首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

2.
An attempt is made to construct a trial Qμ(l) distribution in the silicate mantle of Mars. With the allowance for the fact that on the PT plane the Earth’s geotherm is close to the distribution of areotherms, it was concluded that Qμ(l) should be distributed in the Martian interior topologically close to the Qμ(l) distribution in the Earth. The initial distribution was specified by the four-layer piecewise-constant distribution from the QML9 model. An important step was to select the power index in the frequency dependence of Qμ. Based on the laboratory data and on the experience of studying this problem for the Earth, n was specified in the interval 0.1–0.3. It was found that with the conversion of the initial distribution to the orbital period of Phobos around Mars, which is the only constraint for the problem derived from the observations, this distribution agrees reasonably well with the observational data at n = 0.1.  相似文献   

3.
The images of the southwestern part of the lunar disk showing the distributions of the negative polarization parameters of the light scattered by the lunar surface are presented. The distributions of the negative polarization minimum P min, the inversion angle αinv, and the polarization slope at the inversion point h significantly differ from the albedo image. This testifies to the fact that polarimetry yields independent information on the structure and optical properties of the lunar regolith.  相似文献   

4.
In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the ‘cosmic-Censorship-Inequality’ for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.  相似文献   

5.
Meteorite impacts onto a small satellite lead to the ejection of a regolith mass, which is much greater than the impactor mass, into cosmic space. Assume that an isotropic ejection with velocities smaller than the maximum possible velocity b took place at the time moment t 0. Since the orbital periods are unequal, the particle trajectories will densely fill a certain domain D. The same domain will be filled after an explosion of an artificial satellite moving in a high orbit. One to three months later, the node and pericenter longitudes will be distributed over the entire circle and the domain D will become a body of revolution, a topological solid torus. We examine the domain of possible particle motion and its boundary S immediately after the impact event (an unperturbed case) and the same domain under the assumption that the initial longitudes of nodes and pericenters were already a result of considerable changes (a perturbed case). In both cases, we managed to construct the domain D and its boundary S analytically: parametric equations containing only relatively simple functions were obtained for S. The basic topologic and differential-geometric properties of S were studied completely.  相似文献   

6.
The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)—Laplace-P1 (LP1 SC) and Laplace-P2 (LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter’s objectives is to map the surface of Ganymede from the artificial satellite’s orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede’s surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.  相似文献   

7.
In astrophysical studies of Solar System bodies, the measured values of the linear polarization degree Pobs and the position angle of the polarization plane θ are usually considered relative to the plane orthogonal to the scattering plane; and the resulting quantities are designated as Pr and θr, respectively. Parameters of the phase curve of polarization Pr = f(α) serve for determining the physical characteristics of grains composing the regolith surfaces of such bodies as, for example, the Moon, Mercury, asteroids, and planetary satellites, or the polydisperse media, such as cometary comae and tails. In this paper it has been shown that the error in the polarization degree grows \({\sigma _{{P_r}}}\) due to the error \({\sigma _{{\theta _{obs}}}}\) in determining the position angle. The interrelations between these errors were obtained, and the conditions, under which the values of the linear polarization degree Pr relative to the orthogonal system can be used to analyze the phase dependences of polarization, were formulated.  相似文献   

8.
Evolutionary tracks from the zero age main sequence to the asymptotic giant branch were computed for stars with initial masses 2 M M ZAMS ≤ 5 M and metallicity Z = 0.02. Some models of evolutionary sequences were used as initial conditions for equations of radiation hydrodynamics and turbulent convection describing radial stellar pulsations. The early asymptotic giant branch stars are shown to pulsate in the fundamental mode with periods 30 day ? Π ? 400day. The rate of period change gradually increases as the star evolves but is too small to be detected (Π?/Π < 10?5 yr?1). Pulsation properties of thermally pulsing AGB stars are investigated on time intervals comprising 17 thermal pulses for evolutionary sequences with initial masses M ZAMS = 2 M and 3 M and 6 thermal pulses for M ZAMS = 4 M and 5 M . Stars with initial masses M ZAMS ≤ 3 M pulsate either in the fundamental mode or in the first overtone, whereas more massive red giants (M ZAMS ≥ 4 M ) pulsate in the fundamental mode with periods Π ? 103 day. Most rapid pulsation period change with rate ?0.02 yr?1 ? Π?/Π ? ?0.01 yr?1 occurs during decrease of the surface luminosity after the maximum of the luminosity in the helium shell source. The rate of subsequent increase of the period is Π?/Π ? 5 × 10?3 yr?1.  相似文献   

