首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is an attempt to clarify the subsurface geological settings at Abu Darag area in the N part of the Gulf of Suez through the analysis of the available seismic data. The time contour maps of three different reflectors (Top Kareem, Within Rudeis and Top Nukhul) present in this area were constructed and several structures were detected. Generally, the area is considered as a tilted fault block dipping in NE-SW direction and it is dissected by different faults. Major and minor NW-SE faults are the strongest trend in the area while other fault trends are with very weak magnitude and limited extent. All these fault trends restrict between them some high and low areas. Also, two geo-seismic sections were built to confirm the structural prospects on Top Nukhul time contour map.  相似文献   

2.
The Miocene sediments at Abu Shaar (Red Sea, Egypt) include both carbonates and detrital silicates whose distribution is closely related to a pre-Miocene basement fault-block. As such, they demonstrate the relationships between local distensional tectonics and sedimentation. Because of the vertical bathymetric relief of the basement block, the carbonates include both a spectacular talus and massive platform facies. In spite of the presence of scattered corals, sedimentation is not truly reefal as deposits consist essentially of muddy bioclastic and silicate sands. The most typical ecological elements are numerous spectacular stromatolites. Rigidity of the sedimentary mass was mainly induced by early marine cementation. Carbonate-siliciclastic transitions on and around the Abu Shaar platform were determined mainly by basement morphology and related pre-Miocene tectonics.  相似文献   

3.
《Applied Geochemistry》1996,11(3):471-479
Thermal waters with discharge temperatures ranging from 32 to 70°C are being discharged along the Gulf of Suez (Egypt) from springs and shallow artesian wells. A comprehensive chemical and isotopic study of these waters supports previous suggestions that the waters are paleometeoric waters from the Nubian sandstone aquifer. The chemical and isotopic compositions of solutes indicate possible contributions from Tertiary sedimentary aquifer rocks and windblown deposits (marine aerosols and/or evaporite dust) in the recharge area. There is no chemical or isotopic evidence for mixing with Red Sea water. Gas effervescence from the Hammam Faraoun thermal water contains about 4% CH413C = −32.6‰) and 0.03% He having an isotopic ratio consistent with a mixture of crustal and magmatic He (3He/4He = 0.26 Re). Geothermometers for the thermal waters indicate maximum equilibration temperatures near 100°C. The waters could have been heated by percolation to a depth of several km along the regional geothermal gradient.  相似文献   

4.
International Journal of Earth Sciences - The wedge-shaped St. Paul block, western side of the Gulf of Suez rift, exposes Late Cretaceous beds that are folded into transverse folds. The block is...  相似文献   

5.
Geotectonics - The quality agents for P- and S-waves (Qp and Qs) were estimated for earthquakes that recorded by nine seismic stations (DHA, NUB, TR1, TR2, KAT, SH2, GRB, HRG and SFG) from the...  相似文献   

6.
Gulf of Suez consists mainly of three tectonic provinces that are separated by two accommodation zones. The southern edge of the gulf is bordered by N–S faults which mark the transition between the shallow water, Suez Basin and the deep northern Red Sea Basin. The sensitivity of coda Q measurements with respect to geological differences in the crust is demonstrated in three regions with a large variety of tectonic and geologic properties. The estimation of coda Q (Qc) is performed for 370 local earthquakes recorded at 12 digital seismic stations during the period from 2000 to 2007. The magnitudes of the earthquakes between 1.5 and ~4.5 have been used at central frequencies 1.5, 3, 6, 9, 12, 15, 18, and 24 Hz through three lapse time windows 10, 20, 30 s starting at once and twice the time of the primary S wave from the origin time. The time domain coda decay method of the single isotropic scattering model is employed to calculate frequency-dependent values of coda Q. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [Qc(f) = Qo(f/fo]. The observed coda Q indicates that the area is seismically and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different regions to observe the effect of different tectonic province. The average frequency-dependent estimated relations of Qc vary from 65f1.1 to 96f0.9 at 10 to 30 s window length, respectively. The decreasing value of the frequency parameter with increasing lapse time shows that the crust acquires homogeneity with depth. The variation of Qc with the variations in the geologic and tectonic properties of the crust was investigated. The frequency exponent η might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Gulf of Suez, the obtained value of η?=?0.8?±?0.011, which might indicate a low level of tectonic activity compared with η?=?1.1?±?0.005 and 1.3?±?0.009 for the central and southern regions of the gulf.  相似文献   

