nevada Cenozoic ignimbrite belt; 52 to <32 Ma. (5) King Range terrane: dominated by IB and SNB zircons; parts 16–14 Ma based on microfossils. Overall, some Franciscan units are younger than previously thought, making them more compatible with models for the growth of subduction complexes by progressive accretion. From ca. 118 to 70 Ma, Franciscan sediments were sourced mainly from the nearby Sierra Nevada region and were isolated from southwestern US and Mexican sources. From 53 to 49 Ma, the Franciscan was sourced from both Idaho and the Sierra Nevada. By 37–32 Ma, input from Idaho had ceased. The influx from Idaho probably reflects major tectonism in Idaho, Oregon, and Washington, plus development of a through-going Princeton River to California, rather than radical changes in the subduction system at the Franciscan trench itself. 相似文献
9.
Maria Rosaria Renna Riccardo Tribuzio Alessio Sanfilippo Massimo Tiepolo 《Swiss Journal of Geoscience》2017,110(2):479-501
The Balagne ophiolite from central-northern Corsica represents a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont ophiolitic basin. Pillow and massive basalt lavas are primarily associated with Middle–Upper Jurassic pelagic sediments (mostly radiolarites at their base), continental-derived quartzo-feldspathic clastic sediments and ophiolitic breccias containing clasts of gabbros and basalts. The basalt-sedimentary succession is tectonically associated with a slice composed of an intrusive sequence overlain by basalt lavas. A “plagiogranite” from the intrusive sequence was dated by U–Pb zircon geochronology. Although affected by some uncertainty, mainly reflecting common Pb contamination, the U–Pb zircon data suggest a crystallization age of 159 ± 3 Ma (MSWD = 6.3), which is coeval with the formation of oceanic lower crust in the Schistes Lustrés units from Alpine Corsica. The predominance of quartz grains preserving typical volcanic shape, the prevalence of prismatic zircons and the arkose whole-rock composition indicate that the continental-derived quartzo-feldspathic clastic sediments have a low degree of textural maturity. U–Pb zircon geochronology carried out on two distinct levels of quartzo-feldspathic clastic sediments identified the predominance of zircons with within error U–Pb dates at ~280 Ma; minor components at ~457, ~309 and ~262 Ma were also obtained. The U–Pb date distribution is consistent with a source magmatic material mostly developed during the Variscan orogenic collapse. 相似文献
10.
The Chinese Altai orogen formed in the Paleozoic is an important part of the Central Asian Orogenic Belt (CAOB), and the study on the metamorphism will provide novel and robust constraints on its tectonic evolution. In this study, we investigate our newly recognized garnet–orthopyroxene–cordierite granulites at Wuqiagou area in the southern Chinese Altai. Detailed petrographic study and P–T estimates suggest four distinct metamorphic stages of mineral assemblages: (1) pre–peak (M1) stage containing the spinel–cordierite–bearing association or biotite–plagioclase–quartz–bearing inclusion–phase assemblage, with P–T conditions of 3.0–4.0 kbar/700–750 °C; (2) peak ultrahigh–temperature (UHT) (M2) stage represented by relatively coarse–grained garnet–orthopyroxene–cordierite–bearing porphyroblastic assemblage, with high–Al2O3 contents (up to ∼8.7 wt%) in orthopyroxene and P–T conditions of ∼8.0 kbar/∼980 °C; (3) post–peak high–temperature granulite facies (M3) stage consisted of orthopyroxene–cordierite and cordierite–quartz corona assemblages, formed during cooling and moderate decompression; and (4) post–peak upper amphibolite facies (M4) stage represented by retrograde biotite–plagioclase–quartz intergrowths. These four discrete metamorphic stages define an anticlockwise P–T path involving a post–peak moderate decompression followed by nearly isobaric cooling process. LA–ICP–MS U–Pb age dating results of metamorphic zircons for UHT samples show two weighted mean ages of ∼390 Ma and ∼280 Ma. We propose that the M1 stage might occur in the middle Devonian, whereas the near–peak UHT stage probably occurred in the early Permian. The Permian UHT metamorphism was further supported by the monazite U–Th–Pb dating results (287.9 ± 2.1 Ma), reflecting a prominent HT–UHT reworking event in the late Paleozoic. We proposed that the Permian UHT reworking event in the southern Chinese Altai probably occurred in a post–orogenic or intraplate extensional tectonic setting associated with the input of external heat, related to the underplating of deep–derived magma as a result of the Tarim mantle plume activity. 相似文献
11.