9.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

10.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

11.
We have analysed 64 flares observed with GOES and RHESSI in the 3.1?–?24.8 keV band (0.5?–?4 Å). Flares were randomly chosen to represent different GOES classes, between B1 and M6. RHESSI was used to image the flaring region on the surface of the Sun. We derived the spatial area of the flare on the surface of the Sun from the imaging observations, scaled it dimensionally to volume, and used the spectroscopically derived emission measure to obtain several flare parameters. We experimented with several imaging methods and selected the use of 50% maximum image photon flux contours to define the flare area (F 50%). Most of the flares showed a single spherical loop-top source. The volume measurement for V, temperature T, and electron density N produced power indices that showed no correlation within the boundaries of error. Larger flares by loop-top source volume are thus neither hotter nor denser. The background-subtracted GOES flux?–?RHESSI Total Emission Measure (TEM RHESSI) and TEM GOES?–?TEM RHESSI dependencies were in agreement with the instrument characteristics and earlier studies. Nonthermal flux was noticed to increase with thermal energy and TEM, which can be said to agree with the “Big Flare Syndrome,” with nonthermal photon flux being considered as one flare manifestation.  相似文献   

12.
In 2013–2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON ~ 11.1 e?, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters (FWHM = 250 Å) uniformly covering the 4000–9000 Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000–7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to RAB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.  相似文献   

13.
Based on the analysis of published data on exposure ages of iron meteorites determined with the 40K/K method (T K) and ages calculated using short-lived cosmogenic radionuclides (with the half-life T 1/2 < 1 Myr) in combination with stable cosmogenic isotopes of noble gases (TRS), the following results have been obtained. (1) The distribution of T RS ages (106 values) has an exponential shape, similar to that for ordinary chondrites, but different from the distribution of T K ages (80 values). The difference is most likely due to small amounts of data for meteorites with low T K ages (less than ~200–300 Myr). The latter can be ascribed to the difficulty of measurement of small concentrations of cosmogenic potassium isotopes. This circumstance makes the selection of meteorites with 40K/K ages nonrepresentative and casts doubt on the correctness of conclusions about the variations of the intensity of galactic cosmic rays (GCR) based on the analysis of distribution of these ages. (2) The magnitude of the known effect (systematic overestimation of T K ages in comparison with T RS ages) has been refined. The value k = T K/T RS = 1.51 ± 0.03 is acquired for the whole population of data. We have shown the inefficiency of the explanation of this effect on account of an exponential change in the GCR intensity (I T ) with time (T) according to the relation I T = I 0exp(–γT) over the whole range of ages of iron meteorites. (3) In order to explain the overestimation of T K ages in comparison with T RS ages, a model has been proposed, according to which the GCR intensity has exponentially increased in the interval of 0–1500 Myr governed by the relation: I T = I T = 1500 (1 + αexp(–βT)). For one of the variants of this model, the GCR intensity has exponentially increased by a factor of two only over the recent ~300 Myr, remaining approximately constant for the rest of the time. The data acquired with the use of this model indicate that the measured T K ages are close to the actual time that the meteorites existed in space; the data are in agreement with the observed exponential distribution of T RS ages.  相似文献   

14.
A series of highly accurate photoelectric observations of the eclipsing binary MZ Lac was obtained with a 48-cm AZT-14 reflector at the Tien-Shan High-Altitude Station of the Sternberg Astronomical Institute from 1985 to 2004 to study its apsidal motion. We constructed a consistent system of physical and geometrical parameters of the components and the binary’s orbit: we determined their masses (M1 = 1.50M, M2 = 1.29M), radii (R1 = 1.86R, R2 = 1.35R), luminosities (L1 = 0.79L, L2 = 0.45L), surface gravities (logg1 = 4.06, logg2 = 4.27), age (t = 1.9 × 109 yr), and the distance to the binary (d = 510 pc). The binary exhibits apsidal motion with the period Uobs = 480 ± 40 yr, while its theoretically expected value is Uth = 450 ± 40 yr. Spectroscopic studies of MZ Lac and calculations of the absolute parameters of the components are required to test our conclusions.  相似文献   

15.
Through the example of comparison of the natural features of two regions in the northern part of Mare Imbrium, that were directly investigated in detail with remotely controlled rovers on the lunar surface, the capabilities of combining orbital remote measurements of the physical and mechanical properties and the chemical composition of the lunar soil with their direct measurements have been shown. From the remotely determined spectropolarimetric and gamma-spectrometric characteristics of the regolith surface layer, the exposure age (the maturity), the mean effective size of particles of the fine fraction, the absolute age of the formations, and the iron content in the soil were estimated. To compare the characteristics of the considered regions, the results of the investigations carried out directly on the lunar surface by the Lunokhod-1 rover and the analogous vehicle Yutu were used.  相似文献   

