首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
典型石漠化区不同种植年限桃树下土壤微量元素变化特征   总被引:1,自引:1,他引:0  
为明确石漠化地区不同种植年限果树根系表层土壤微量元素的变化特征,选择桂林市恭城县大岭山村同一农户的不同种植年限桃树(2 a、10 a、20 a)各5棵,以撂荒地(0 a)作为对照,对土壤微量元素铁、铜、锰、锌、硼的全量及有效态变化规律进行研究,并探讨理化性质与微量元素有效态的相关性。结果表明:(1)研究区除全铁的变异系数小于10%,铜、锰、锌、硼的全量及有效态均为中等变异;(2)土壤铁、铜、锌、硼全量种植0~2 a间均增加(P<0.05),种植2~10 a则下降(P<0.05),种植10~20 a间铁元素随年限增加而下降(P<0.05),其余研究元素全量均表现为增加趋势;(3)有效铁、锌、硼在种植0~10 a先增加(P<0.05),种植10~20 a均有明显下降趋势,有效锰在0~20 a间趋势则与其他元素相反,并且与全量锰保持一致性,因此种植10 a是果树土壤微量元素变化的转折点;(4)不同种植年限果树根系土壤性质的改变(pH值、有机质、全磷的变化)是微量元素有效态含量随时间变化的主要内在原因,而人为活动如施加有机肥是外在原因。在种植10 a后,应重视微肥的施加。   相似文献   

2.
A total of 64 sediment samples were collected along a stretch of about 988 km of the Trans-Amazonian Federal Highway, between Marabá and Itaituba, Pará State, in order to characterize the distribution of metals and trace elements. Due to the lithological and geological diversity along this stretch of the Amazon, the study region was divided in three distinct tracks. Statistical data analysis (Spearman correlation and Principal Factor Analysis) shows strong signature and predominance of regional rocks chemistry, such as mafic-ultramafic-bearing elements (Ni and Cr) and hydrothermalism-bearing elements such as Cu and Pb. Enrichment factors were calculated for three different normalizer agents: 1) Fe and Mn, representing the Fe and Mn (hydr)oxides, 2) Al representing clay minerals, and 3) organic matter (OM). The Fe and Mn (hydr)oxides showed to be the most proficient metal carrier among the geological matrices, likely due to the larger lithological diversity. On the other hand, OM positively correlated to trace element distribution.  相似文献   

3.
岩溶区原始林土壤微量元素含量与有效特征   总被引:1,自引:0,他引:1  
以贵州茂兰、海南俄贤岭、云南西双版纳勐远仙境国家公园和绿石林自然保护区内具有典型岩溶地貌特征的原始林为研究对象,调查岩溶原始林地土壤4种微量元素(Cu、Fe、Mn、Zn)全量和有效态含量。结果表明,岩溶区原始林地土壤全铜、全铁、全锰和全锌含量分别为0.03~0.08 g·kg-1、35.6~57.4 g·kg-1、0.74~5.83 g·kg-1和0.13~1.03 g·kg-1,均超过国家背景值的平均值。研究区土壤Cu、Fe、Mn和Zn有效态含量分别为1.09~3.51 mg·kg-1、11.6~62.9 mg·kg-1、48.3~173 mg·kg-1和4.17~37.6 mg·kg-1,根据土壤微量元素有效态评价标准,4种微量元素有效态含量均处于较高水平。原始林地土壤Cu、Fe、Mn和Zn的活化率均值分别为5.48%、0.10%、6.44%、4.19%,表明岩溶区森林土壤Cu、Mn和Zn供素水平高,Fe供素水平低。4个原始林地土壤微量元素有效性综合指数(Et)为茂兰(21.0)>绿石林(12.8)≈勐远(12.7)>俄贤岭(5.15),且Et与全氮和有机碳含量呈显著的正相关。   相似文献   

