首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Relict rock glaciers have considerable potential for contributing to palaeoclimatic reconstruction, but this potential is often undermined by lack of dating control and problems of interpretation. Here we reinvestigate and date four proposed ‘rock glaciers’ in the Cairngorm Mountains and show that the morphology of only one of these appears consistent with that of a true rock glacier produced by creep of underlying ice or ice‐rich sediment. All four features comprise rockslide or rock avalanche runout debris, and the possibility that all four represent unmodified runout accumulations cannot be discounted. Surface exposure dating of the four debris accumulations using cosmogenic 10Be produced uncertainty‐weighted mean ages of 15.4 ± 0.8 ka, 16.2 ± 1.0 ka, 12.1 ± 0.6 ka and 12.7 ± 0.8 ka. All four ages imply emplacement under cold stadial conditions, two prior to the Windermere Interstade of ca. 14.5–12.9 cal. ka BP and two during the Loch Lomond Stade of ca. 12.9–11.5 cal. ka BP. The above ages indicate that paraglacial rock‐slope failure on granite rockwalls occurred within a few millennia after deglaciation. The mean exposure ages obtained for runout debris at two sites – Strath Nethy (16.2 ± 1.0 ka) and Lairig Ghru (15.4 ± 0.8 ka) – are consistent with basal radiocarbon ages from Loch Etteridge, 22 km to the southwest (mean = 15.6 ± 0.3 cal. ka BP) and imply widespread deglaciation of the Cairngorms and adjacent valleys before 15 ka and possibly 16 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Two sites in the eastern Fram Strait, the Vestnesa Ridge and the Yermak Plateau, have been surveyed and sampled providing a depositional record over the last glacial‐interglacial cycle. The Fram Strait is the only deep‐water connection from the Arctic Ocean to the North Atlantic and contains a marine sediment record of both high latitude thermohaline flow and ice sheet interaction. On the Vestnesa Ridge, the western Svalbard margin, a sediment drift was identified in 1226 m of water. Gravity and multicores from the crest of the drift recovered turbidites and contourites. 14C dating indicates an age range of 8287 to 26 900 years BP (Early Holocene to Late Weichselian). The Yermak Plateau is characterized by slope sediments in 961 m of water. Gravity and multicores recovered contourites and hemipelagites. 14C ages were between 8615 and 46 437 years BP (Early Holocene to mid‐Weichselian). Downcore dinoflagellate cyst analyses from both sites provide a record of changing surface water conditions since the mid‐Weichselian, suggesting variable sea ice extent, productivity and polynyas present even during the Last Glacial Maximum. Four layers of ice‐rafted debris were also identified and correlated within the cores. These events occurred ca at 9, 24 to 25, 26 to 27 and 43 ka, asynchronous with Heinrich layers in the wider north‐east Atlantic and here interpreted as reflecting instability in the Svalbard/Barents Ice sheet and the northward advection of warm Atlantic water during the Late Weichselian. The activity of the ancestral West Spitsbergen Current is interpreted using mean sortable silt records from the cores. On the Vestnesa Ridge drift the modern mass accumulation rate, calculated using excess 210Pb, is 0·076 g cm?2 year?1. On the Yermak Plateau slope the modern mass accumulation rate is 0·053 g cm?2 year?1.  相似文献   

5.