《International Geology Review》2012,54(10):1239-1262
The Chahgaz Zn–Pb–Cu volcanogenic massive sulphide (VMS) deposit occurs within a metamorphosed bimodal volcano–sedimentary sequence in the south Sanandaj–Sirjan Zone (SSZ) of southern Iran. This deposit is hosted by rhyodacitic volcaniclastics and is underlain and overlain by rhyodacitic flows, volcaniclastics, and pelites. Peperitic textures between rhyodacite flows and contact pelites indicate that emplacement of the rhyodacite occurred prior to the lithification of the pelites. The rhyodacitic flows are calc-alkaline, and show rare earth and trace elements features characteristic of arc magmatism. Zircons extracted from stratigraphic footwall and hanging-wall rhyodacitic flows of the Chahgaz deposit yield concordant U–Pb ages of 175.7 ± 1.7 and 172.9 ± 1.4 Ma, respectively, and a mean age of 174 ± 1.2 Ma. This time period is interpreted to represent the age of mineralization of the Chahgaz deposit. This Middle Jurassic age is suggested as a major time of VMS mineralization within pull-apart basins formed during Neo-Tethyan oblique subduction-related arc volcano-plutonism in the SSZ. Galena mineral separates from the layered massive sulphide have uniform lead isotope ratios of 206Pb/204Pb?=?18.604–18.617, 207Pb/204Pb?=?15.654–15.667, and 208Pb/204Pb?=?38.736–38.769; they show a model age of 200 Ma, consistent with the derivation of Pb from a Late Triassic, homogeneous upper crustal source. 相似文献
12.
Late-stage Pan-African granitoids, including monzogranite, syenogranite and alkali granite, were collected from four separate localities in Sinai. They were selected to represent both the calc-alkaline and alkaline suites that have been viewed as forming separate magmatic episodes in the Eastern Desert of Egypt, with the transition to alkali granite at ~ 610 Ma taken to mark the onset of crustal extension. Although intrusive relations were observed in the field, the emplacement ages of the granitoids cannot be distinguished within analytical uncertainty and they all formed within a restricted time span from 579 to 594 Ma. This indicates that the two suites are coeval and that some calc-alkaline rocks were also likely generated during the late extensional phase. These ages are identical to those recently obtained from similar rocks in the North-Eastern Desert, confirming that Sinai is the northern extension of the Eastern Desert Pan-African terrane of Egypt. Rare inherited zircons with ages of ~ 1790 and ~ 740 Ma are present in syenogranite from northeastern Sinai and indicate that older material is present within the basement. A few zircons record younger ages and, although some may reflect later disturbance of the main zircon population, those with ages of ~ 570 and 535 Ma probably reflect thermal events associated with the extensive emplacement of mafic and felsic dykes in both northeastern and southern Sinai. 相似文献
13.
The widely distributed high-grade gneisses in the East Kunlun Orogenic Belt (EKOB) are keys to understand the Precambrian tectonic evolution of the Northern Tibetan Plateau. In this study, new LA-ICP-MS zircon U–Pb ages from paragneiss and schist of the Proterozoic Jinshuikou Group and quartzite of the Proterozoic Binggou Group are reported in an attempt to evaluate the Neoproterozoic and Paleozoic tectono-thermal events of the EKOB. These geochronologic data can be classified into 4 groups: Group 1 ages ranging from 2243 Ma to 3701 Ma are represented by inherited zircons from protolith and confirm the existence of Eoarchean to Paleoproterozoic continental nucleus in the source region of the Jinshuikou Group. Group 2 ranging from 928 Ma to 1849 Ma yields lower intercept ages of 0.9–1.0 Ga which represent the Neoproterozoic tectono-thermal event. This event, similar to that of the northern margin of Qaidam, might be a response to the assembly of Rodinia. Group 3 ranges from Neoproterozoic to early Paleozoic with lower intercept ages which are identical to the weighted mean ages of Group 4. These two age groups confirm the tectono-thermal event related to Paleozoic oceanic subduction. Moreover, based on the youngest age of 2.2 Ga in Group 1 and the upper intercept age of 1.8 Ga in Group 2, the depositional timing of the Jinshuikou and Binggou groups can be defined as Paleoproterozoic and Mesoproterozoic, respectively. 相似文献
14.