4.
《Applied Geochemistry》2002,17(9):1171-1181
Sediment cores were collected from 20 lakes from the Muskoka region of Ontario, Canada, to study vertical changes in trace metal concentrations with depth and the distribution of metals amongst humic material, amorphous and crystalline Fe and Mn oxides, insoluble organics/sulphides, and silicates. Based on their total concentrations, trace elements displayed different degrees of affinity for the organic fraction (represented by organic C) and the mineral fraction (represented by Al). Certain elements (Hg, As, Sb, Pb, Cd, and Zn) displayed a positive correlation with organic C, a negative correlation with Al, and enrichment in surface sediments (with enrichment factors ranging from 2 to 24). Detailed speciation studies revealed that these elements were associated mainly with humic material and to a lesser extent with oxides in surface sediments. Other elements (Al, Cr, Co, Fe, and Mn) displayed a negative correlation with organic C, a positive correlation with Al, and no consistent enrichment in their total concentration at the surface. The speciation study revealed that metals of the latter group were mainly associated with the silicate fraction in both surface and deep sediments. This study shows that relative affinities for organic and mineral fractions play an important role in the distribution of trace metals during burial and diagenesis, and hence in the shape of their vertical profiles.  相似文献   

5.
《Applied Geochemistry》2000,15(5):551-566
Teflon strips were used in-situ in the bottom sediments at two sites in the Swan River Estuary to collect diagenetic Fe–Mn oxyhydroxides and monitor monthly changes in their morphology and trace element geochemistry. This study demonstrates that substantial concentrations of trace elements accumulate at the redox front during the formation of diagenetic Fe–Mn oxyhydroxides. It is likely that the Fe–Mn oxyhydroxides initially nucleate and grow on the Teflon strips via bacterial activity. Trace element geochemistry of the diagenetic Fe–Mn oxyhydroxides is influenced by changes in the supply of trace elements from either the bottom sediments and/or water column or changes in the physico-chemical status of bottom and porewaters. If sufficient diagenetic Fe–Mn oxyhydroxides are preserved in the upper layer(s) of the bottom sediment it is possible that diagenetic (secondary) trace element enrichment profiles may be produced which modify the historical input of natural or anthropogenic trace element sources. Alternatively, partial or complete dissolution of the diagenetic Fe–Mn oxyhydroxides in response to temporal changes in the redox status of the bottom sediment may lead to a substantial underestimate of trace element fluxes in historical bottom sediment profiles. This study highlights that considerable care must be taken when interpreting short- to long-term geochemical profiles in bottom sediments due to the possible occurrence of rapid, seasonally mediated diagenetic processes.  相似文献   

6.
For the first time based on determination of the geochemical occurrence forms of trace metals the main processes that control the accumulation of elements (Al, Mn, Fe, Mo, Cr, Ni, Co, Cu, Pb, Cd, and As) in the recent sediment cores from the White Sea and Barents Sea were quantified. A high-resolution study of the bottom sediment cores allowed us to estimate the short-term variations (periodicity of 10–15 years) in the accumulation of metals to reveal the periods of maximum Fe and Mn contents in the amorphous hydroxides fraction, which serve as effective adsorbents of the trace elements majority, including heavy metals. The Mn/Fe ratio in the amorphous hydroxides phase can be considered as geochemical indicators of early diagenesis.  相似文献   