A revised chronological framework for the deglaciation of the Lake Michigan lobe of the south‐central Laurentide Ice Sheet is presented based on radiocarbon ages of plant macrofossils archived in the sediments of low‐relief ice‐walled lakes. We analyze the precision and accuracy of 15 AMS 14C ages of plant macrofossils obtained from a single ice‐walled lake deposit. The semi‐circular basin is about 0.72 km wide and formed of a 4‐ to 16‐m‐thick succession of loess and lacustrine sediment inset into till. The assayed material was leaves, buds and stems of Salix herbacea (snowbed willow). The pooled mean of three ages from the basal lag facies was 18 270 ± 50 14C a BP (21 810 cal. a BP), an age that approximates the switch from active ice to stagnating conditions. The pooled mean of four ages for the youngest fossil‐bearing horizon was 17 770 ± 40 14C a BP (21 180 cal. a BP). Material yielding the oldest and youngest ages may be obtained from sediment cores located at any place within the landform. Based on the estimated settling times of overlying barren, rhythmically bedded sand and silt, the lacustrine environment persisted for about 50 more years. At a 67% confidence level, the dated part of the ice‐walled lake succession persisted for between 210 and 860 cal. a (modal value: 610 cal. a). The deglacial age of five moraines or morainal complexes formed by the fluctuating margin of the Lake Michigan lobe have been assessed using this method. There is no overlap of time intervals documenting when ice‐walled lakes persisted on these landforms. The rapid readvances of the lobe during deglaciation after the last glacial maximum probably occurred at some point between the periods of ice‐walled lake sedimentation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A 475-cm long sediment core (QH-2005) from Lake Qinghai was used to carry out multi-proxy analysis of δ18O and body length of ostracod valves and redness and grain size of sediments, in order to reconstruct environ-mental changes during the past 13500 cal. a BP. The age model was based on 6 14C dates for bulk orgnic carbon (BOC) and 2 14C dates for lignin. The lignin 14C dates are apparently younger than the corresponding layers’ BOC 14C dates, indicating that the reservoir age varied from 728 to 1222 a since the Late Glacial and from 2390 to 2490 a immediately before the pre-bomb era. Hence, the 14C age model for Core QH-2005 was corrected by the changing reservoir age. Ostracod δ18O values were primarily related to dilution and evaporative enrichment of the lake water. The reconstructed salinity based on ostracod body length coincides well with ostracod δ18O values. High redness and mean grain size (MZ) values indicate increased riverine supply to Lake Qinghai associated with increasing monsoon rainfall. Multi-proxy results show that climate during 13500-10900 cal. a BP was relatively cold and dry with fre-quent short-term fluctuations; a warm and wet climate began at about 10900 cal. a BP and culminated around 6500 cal. a BP as a result of monsoon strengthening; the climate became cold and dry afterwards and has remained rela-tively stable since 3400 cal. a BP. Our data also reveal short-term (millennial/centennial timescales) climatic fluctua-tions including: Younger Dryas events, ice-rafting events 8 and 1 (by ~11000 cal. a BP and ~1600 cal. a BP respec-tively), 8200 cal. a BP cold event, Little Ice Age and the Medieval Warm Period.  相似文献   

7.
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is challenging because of the rarity of calcareous (micro‐) fossils and the recycling of fossil organic matter. Consequently, radiocarbon (14C) ages of the acid‐insoluble organic fraction (AIO) of the sediments bear uncertainties that are difficult to quantify. Here we present the results of three different methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk samples yielded age reversals down‐core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom‐rich unit yielded similar uncorrected 14C ages between 13 517 ± 56 and 11 543 ± 47 years before present (a BP). Correction of these ages by subtracting the core‐top ages, which probably reflect present‐day deposition (as indicated by 210Pb dating of the sediment surface at one core site), yielded ages between ca. 10 500 and 8400 cal. a BP. Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1300 a indicated deposition of the diatom‐rich sediments between 14 100 and 11 900 cal. a BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka for the diatom‐rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves. As a third dating technique we applied conventional radiocarbon dating of the AIO included in acid‐cleaned diatom hard parts extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5111 ± 38 and 5106 ± 38 a BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom‐rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes elsewhere on the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A multi‐proxy record is presented for approximately the last 4500 cal a BP from Lake Shkodra, Albania/Montenegro. Lithological analyses, C/N ratio and δ13C of the organic and inorganic carbon component suggest that organic matter and bulk carbonate are predominantly authigenic. The δ18O record of bulk carbonate indicates the presence of two prominent wet periods: one at ca. 4300 cal a BP and one at ca. 2500–2000 cal a BP. The latter phase is also found in southern Spain and Central Italy, and represents a prominent event in the western and central Mediterranean. In the last 2000 years, four relatively wet intervals occurred between ca. 1800 and 1500 cal a BP (150–450 AD), 1350–1250 (600–700 AD), 1100–800 (850–1150 AD), and at ca. 90 cal a BP (1860 AD). Between ca. 4100 and 2500 cal a BP δ18O values are relatively high, with three prominent peaks indicating drier conditions at ca. 4100–4000 cal a BP, ca. 3500 and at ca. 3300 cal a BP. Four additional drier events are identified at 1850 (ca. 100 AD), 1400 (ca. 550 AD), 1150 (800 AD) and ca.750 cal a BP (1200 AD). The pollen record does not show changes in accordance with these episodes owing to the poor sensitivity of vegetation in this area, which is dominated by an orographic rainfall effect and where changes in altitudinal vegetation belts do not affect the pollen rain in the lake catchment. However, since ca. 900 cal a BP a significant decrease in the percentage arboreal pollen and in pollen concentrations suggest major deforestation produced by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A large ice sheet still covered almost all of Maine and eastern New England until ca. 15 cal ka BP, reaching south of 45 °S, despite rising summer insolation intensity and major ice recession elsewhere outside the North Atlantic region. Furthermore, the well-studied moraine belt along eastern coastal Maine, including the prominent Pineo Ridge delta/moraine complex and Pond Ridge moraine, indicates repeated readvances and stillstands between ca. 16 and 15 cal ka BP. This moraine belt reflects a considerable ice sheet response over eastern North America during this time period, coeval with the latter half of the European Oldest Dryas period. Moraine deposition was concurrent with reduction or elimination of North Atlantic meridional overturning, starting with the earlier onset of peak IRD and Heinrich Event 1 (HE-1). The existing 14C chronology suggests that the coastal moraine belt and the persistence of the ice sheet until ∼ 15 cal ka BP was a response to the severe cooling of the North Atlantic region after ∼ 17 cal ka BP.  相似文献   

10.
The study of mass movements in lake sediments provides insights into past natural hazards at historic and prehistoric timescales. Sediments from the deep basin of Lake Geneva reveal a succession of six large‐scale (volumes of 22 × 106 to 250 × 106 m3) mass‐transport deposits, associated with five mass‐movement events within 2600 years (4000 cal bp to 563 ad ). The mass‐transport deposits result from: (i) lateral slope failures (mass‐transport deposit B at 3895 ± 225 cal bp and mass‐transport deposits A and C at 3683 ± 128 cal bp ); and (ii) Rhône delta collapses (mass‐transport deposits D to G dated at 2650 ± 150 cal bp , 2185 ± 85 cal bp , 1920 ± 120 cal bp and 563 ad , respectively). Mass‐transport deposits A and C were most probably triggered by an earthquake, whereas the Rhône delta collapses were likely to be due to sediment overload with a rockfall as the external trigger (mass‐transport deposit G, the Tauredunum event in 563 ad known from historical records), an earthquake (mass‐transport deposit E) or unknown external triggers (mass‐transport deposits D and F). Independent of their origin and trigger mechanisms, numerical simulations show that all of these recorded mass‐transport deposits are large enough to have generated at least metre‐scale tsunamis during mass movement initiation. Since the Tauredunum event in 563 ad , two small‐scale (volumes of 1 to 2 × 106 m3) mass‐transport deposits (H and I) are present in the seismic record, both of which are associated with small lateral slope failures. Mass‐transport deposits H and I might be related to earthquakes in Lausanne/Geneva (possibly) 1322 ad and Aigle 1584 ad , respectively. The sedimentary record of the deep basin of Lake Geneva, in combination with the historical record, show that during the past 3695 years, at least six tsunamis were generated by mass movements, indicating that the tsunami hazard in the Lake Geneva region should not be neglected, although such events are not frequent with a recurrence time of 0·0016 yr?1.  相似文献   

11.