L. J. Phillips C. Verdel C. M. Allen J. S. Esterle 《Australian Journal of Earth Sciences》2018,65(4):465-481
The late Carboniferous to Triassic tectonic history of eastern Australia includes important periods of regional-scale crustal extension and contraction. Evidence for these periods of tectonism is recorded by the extensive Pennsylvanian (late Carboniferous) to Triassic basin system of eastern Australia. In this study, we investigate the use of U–Pb dating of detrital zircons in reconstructing the tectonic development of one of these basins, the eastern Galilee Basin of Queensland. U–Pb detrital zircon ages were obtained from samples of stratigraphically well-constrained Cisuralian and Lopingian (early and late Permian, respectively) sandstone in the Galilee Basin. Detrital zircons in these sandstones are dominated by a population with ages in the range of 300–250 Ma, and ages from the youngest detrital zircons closely approximate depositional ages. We attribute these two fundamental findings to (1) appreciable derivation of detrital zircons in the Galilee Basin from the New England Orogen of easternmost Australia and (2) syndepositional magmatism. Furthermore, Cisuralian sandstone of the Galilee Basin contains significantly more >300 Ma detrital zircons than Lopingian sandstone. The transition in detrital zircon population, which is bracketed between 296 and 252 Ma based on previous high-precision U–Pb zircon ages from Permian ash beds in the Galilee Basin, corresponds with the Hunter–Bowen Orogeny and reflects a change in the Galilee Basin from an earlier extensional setting to a later foreland basin environment. During the Lopingian foreland basin phase, the individual depocentres of the Galilee and Bowen basins were linked to form a single and enormous foreland basin that covered >300 000 km2 in central and eastern Queensland. 相似文献
15.
Fifty‐five new SHRIMP U–Pb zircon ages from samples of northern Australian ‘basement’ and its overlying Proterozoic successions are used to refine and, in places, significantly change previous lithostratigraphic correlations. In conjunction with sequence‐stratigraphic studies, the 1800–1580 Ma rock record between Mt Isa and the Roper River is now classified into three superbasin phases—the Leichhardt, Calvert and Isa. These three major depositional episodes are separated by ~20 million years gaps. The Isa Superbasin can be further subdivided into seven supersequences each 10–15 million years in duration. Gaps in the geological record between these supersequences are variable; they approach several million years in basin‐margin positions, but are much smaller in the depocentres. Arguments based on field setting, petrography, zircon morphology, and U–Pb systematics are used to interpret these U–Pb zircon ages and in most cases to demonstrate that the ages obtained are depositional. In some instances, zircon crystals are reworked and give maximum depositional ages. These give useful provenance information as they fingerprint the source(s) of basin fill. Six new ‘Barramundi’ basement ages (around 1850 Ma) were obtained from crystalline units in the Murphy Inlier (Nicholson Granite and Cliffdale Volcanics), the Urapunga Tectonic Ridge (‘Mt Reid Volcanics’ and ‘Urapunga Granite’), and the central McArthur Basin (Scrutton Volcanics). New ages were also obtained from units assigned to the Calvert Superbasin (ca 1740–1690 Ma). SHRIMP results show that the Wollogorang Formation is not one continuous unit, but two different sequences, one deposited around 1730 Ma and a younger unit deposited around 1722 Ma. Further documentation is given of a regional 1725 Ma felsic event adjacent to the Murphy Inlier (Peters Creek Volcanics and Packsaddle Microgranite) and in the Carrara Range. A younger ca 1710 Ma felsic event is indicated in the southwestern McArthur Basin (Tanumbirini Rhyolite and overlying Nyanantu Formation). Four of the seven supersequences in the Isa Superbasin (ca 1670–1580 Ma) are reasonably well‐constrained by the new SHRIMP results: the Gun Supersequence (ca 1670–1655 Ma) by Paradise Creek Formation, Moondarra Siltstone, Breakaway Shale and Urquhart Shale ages grouped between 1668 and 1652 Ma; the Loretta Supersequence (ca 1655–1645 Ma) by results from the Lady Loretta Formation, Walford Dolomite, the upper part of the Mallapunyah Formation and the Tatoola Sandstone between ca 1653 and 1647 Ma; the River Supersequence (ca 1645–1630 Ma) by ages from the Teena Dolomite, Mt Les and Riversleigh Siltstones, and Barney Creek, Lynott, St Vidgeon and Nagi Formations clustering around 1640 Ma; and the Term Supersequence (ca 1630–1615 Ma) by ages from the Stretton Sandstone, lower Doomadgee Formation and lower part of the Lawn Hill Formation, mostly around 1630–1620 Ma. The next two younger supersequences are less well‐constrained geochronologically, but comprise the Lawn Supersequence (ca 1615–1600 Ma) with ages from the lower Balbirini Dolomite, and lower Doomadgee, Amos and middle Lawn Hill Formations, clustered around 1615–1610 Ma; and the Wide Supersequence (ca 1600–1585 Ma) with only two ages around 1590 Ma, one from the upper Balbirini Dolomite and the other from the upper Lawn Hill Formation. The Doom Supersequence (<1585 Ma) at the top of the Isa Superbasin is essentially unconstrained. The integration of high‐precision SHRIMP dating from continuously analysed stratigraphic sections, within a sequence stratigraphic context, provides an enhanced chronostratigraphic framework leading to more reliable interpretations of basin architecture and evolution. 相似文献
16.