7.
The chemical status of major and trace elements (TE) in various boreal small rivers and watershed has been investigated along a 1500-km transect of NW Russia. Samples were filtered in the field through a progressively decreasing pore size (5, 0.8 and 0.22 μm; 100, 10, and 1 kD) using a frontal filtration technique. All major and trace elements and organic carbon (OC) were measured in filtrates and ultrafiltrates. Most rivers exhibit high concentration of dissolved iron (0.2–4 mg/l), OC (10–30 mg/l) and significant amounts of trace elements usually considered as immobile in weathering processes (Ti, Zr, Th, Al, Ga, Y, REE, V, Pb). In (ultra)filtrates, Fe and OC are poorly correlated: iron concentration gradually decreases upon filtration from 5 μm to 1 kD whereas the major part of OC is concentrated in the <1–10 kD fraction. This reveals the presence of two pools of colloids composed of organic-rich and Fe-rich particles. According to their behavior during filtration and association with these two types of colloids, three groups of elements can be distinguished: (i) species that are not affected by ultrafiltration and are present in the form of true dissolved inorganic species (Ca, Mg, Li, Na, K, Sr, Ba, Rb, Cs, Si, B, As, Sb, Mo) or weak organic complexes (Ca, Mg, Sr, Ba), (ii) elements present in the fraction smaller than 1–10 kD prone to form inorganic or organic complexes (Mn, Co, Ni, Zn, Cu, Cd, and, for some rivers, Pb, Cr, Y, HREE, U), and (iii) elements strongly associated with colloidal iron in all ultrafiltrates (P, Al, Ga, REE, Pb, V, Cr, W, Ti, Ge, Zr, Th, U). Based on size fractionation results and taking into account the nominal pore size for membranes, an estimation of the effective surface area of Fe colloids was performed. Although the total amount of available surface sites on iron colloids (i.e., 1–10 μM) is enough to accommodate the nanomolar concentrations of dissolved trace elements, very poor correlation between TE and surface sites concentrations was observed in filtrates and ultrafiltrates. This strongly suggests a preferential transport of TE as coprecipitates with iron oxy(hydr)oxides. These colloids can be formed on redox boundaries by precipitation of Fe(III) from inflowing Fe(II)/TE-rich anoxic ground waters when they meet well-oxygenated surface waters. Dissolved organic matter stabilizes these colloids and prevents their aggregation and coagulation. Estuarine behavior of several trace elements was studied for two small iron- and organic-rich rivers. While Si, Sr, Ba, Rb, and Cs show a clear conservative behavior during mixing of freshwaters with the White sea, Al, Pb and REE are scavenged with iron during coagulation of Fe hydroxide colloids.  相似文献   

8.
The behaviour of trace elements (Al, As, Cd, Co, Cr,Cu, Fe, Mn, Ni, V, Zn) was studied in five humus-richstreams (dissolved organic carbon = 14–40 mg/L)impacted by acid sulphate soils developed in marinesulphide-bearing fine-grained sediments. During heavyrainfalls in autumn, on which the study focusses, themetals Al, Cd, Co, Cu, Mn, Ni and Zn are extensivelyleached from these acidic soils (pH = 2.5–4.5), whileAs, Cr, Fe and V are not leached more strongly fromthis soil type than from areas of till and peat. Aspeciation experiment, based on anion and cationexchange of the stream waters in the field, showedthat (1) the metals Al, Cd, Co, Mn, Ni and Zn aretransported in the streams mainly as inorganiccations, (2) Cu exists mainly in cationic form but isalso to a significant extent associated with dissolvedhumic substances, (3) Fe occurs mainly in the anionicfraction explained by organic coating on colloidal Feoxyhydoxides and (4) the hydrochemistry of As, Cr andV is complex as these elements may exist in severalunquantified anionic fractions and to a minor extentin cationic species/forms. Whereas the proportion ofacid sulphate soils in the catchments had a largeimpact on concentrations levels of several elements inthe stream waters, these soils did not have a largeaffect on the speciation of elements in water.  相似文献   