Previous studies have demonstrated long‐term changes in effective moisture in sub‐Saharan Africa. Here, we reconstruct Holocene environments using a ~7 m lake‐sediment sequence recovered from the northeastern Nigerian Sahel and attempt to distinguish basin‐specific changes from regional climatic variations. The sequence was analysed for sedimentological properties, mineral magnetism and pollen, and dated by 137Cs, 210Pb excess and 14C. Extremely arid conditions of the terminal Pleistocene ended ca. 11 500 cal. BP (calendar years) when climate ameliorated and a lake developed until the occurrence of an arid event leading to lake desiccation at ~11 200 cal. BP. Following this, climate ameliorated and a water body re‐emerged. Very wet conditions predominated 11 200–5600 cal. BP, followed by drought between 5600 and 5500 cal. BP and a return to moderate humidity from 5500 to 4000 cal. BP. After 4000 cal. BP, a marked deterioration occurred, culminating in lake desiccation at ca. 800 cal. BP. After this time the climate remained generally dry and the re‐emerging lake was shallow. Comparison of these results with other well‐dated sequences in the region demonstrates the importance of basin‐specific influences on the palaeolimnological records in addition to regional climatic controls. Disentangling these different controls, as well as the reconstruction of Holocene climate, therefore requires a multiple‐basin approach. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Palynological and sedimentological analyses were performed on the sediment core HH16-1205-GC retrieved from the central Isfjorden, West Spitsbergen. The sequence, which spans the last 7000 years, revealed an overall cooling trend with an important climate shift between 4.4 and 3.8 cal. ka BP, in addition to millennial-scale oscillations. Sea-surface reconstruction from dinocyst assemblages indicates a decrease in summer sea-surface temperature, from 2.5 to 1.5 °C, and primary productivity, from 750 to 650 gC m−2 a−1 over the last 7000 years. From around 6.8 to 5.8 cal. ka BP, the sedimentological and palynological data suggest a predominant sediment supply from the inner part of the fjord, ice rafting, dense sea ice cover, strongly stratified water masses and high primary productivity. The interval from 4.4 to 3.8 cal. ka BP is marked by a layer of coarser material and a significant decrease in the grain-size mode. Our geochemical data show large-amplitude fluctuations after 2.0 cal. ka BP, while an increase in the dinocysts Impagidinium pallidum and Spiniferites elongatus from 2.0 to 1.2 cal. ka BP suggests enhanced Atlantic Water inflow. The dinocyst-based reconstructions also reveal large-amplitude millennial fluctuations in sea ice cover, summer sea-surface temperature and salinity. Wavelet analysis and cross-wavelet analysis on K/Ti ratio coupled with sea-ice estimates confirm a strong signal with a periodicity of 1200–1500 years.  相似文献   

13.
The Gschnitz stadial was a period of regionally extensive glacier advance in the European Alps that lies temporally between the breakdown of the Last Glacial Maximum piedmont lobes and the beginning of the Bølling warm interval. Moraines of the Gschnitz stadial are found in medium to small catchments, are steep‐walled and blocky, and reflect a snowline lowering of 650–700 m in comparison to the Little Ice Age reference snowline. 10Be surface exposure dating of boulders from the moraine at the type locality at Trins (Gschnitz valley, Tyrol, Austria) shows that it stabilised no later than 15 400 ± 1400 yr ago. The overall morphological situation and the long reaction time of the glacier suggest that the climatic downturn lasted about 500 ± 300 yr, indicating that the Gschnitz cold period began approximately 15 900 ± 1400 yr ago, if not somewhat earlier. This is consistent with published radiocarbon dates that imply that the stadial occurred sometime between 15 400 14C yr BP (18 020–19 100 cal. yr) and 13 250 14C yr BP (15 360–16 015 cal. yr). A palaeoclimatic interpretation of the Gschnitz glacier based on a simple glacier flow model and statistical glacier‐climate models shows that precipitation was about one‐third of modern‐day precipitation and summer temperatures were about 10 K lower than today. In comparison, during the Younger Dryas, precipitation in this area was only about 10% less and Ts (summer temperature) was only 3.5–4 K lower than modern values. Based on the age of the moraine and the cold and dry climate at that time, we suggest that the Gschnitz stadial was the response of Alpine glaciers to cooling of the North Atlantic Ocean associated with Heinrich Event 1. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This interdisciplinary study represents an approximation towards understanding how regional human cultural systems may have been affected by climate change in the northernmost Chilean Altiplano (>3600 m) over the last ca. 11 500 cal a BP. We compare the archaeological record from Hakenasa cave with the lake record from Lago Chungará sediment cores, located 50 km to the south. By integrating both of these archives in conjunction with regional palaeoclimate and archaeological data, we provide new evidence for the role of changing environmental and climatic conditions in human settlement patterns. The first human occupation of the entire Altiplano occurs at Hakenasa and is dated to 9980 ± 40 14C a BP (11 265–11 619 cal. a BP), and took place under wetter regional climate conditions. An archaeologically sterile deposit occurs at Hakenasa between 7870 and 6890 cal. a BP. Constituted by sands and gravels, these sediments are interpreted as a flood event. This time period is synchronous with alternating short dry and wet events recorded in the Lake Chungará sedimentary sequence. Human activity resumes and increases in importance at Hakenasa by ca. 6000 cal. a BP. This corresponds to wetter conditions indicated by the Chungará record. Even though the lake record indicates intense volcanic activity over the last 6000 cal. a BP, this had little or no impact on the human population present at Hakenasa. This study shows that even in this extreme environment human settlement patterns do not always respond in a linear fashion to environmental change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   

16.