Xiaoping Long Chao Yuan Min Sun Inna Safonova Wenjiao Xiao Yujing Wang 《Gondwana Research》2012,21(2-3):637-653
The southern Central Asian Orogenic Belt (CAOB) is characterized by multiple and linear accretionary orogenic collages, including Paleozoic arcs, ophiolites, and accretionay wedges. A complex history of subduction–accretion processes makes it difficult to distinguish the origin of these various terranes and reconstruct the tectonic evolution of the southern CAOB. In order to provide constraints on the accretionary history, we analyzed major and trace element compositions of Paleozoic graywackes from the Huangcaopo Group (HG) and Kubusu Group (KG) in East Junggar. The HG graywackes have relatively low Chemical Index of Alteration (CIA) values (50 to 66), suggesting a source that underwent relatively weak chemical weathering. The identical average Index of Compositional Variability (ICV) values (~ 1.1) for both the KG and HG samples point to an immature source for the Paleozoic graywackes in East Junggar, which is consistent with an andesitic–felsic igneous source characterized by low La/Th ratios and relatively high Hf contents. These graywackes are geochemically similar to continental island arc sediments and therefore were probably deposited at an active continental margin. U–Pb dating of detrital zircons from the lower subgroup of the HG yielded a young age peak at ~ 440 Ma, indicating a post-Early Silurian depositional age. However, the youngest populations of detrital zircons from the KG graywackes and the upper subgroup of the HG yielded 206Pb/238U ages of ~ 346 Ma and ~ 355 Ma, respectively, which suggest a post-Early Carboniferous depositional age. Because of similarities of rock assemblages, these two units should be incorporated into the Early Carboniferous Nanmingshui Formation. The detrital zircon age spectrum of the Early Paleozoic HG graywackes resembles that of the Habahe sediments in the Chinese Altai, which suggests that the ocean between East Junggar and the Chinese Altai was closed before the deposition of the sediments and that the Armantai ophiolite was emplaced prior to the Early Devonian. The differences in age spectra for detrital zircons from the post-Early Carboniferous graywackes in East Junggar and the Harlik arc indicate that the emplacement of the Kalamaili ophiolite postdates the Early Carboniferous. Therefore, a long-lasting northward subduction–accretion process is suggested for the formation of East Junggar and the reconstruction of the Early Paleozoic evolution of the southern CAOB. 相似文献
17.
Porphyry copper deposits (PCDs) in Iran are dominantly distributed in Arasbaran (NW Iran), the middle segment of the Urumieh–Dokhtar Magmatic Arc (UDMA), and Kerman (central SE Iran), with minor occurrences in eastern Iran and the Makran arc. This paper provides a temporal–spatial and geodynamic framework of the Iranian porphyry Cu (Mo–Au) systems, based on geochronologic data obtained from zircon U–Pb and molybdenite Re–Os dating of host porphyritic rocks and molybdenites in 15 major PCDs. The dating results define a long metallogenic duration (39–6 Ma), and suggest a long history of tectonic evolution from the accretionary orogeny related to early Cenozoic closure of the Neo-Tethys Ocean to subsequent collisional orogeny for the Iranian porphyry copper systems.The oldest porphyry mineralization occurred in the eastern part of Iran after the closure of a branch of the Neo-Tethyan (Sistan) Ocean between the Lut and Afghan blocks in the late Eocene (39–37 Ma). This was followed by mineralization in the Kerman porphyry copper belt over a time interval of about 20 m.y., where two metallogenic epochs have been recognized, including late Oligocene (29–27 Ma) and Miocene (18–6 Ma). The Bondar-e-Hanza deposit formed in the late Oligocene, while and the remaining dated deposits belong to Miocene epoch. According to the deposits' characteristics and their ages, the Miocene epoch can be divided into early, middle, and late stages. The Darreh Zar, Bakh Khoshk, Chah Firouzeh and Sar Kuh deposits formed during the early–middle Miocene. The largest porphyry deposits occur in the middle stage during the middle Miocene (14–11 Ma) and include the Sar Cheshmeh, Meiduk, Dar Alu and Now Chun deposits. These deposits were formed during crustal thickening, uplift, and rapid exhumation of the belt. The final stage of porphyry mineralization occurred during the late Miocene (9–6 Ma), and formed the Iju, Kerver, Kuh Panj and Abdar deposits.There were two porphyry mineralization stages in the Arasbaran porphyry copper belt in NW Iran, including an older late Oligocene (29–27 Ma) and a younger early Miocene (22–20 Ma) events. The Haft Cheshmeh deposit belongs to the older stage, and the world-class Sungun and Masjed Daghi deposits formed during the early Miocene.In the middle segment of the UDMA (Saveh–Yazd porphyry copper belt), PCDs formed during middle Miocene time (17–15 Ma). The geochronological results reveal that the porphyry mineralization moved from the northwest to southeast of UDMA over the time.Our dating results, combined with the possible late Eocene–Oligocene timing for collision between the Arabian and Iranian plates, support a model for Iranian PCD formation by partial melting of previously subduction-modified lithosphere in a post-subduction and post-collisional tectonic setting. 相似文献
18.