9.
Following a catastrophic flash flood in July 1996, as much as 50 cm of post-glacial clays were deposited in less than 2 days in the upper reaches of the Saguenay Fjord (Quebec, Canada), disrupting the normal sedimentation and diagenetic regimes. We report detailed geochemical analyses of sediments (porosity, Eh, organic and inorganic carbon, Fe and Mn reactive solid phases, and acid volatile sulfide) and porewaters (salinity, dissolved organic carbon (DOC), Fe(II), Mn(II), nitrate, ammonium, and sulfate) for seven stations located in the Saguenay Fjord. Three of these (SAG-05, SAG-09, and SAG-30) were visited in 1996 and once per year thereafter to document the chemical evolution of the sediment toward a new steady state. The flood deposits contain less organic carbon and more inorganic carbon than the indigenous fjord sediments. The flood deposit modified the distribution patterns of reactive Mn and Fe as a result of the reduction of Mn and Fe oxides delivered with the deposit and those concentrated at the now buried former sediment-water interface. Most of the Mn(II) migrated to the new sediment-water interface, where a Mn-rich layer was formed. In contrast, much of the Fe(II) was precipitated as sulfides and remained trapped at or close to the old interface. A nitrate peak developed in the porewater at the old sediment-water interface, possibly because of the oxidation of ammonia by Mn oxides. The distributions of porewater DOC within the flood deposit correlate with the distributions of dissolved Mn(II) and Fe(II), suggesting that adsorbed DOC was released when metal oxides were reduced.  相似文献   

10.
Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11–4.92), and Fe concentration (1.31–5.55 mg L?1) and Mn concentration (1.90–5.71 mg L?1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weathering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids significantly accelerated the dissolution of Fe and Mn; in addition, when the concentration of OA reached 25 mmol L?1, the concentrations of Fe, and Mn were 1.14–67.08 and 1.11–2.32 times as high as those in 0.5 mmol L?1 OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.  相似文献   

11.
《Applied Geochemistry》1998,13(2):213-233
Porewater concentration profiles were determined for Fe, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn), sulfide, SO4 and pH in two Canadian Shield lakes (Chevreuil and Clearwater). Profiles of pyrite, sedimentary trace elements associated with pyrite and AVS were also obtained at the same sites. Thermodynamic calculations are used, for the anoxic porewaters where sulfide was measured, to characterize diagenetic processes involving sulfide and trace elements and to illustrate the importance of sulfide, and possibly polysulfides and thiols, in binding trace elements. The ion activity products (IAP) of Fe sulfide agree with the solubility products (Ks) of greigite or mackinawite. For Co, Ni and Zn, IAP values are close to the KS values of their sulfide precipitates; for Cu and Pb, IAP/Ks indicate large oversaturations, which can be explained by the presence of other ligands (not measured) such as polysulfides (Cu) and thiols (Pb). Cobalt, Cu, Ni and Zn porewater profiles generally display a decrease in concentration with increasing ΣH2S, as expected for transition metals, whereas Cd, Pb and Zn show an increase (mobilisation). The results suggest that removal of trace elements from anoxic porewaters occurs by coprecipitation (As and Mn) with FeS(s) and/or adsorption (As and Mn) on FeS(s), and by formation of discrete solid sulfides (Cd, Cu, Ni, Pb, Zn and Co). Reactive Fe is extensively sulfidized (51–65%) in both lakes, mostly as pyrite, but also as AVS. Similarities between As, Co, Cu and Ni to Fe ratios in pyrite and their corresponding mean diffusive flux ratios suggest that pyrite is an important sink at depth for these trace elements. High molar ratios of trace elements to Fe in pyrite from Clearwater Lake correspond chronologically to the onset of smelting activities. AVS can be an important reservoir of reactive As, Cd and Ni and, to a lesser extent, of Co, Cu and Pb. Overall, the trace elements most extensively sulfidized were Ni, Cd and As (maximum of 100%, 81% and 49% of the reactive fraction, respectively), whereas Co, Cu, Mn, Pb and Zn were only moderately sulfidized (11–16%).  相似文献   