We report radiocarbon dates that constrain the timing of the deposition of the late-glacial Puerto Bandera moraine system alongside the western reaches of Lago Argentino adjacent to the Southern Patagonian Icefield. Close maximum-limiting radiocarbon ages (n = 11) for glacier advance into the outer moraines, with a mean value of 11,100 ± 60 14C yrs BP (12,990 ± 80 cal yrs BP), were obtained from wood in deformation (soft) till exposed beneath flow and lodgment till in Bahía del Quemado on the northeast side of Brazo Norte (North Branch) of western Lago Argentino. Other exposures of this basal deformation till in Bahía del Quemado reveal incorporated clasts of peat, along with larger inclusions of deformed glaciofluvial and lacustrine deposits. Radiocarbon dates of wood included in these reworked peat clasts range from 11,450 ± 45 14C yrs BP to 13,450 ± 150 14C yrs BP (13,315 ± 60 to 16,440 ± 340 cal yrs BP). The implication is that, during this interval, glacier fronts were situated inboard of the Puerto Bandera moraines, with the peat clasts and larger proglacial deposits being eroded and then included in the basal till during the Puerto Bandera advance.Minimum-limiting radiocarbon ages for ice retreat come from basal peat in cores sampled in spillways and depressions generated during abandonment of the Puerto Bandera moraines. Glacier recession and subsequent plant colonization were initiated close behind different frontal sectors of these moraines prior to: 10,750 ± 75 14C yrs BP (12,660 ± 70 cal yrs BP) east of Brazo Rico, 10,550 ± 55 14C yrs BP (12,490 ± 80 cal yrs BP) in Peninsula Avellaneda, and 10,400 ± 50 14C yrs BP (12,280 ± 110 cal yrs BP) in Bahía Catalana. In addition, a radiocarbon date indicates that by 10,350 ± 45 14C yrs BP (12,220 ± 110 cal yrs BP), the Brazo Norte lobe (or former Upsala Glacier) had receded well up the northern branch of Lago Argentino, to a position behind the Herminita moraines. Furthermore, glacier termini had receded to just outboard of the outer Holocene moraines at Lago Frías and Lago Pearson (Anita) prior to 10,400 ± 40 14C yrs BP (12,270 ± 100 cal yrs BP) and 9040 ± 45 14C yrs BP (10,210 ± 50 cal yrs BP), respectively. The most extensive recession registered during the early Holocene was in Agassiz Este Valley, where the Upsala Glacier had pulled back behind the outer Holocene moraine, reaching close to the present-day glacier terminus before 8290 ± 40 14C yrs BP (9300 ± 80 cal yrs BP).The radiocarbon-dated fluctuations of the Lago Argentino glacier in late-glacial time, given here, are in accord with changes in ocean mixed layer properties, predominately temperature, derived from the isotopic record given here of ODP Core 1233, taken a short distance off shore of the Chilean Lake District. It also matches recently published chronologies of late-glacial moraines in the Southern Alps of New Zealand on the opposite side of the Pacific Ocean from Lago Argentino. Finally, the timing of the late-glacial reversal of the Lago Argentino glacier fits the most recent chronology for the culmination of the Antarctic Cold Reversal (ACR) in the deuterium record of the EPICA Dome C ice core from high on the East Antarctic Plateau. Therefore, we conclude that the climate signature of the ACR was widespread in both the ocean and the atmosphere over at least the southern quarter of the globe.  相似文献   

17.