The Meso-Cenozoic geodynamic evolution of the eastern Pontides orogenic belt provides a key to evaluate the volcanogenic massive sulfide (VMS) deposits associated with convergent margin tectonics in a Cordilleran-type orogenic belt. Here we present new geological, geochemical and zircon U–Pb geochronological data, and attempt to characterize the metallogeny through a comprehensive overview of the important VMS mineralizations in the belt. The VMS deposits in the northern part of the eastern Pontides orogenic belt occur in two different stratigraphic horizons consisting mainly of felsic volcanic rocks within the late Cretaceous sequence. SHRIMP zircon U–Pb analyses from ore-bearing dacites yield weighted mean 206Pb/238U ages ranging between 91.1 ± 1.3 and 82.6 ± 1 Ma. The felsic rocks of first and second horizons reveal geochemical characteristics of subduction-related calc-alkaline and shoshonitic magmas, respectively, in continental arcs and represent the immature and mature stages of a late Cretaceous magmatic arc. The nature of the late Cretaceous magmatism in the northern part of the eastern Pontides orogenic belt and the various lithological associations including volcaniclastics, mudstones and sedimentary facies indicate a rift-related environment where dacitic volcanism was predominant. The eastern Pontides VMS deposits are located within the caldera-like depressions and are closely associated with dome-like structures of felsic magmas, with their distribution controlled by fracture systems. Based on a detailed analyses of the geological, geophysical and geodynamic information, we propose that the VMS deposits were generated either in intra arc or near arc region of the eastern Pontides orogenic belt during the southward subduction of the Tethys oceanic lithosphere. 相似文献
19.
Displacement of the daughter isotope by a-recoil results in an open system on the nanoscale. For a heterogeneous distribution of U and Th, this redistribution of intermediate and stable daughter isotopes results in subvolumes with a deficit of Pb and others with an excess of Pb. Whether such heterogeneities affect the analyzed U–Pb system depends on: (1) the volume of the analyzed sample, (2) the degree and scale of heterogeneity in the U and Th distribution, and (3) the analytical procedure. Spatial separation of parent and daughter through a-recoil affects the U–Pb systematics of leached samples, where leaching gives access to domains less than 1 µm wide. Anomalous data patterns originating from recoil induced parent-to-daughter fractionation are more important if there are strong heterogeneities in the U and Th distribution, whereby Pb excess appears more pronounced than Pb deficit. Fractionation of parent and daughter elements through selective dissolution of U-REE-rich growth zones in zircon and U-inclusions in columbite, as well as the presence of U–Th-rich micro-inclusions in silicates dated using a step-leaching scheme, may result in anomalous 207Pb rad/ 206Pb rad, scattered 206Pb rad/ 238U and 207Pb rad/ 235U, and reverse discordance. The accumulated structural damage controls the leaching and dissolution behavior, but may also influence the non-stoichiometric element mobilization during sputtering or ablation in the analysis of U-rich samples by SHRIMP and LA-MC-ICP-MS. 相似文献
20.
Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene–Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite–ulvöspinel. Zircon and Nb–U–REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U–Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive εHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb–U–REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth probably reflects contrasting ascent rates of basaltic magma with xenoliths, intermitted by the stagnation in various crustal levels at a <3 kbar pressure. The Tertiary suite of intra-plate, mantle-derived A1-type granites and syenites is geochemically distinct from pre-Tertiary, post-orogenic A2-type granites of the Carpatho–Pannonian region, which exhibit geochemical features diagnostic of crustal melting along continental margins. 相似文献