12.
Three sediment cores were collected in the Scheldt, Lys and Spiere canals, which drain a highly populated and industrialized area in Western Europe. The speciation and the distribution of trace metals in pore waters and sediment particles were assessed through a combination of computational and experimental techniques. The concentrations of dissolved major and trace elements (anions, cations, sulfides, dissolved organic C, Cd, Co, Fe, Mn, Ni, Pb and Zn) were used to calculate the thermodynamic equilibrium speciation in pore waters and to evaluate the saturation of minerals (Visual Minteq software). A sequential extraction procedure was applied on anoxic sediment particles in order to assess the main host phases of trace elements. Manganese was the most labile metal in pore waters and was mainly associated with carbonates in particles. In contrast, a weak affinity of Cd, Co, Ni, Pb and Zn with carbonates was established because: (1) a systematic under-saturation was noticed in pore waters and (2) less than 10% of these elements were extracted in the exchangeable and carbonate sedimentary fraction. In the studied anoxic sediments, the mobility and the lability of trace metals, apart from Mn, seemed to be controlled through the competition between sulfidic and organic ligands. In particular, the necessity of taking into account organic matter in the modelling of thermodynamic equilibrium was demonstrated for Cd, Ni, Zn and Pb, the latter element exhibiting the strongest affinity with humic substances. Consequently, dissolved organic matter could favour the stabilization of trace metals in the liquid phase. Conversely, sulfide minerals played a key role in the scavenging of trace metals in sediment particles. Finally, similar trace metal lability rankings were obtained for the liquid and solid phases.  相似文献   

13.
Surficial sediment samples were collected at 47 stations in Little Traverse Bay, Lake Michigan, to determine the geochemical associations between certain rare earth elements (REE's) and trace metals. Each sample was analyzed for carbonate carbon, organic carbon, grain size, and the elements Al, Ca, Ce, Co, Cr, Eu, Fe, Hf, La, and Mn. Two distinct Ce subpopulatins were identified by graphical analysis, and an R-mode factor analysis was applied to data from the “enriched” Ce subpopulation (18 samples). Results show that the REE's and trace metals are primarily enriched in the authigenic phase of these sediments. Partial correlation analyses indicate that the REE's are primarily associated with hydrous Fe oxides relative to organic matter in this phase. The ratio of Ce/La concentrations increased markedly from the bay margins to the central trough of the bay, indicating that Ce, similar to Fe, exhibits a variable oxidation state in the authigenic phase of nearshore fine-grained sediments. The results of the present study suggest that the REE's and trace metals behave coherently in the authigenic phase of recent lacustrine sediments, and the REE's may be useful as geochemical tracers to differentiate between trace metal enrichments in surface sediments as a result of diagenesis and pollution loadings.  相似文献   

14.
Major, trace and organic elements of a laterite profile developed on Neogene basalts in northern Hainan Island, South China were reported in this paper, the aim of which was to investigate element mobilization and re-distribution during extreme weathering. The results indicate that most of the elements have been mobilized and transferred downwards along the profile by aqueous solution. Organic matter (OM) can significantly improve the transport of insoluble elements. Among all the elements, Th is the least mobile. As for the general conservative elements during incipient chemical weathering, such as Fe, Ti, Zr, Hf, Nb and Ta, the removals are up to 20-40% in the upper profile. However, these elements behave as conservatively as Th in the lower profile. In the middle profile, oxic environment occurs, accompanied with significant OM decomposition. The Mn and Ce transferred downward are readily oxidized into insoluble Mn(IV) and Ce(IV) and precipitate in the oxic front. Important OM decomposition decreases the capacity of transfer of insoluble elements in aqueous solution. Consequently, Al significantly precipitates in the oxic front, and REEs, with the exception of Ce, precipitate largely in the OM-depleted layers. Co and U are also concentrated in the oxic front in association with Mn and Ce, respectively. However, Cr shows a negative correlation with Mn because its response to redox condition changes is reversed from that of Mn. Mn oxides/hydroxides, Fe oxides/hydroxides and secondary phosphate minerals other than clay minerals are potential hosts for REEs except for Ce in the profile; REEs with high concentrations in the profile seem closely associated with Mn oxides/hydroxides. Remarkable, highly correlated, Ce and Gd anomalies are observed in the profile. Ce anomalies are caused by Ce precipitation in the oxic environment and successive decomposition of organic matter. Gd anomalies are likely to have resulted from lower stability constants of Gd-OM complexes compared to those of neighboring REEs. The overall elemental behaviors in this profile suggest that organic matter plays a very important role in the mobilization and re-distribution of the elements during extreme weathering.  相似文献   