Articulated molluscs, sea urchins and barnacle fragments close to the Vedde Ash Bed in a shallow marine deposit on the west coast of Norway have been 14C dated. The weighted mean of four dates from a sediment slice 8 cm thick centred on the Vedde Ash Bed is 10920 ± 24 14C yr BP. The most accurate 14C age of the Vedde Ash from terrestrial plant macrofossils is 10310 ± 50 yr BP. The difference is the 14C reservoir age for coastal water at the west coast of Norway during the mid‐Younger Dryas and equals 610 ± 55 yr. This is 230 yr older than the reservoir age for the Bølling/Allerød and for the present day in this area. The result supports earlier conclusions of a higher reservoir age for the Younger Dryas in the North Atlantic and Nordic Seas, although our reservoir age of 610 ± 55 yr is a few hundred years younger. This suggests that the 14C reservoir age at Vedde Ash time may increase from coastal water towards the open North Atlantic and Nordic Seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates a detailed well‐dated Lateglacial floristic colonisation in the eastern Baltic area, ca. 14 000–9000 cal. a BP, using palynological, macrofossil, loss‐on‐ignition, and 14C data. During 14 000–13 400 cal. a BP, primarily treeless pioneer tundra vegetation existed. Tree birch (Betula sect. Albae) macro‐remains and a high tree pollen accumulation rate indicate the presence of forest‐tundra with birch and possibly pine (Pinus sylvestris L.) trees during 13 400–12 850 cal. a BP. Palaeobotanical data indicate that the colonisation and development of forested areas were very rapid, arising within a period of less than 50 years. Thus far, there are no indications of conifer macrofossils in Estonia to support the presence of coniferous forests in the Lateglacial period. Signs of Greenland Interstadial 1b cooling during 13 100 cal. a BP are distinguishable. Biostratigraphic evidence indicates that the vegetation was again mostly treeless tundra during the final colder episode of the Lateglacial period associated with Greenland Stadial 1, approximately 12 850–11 650 cal. a BP. This was followed by onset of the Holocene vegetation, with the expansion of boreal forests, in response to rapid climatic warming. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Continuous glacier margin and equilibrium-line altitude fluctuations of a former glacier on central Andøya, northern Norway, are reconstructed during the Lateglacial based on moraines and AMS 14C-dated sediments from the distal glacier-fed lake Ner-Finnkongdalsvatnet. The results indicate that a valley glacier occupied the entire valley during the Last Glacial Maximum (before 21 970±620 cal. a BP). The glacier remained large throughout the early Lateglacial until a significant glacier retreat took place about 14 300±330 cal. a BP. Major advances occurred during the Older Dryas (OD) and during the Younger Dryas (YD), while minor advances are suggested to have taken place during the Intra Allerød Cold Period and the Late Allerød Cooling. Additionally, three smaller glacier retreats/re-advances within the YD are suggested to have taken place, the latter being the largest. The glacier re-formations/advances during the Lateglacial are consistent with increases in temperature, and they are thus suggested to be the result of increased winter precipitation. Comparing the results with relevant glacier and sea-surface temperature records, a south–north migration of storm tracks may have occurred between 12 100–11 810±220 cal. a BP. The high temporal resolution of local glacier activity in Finnkongdalen improves our understanding of the climate forcing of the regional glacier fluctuations of the northwestern sector of the Scandinavian Ice Sheet during the Skarpnes- (OD) and Tromsø-Lyngen (YD) re-advances.  相似文献   

20.
The Arctic is more vulnerable to climate change than are mid latitudes. Therefore, palaeolimnological studies from the High Arctic are important in providing insights into the dynamics of the climate system. Here we present a multi‐proxy study from one of the world's northernmost lakes: Bliss Lake, Peary Land, Greenland. The early Holocene (10 850–10 480 cal. a BP) is characterized by increased erosion and gradually more marine conditions. Full marine conditions developed from 10 480 cal. a BP until the lake was isolated at 7220 cal. a BP. From its marine isolation at 7220 cal. a BP Bliss Lake becomes a lacustrine environment. Evidence from geochemical proxies (δ13C and total organic carbon) suggests that warmer conditions prevailed between 7220 and 6500 cal. a BP, corresponding to the Holocene thermal maximum, and from 3300 until 910 cal. a BP. From 850 to 500 cal. a BP colder climate conditions persisted. The transition from warmer to colder climate conditions taking place around 850 cal. a BP may be associated with the transition from the Medieval Warm Period to the Little Ice Age. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号