16.
Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of ~100 000 clump red giants within ~800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as “standard candles.” This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode(M H ) = ?1.49 m ± 0.04 m , mode(M Ks ) = ?1.63 m ± 0.03 m , mode(M W1) = ?1.67 m ± 0.05 m mode(M W2) = ?1.67 m ± 0.05 m , mode(M W3) = ?1.66 m ± 0.02 m , mode(M W4) = ?1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.  相似文献   

17.
The dependence of the degree of anomaly of parameter Z of Geneva photometry (Z0 = Z CP ?Z norm.) on the average surface magnetic field Bs is analyzed. The Z0 value is proportional to the degree of anomaly of chemical composition. It was found that Bs → 0 corresponds Z0 → ?0.010÷ ?0.015, i.e., part of CP stars are virtually devoid of magnetic field, but exhibit chemical anomalies. This effect may be due to selection whereby only objects with strong chemical anomalies are classified as CP stars, thereby producing a deficit of stars with relatively weak anomalies. Moreover, CP stars have other sources of stabilization of their atmospheres besides the magnetic field, e.g., slow rotation. Formulas relating Z0 to Bs are derived.  相似文献   

18.
We consider a spherically symmetric general relativistic perfect fluid in its comoving frame. It is found that, by integrating the local energy momentum conservation equation, a general form of g 00 can be obtained. During this study, we get a cue that an adiabatically evolving uniform density isolated sphere having ρ(r,t)=ρ 0(t), should comprise “dust” having p 0(t)=0; as recently suggested by Durgapal and Fuloria (J. Mod. Phys. 1:143, 2010) In fact, we offer here an independent proof to this effect. But much more importantly, we find that for the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) metric having p(r,t)=p 0(t) and ρ(r,t)=ρ 0(t), \(g_{00} = e^{-2p_{0}/(p_{0} +\rho_{0})}\). But in general relativity (GR), one can choose an arbitrary tt ?=f(t) without any loss of generality, and thus set g 00(t ?)=1. And since pressure is a scalar, this implies that p 0(t ?)=p 0(t)=0 in the Big-Bang model based on the FRW metric. This result gets confirmed by the fact the homogeneous dust metric having p(r,t)=p 0(t)=0 and ρ(r,t)=ρ 0(t) and the FRW metric are exactly identical. In other words, both the cases correspond to the same Einstein tensor \(G^{a}_{b}\) because they intrinsically have the same energy momentum tensor \(T^{a}_{b}=\operatorname {diag}[\rho_{0}(t), 0,0, 0]\).  相似文献   

19.
Results of astrometric and BVRI photometric observations of the active asteroid (596) Scheila are presented. The observations were carried out at the Zeiss-1000 telescope of the Sanglokh International Astronomical Observatory of the Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan on June 16?17 and from July 30 to August 1, 2017. The coordinates of the object and its orbit were determined; and the apparent brightness in four filters, the absolute brightness in the V and R filters, and the color indices were obtained. The light curves suggest that no substantial changes in the asteroid’s brightness occurred during the observations. The absolute brightness of the asteroid in the V and R filters was (9.1 ± 0.05)m and (8.8 ± 0.03)m, respectively. The mean value of the asteroid diameter was (119 ± 2) km. The mean values of the color indices (B?V = (0.72 ± 0.05)m, V?R = (0.29 ± 0.03)m, and R?I = (0.31 ± 0.03)m) agree well with the values for asteroids of the P- and D-types and its averages. The rotation period of the asteroid estimated from photometric observations was 16.1 ± 0.2 h. The analysis of the data has shown that the asteroid continues to exhibit the same values of absolute brightness and other characteristics as those before the collision with a small body in December 2010, though the latter resulted in the outburst event and cometary activity of the asteroid. Most likely, the collision of asteroid (596) Scheila with a small body did not lead to catastrophic changes in the surface of the asteroid or to its compete break-up.  相似文献   

20.
CHOMIK is the name of a penetrator constructed for sampling and retrieval of Phobos surface material. It formed an integral part of the Phobos Sample Return Mission. In this paper we present its construction and intended mode of operation, since the concept is still viable for future missions either to Phobos or to other small bodies of similar dimensions. We take Phobos as an example to describe the science case for such an instrument and how it might be utilized to resolve important open issues regarding the origin of the Martian moons. Concerning the latter, we place emphasis on measurement techniques and analysis tools for mapping trace element concentrations in returned sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号