15.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

16.
Several small Mn–Fe oxide and Mn-oxide ore bodies associated with Precambrian Iron Ore Group of rocks are located within Koira-Noamundi province of north Orissa, India. These deposits are classified into in situ (stratiform), remobilized (stratabound) and reworked categories based on their field disposition. Volcaniclastic/terrigenous shale in large geographic extension is associated with these ore bodies.The in situ ore bodies are characterised by cryptomelane-, romanechite- and hematite-dominating minerals, low Mn/Fe ratio (1.1) and relatively lower abundance of trace (1500–2500 ppm) constituents. In such type of deposits the stratigraphic conformity of oxides with the tuffaceous shale suggests precipitation of Mn and Fe at a time of decreased volcaniclastic/terrigenous contribution. The minor and trace elements were removed from solution by adsorption rather than by precipitation. Both Mn and Fe oxides when precipitated adsorb trace elements strongly but the partitioning of elements takes place during diagenesis. The inter-elemental relationship reveals that Cu, Co, Ni, Pb and Zn were adsorbed on precipitating hydrous Mn oxides and form manganates. Some of these elements probably get desorbed from Fe oxide because of their inability to substitute for Fe3+ in the lattice of its oxide. However, P, V, As and Mo were less partitioned and retained in Fe-oxide phase. Positive correlation between Al2O3 and SiO2, MgO, Na2O, TiO2 and some traces like Li, Nb, Sc, Y, Zr, Th and U points to their contribution through volcaniclastic/terrigenous detritus of both mafic and acidic composition.The remobilized ore bodies are developed in a later stage through dissolution, remobilization and reprecipitation of Mn oxides in favorable structural weak planes under supergene environment. Increase in average Mn/Fe ratio (8) and trace content (5000–8500 ppm) by 5–2.5 orders of magnitude, respectively, or more above its abundance in adjoining/underlying protore is characteristic of these deposits. The newly formed Mn ores constituting lithiophorite, cryptomelane/romanechite and goethite get quantitatively enriched in traces like Cu, Co, Ni, Pb and Zn. Positive correlation between Mn, Li, Co and Zn is due to the formation of mineral of lithiophorite–chalcophanite group during redistribution and reconcentration of Mn oxide. P and V, which were present in Fe oxide, also get dissolved and reprecipitate with Fe oxyhydroxide in these ores. Some other elements like Y, Th and U show positive relation with Fe. This is probably due to leaching of these elements during chemical weathering of associated shale and getting re-adsorbed in Fe-oxyhydroxide phase.However, under oxidizing environment selective cations like Ba, K, etc. resorb from Mn-structure, resulting in the development of pyrolusite (Mn/Fe>20). In such transformation, trace metals from pyrolusitic structure expels out, resulting thereby in a considerable reduction in total trace value (<3000 ppm).The reworked ore bodies are allochthonous in nature and developed through a number of stages during terrain evolution and lateritisation. Secondary processes such as reworking of pre-existing crust; solution and remobilization; precipitation and cementation and transport, etc. are responsible for their development. Such deposits are usually very low in Mn/Fe ratio (3) and trace content (<2000 ppm).  相似文献   

17.
The Mullipallam creek in Muthupet mangroves region is the only E-W trending coastal strip in the SE coast of India and is very important, as the mangrove acts as a barrier to natural diasters. Natural, anthropogenic signals and accumulation of elements were made by collecting sediment samples at various depths in a core. All sediments were analyzed for carbonates (CaCO3), organic carbon (OC), major (Si, Al, Fe, Na, K, Ca, Mg, P), and trace (Mn, Cr, Cu, Ni, Co, Pb, Zn). Normalization with Al values has been done for all the major and trace elements and enrichment factors have been calculated. The calculated enrichment factors and comparison indicate that the trace metals (especially Pb) are enriched mainly due to the external (anthropogenic) activities in the land as well as in the coastal zone (Palk Strait).  相似文献   

18.
This paper presents materials on the chemical and mineralogical composition of Fe-Mn mineralization in island arcs (Kurile, Nampo, Mariana, New Britain, New Hebrides, and Kermadec) in the western part of the Pacific Ocean. The mineralization was proved to be of hydrothermal and/or hydrogenic genesis. The former is produced by hydrothermal Fe and Mn oxi-hydroxides that cement volcanic-terrigenous material in sediments. Some Fe oxi-hydroxides can be derived via the halmyrolysis of volcaniclastic material. Crusts of this stage are characterized by fairly low concentrations of trace and rare elements, and their REE composition is inherited from the volcanic-terrigenous material. The minerals of the Mn oxi-hydroxides are todorokite and “Ca-birnessite.” The Mn/Fe ratio increases away from the discharge sites of the hydrothermal solutions. The hydrogenic Fe-Mn crusts are characterized by high concentrations of trace and minor elements of both the Mn group (Co, Ni, Tl, and Mo) and the Fe group (REE, Y, and Th). The hydrogenic crusts consist of Fe-vernadite and Mn-feroxyhyte. Some of the hydrothermal crusts originally had a hydrothermal genesis. The first data were obtained on crust B30-72-10 from the Macauley Seamount in the Kermadec island arc, which contained anomalously high concentrations of Co (2587 ppm) and other Mn-related trace elements in the absence of hydrogeneous Fe oxi-hydroxides.  相似文献   

19.
邱楠生  汪为孝  谢明举 《地质学报》2006,80(11):1760-1769
根据实测的压力和镜质组反射率数据讨论了沉积盆地中镜质组反射率异常的物理化学环境.认为异常压力并不是导致镜质组反射率受到抑制的唯一原因;沉积盆地中有机质镜质组反射率异常的原因除与有机质本身的性质有关外,还与其所处的温度、压力等物理环境及其周围的流体性质、无机元素(矿物)的组成等化学因素密切相关.通过对钻井异常高压带和正常压力带剖面密集取样进行的微量元素与镜质组反射率分析表明,偏酸性、低盐度的流体介质有利于有机质镜质组反射率的增加;通过分析泥岩中的某些元素丰度与镜质组反射率的对应关系,初步确定钙、锰、锶、硼、钡、磷等元素对镜质组反射率的演化有抑制作用,而铁、钴、锌、镍、铷等元素对有机质的热演化具有催化作用.本研究对于有机质成熟校正、油气资源评价和利用成熟度古温标恢复盆地热历史都具有意义.  相似文献   

20.
Analytical data for the Atlantis II and Discovery deeps in the Red Sea are given. The data were collected in March and June 1976 during the 22nd cruise of R/V Akademik Kurchatov in the Indian Ocean. On board analyses were performed of density, chlorinity, Mg, Ca, Sr and trace elements. The salinity, calculated from the density, is related to the chlorinity by S = 1.67 Cl + 4.02. The Ca-salinity relation is linear for both deeps showing that intermediate waters are formed by mixing of the brines with Red Sea water (RSDW). The hot brine (62°C) in the Atlantis II deep contains approx. 80 mg/kg of Fe and Mn while the warm brine (45°C) in the Discovery deep has a very low concentration of Fe and approx. 50 mg/kg of Mn. Mixing of RSDW containing 2 ml/l of oxygen with the anoxic deep brines causes precipitation of hydrous Mn(IV) and Fe(III) hydroxides. These two processes occur at different depths in the two deeps due to the formation of the warm (48–49°) intermediate brine in the Atlantis II deep. The oxidation-hydrolysis reactions proposed are supported by alkalinity-depth profiles and measurements of pH. These reactions also explain most of the trace element distributions and the composition of the SiO2-Fe(III) hydroxide slurry recovered by some water samplers in the Atlantis II deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号