7.
This paper deals with a new occurrence of sedimentary natroalunite (Na, K) Al3, (SO4)2 (OH)6, in the caprock of a diapir of middle Miocene evaporites from the Gemsa peninsula, located on the southwestern coast of the Gulf of Suez. Field observations, petrographic examinations and stable isotope (18O, 34S) measurements on the associated authigenic phases of anhydrite and native sulphur argue for the genesis of natroalunite at a rather high temperature (i.e. higher than 75°C) by the reaction of clay minerals with sulphuric acid. The sulphuric acid was produced by the concatenation of the following reactions which are thought to increase the diagenetic temperature: bacterial reduction of sulphate evaporites, and oxidation of hydrogen sulphide to native sulphur and sulphate where aerated conditions prevailed in the pore fluids. These changes through time from reducing to oxidizing diagenetic conditions were controlled by the progressive uplift of the diapiric system toward the land surface so that the draining ground waters became progressively oxygenated.  相似文献   

8.
Ras Fanar field is one of the largest oil-bearing carbonate reservoirs in the Gulf of Suez. The field produces from the Middle Miocene Nullipore carbonate reservoir, which consists mainly of algal-rich dolomite and dolomitic limestone rocks, and range in thickness between 400 and 980 ft. All porosity types within the Nullipore rocks have been modified by diagenetic processes such as dolomitization, leaching, and cementation; hence, the difficulty arise in the accurate determination of certain petrophysical parameters, such as porosity and permeability, using logging data only. In this study, artificial neural networks (ANN) are used to estimate and predict the most important petrophysical parameters of Nullipore reservoir based on well logging data and available core plug analyses. The different petrophysical parameters are first calculated from conventional logging and measured core analyses. It is found that pore spaces are uniform all over the reservoirs (17–23%), while hydrocarbon content constitutes more than 55% and represented mainly by oil with little saturations of secondary gasses. A regular regression analysis is carried out over the calculated and measured parameters, especially porosity and permeability. Fair to good correlation (R <65%) is recognized between both types of datasets. A predictive ANN module is applied using a simple forward backpropagation technique using the information gathered from the conventional and measured analyses. The predicted petrophysical parameters are found to be much more accurate if compared with the parameters calculated from conventional logging analyses. The statistics of the predicted parameters relative to the measured data, show lower sum error (<0.17%) and higher correlation coefficient (R >80%) indicating that good matching and correlation is achieved between the measured and predicted parameters. This well-learned artificial neural network can be further applied as a predictive module in other wells in Ras Fanar field where core data are unavailable.  相似文献   

9.
The Sinai Peninsula has a triangular shape between the African and Arabian Plates and is bounded from the western and eastern borders by the Gulf of Suez and Gulf of Aqaba–Dead Sea rift systems, respectively. It is affected by strong and destructive earthquakes (e.g., March 31, 1969 and November 22, 1995) and moderate earthquakes (m b?>?5) throughout its history. After the installation of the Egyptian National Seismic Network (ENSN), a great number of earthquakes has been recorded within and around Sinai. Consequently, the seismogenic source zones and seismotectonic behavior can be clearly identified. Available data, including both historical and instrumental (1900–1997), have been collected from national and international data centers. While the data from 1998 till December 2007 are gathered from ENSN bulletins. The seismogenic source zones that might affect Sinai Peninsula are defined more precisely in this work depending on the distribution of earthquakes, seismicity rate (a value), b value, and fault plane solution of the major earthquakes. In addition, the type of faults prevailed and characterized these zones. It is concluded that the Gulf of Aqaba zone–Dead Sea transform zone, Gulf of Suez rift zone, Cairo–Suez District zone, and Eastern Mediterranean dislocation zone represent the major effective zones for Sinai. Furthermore, there are two local seismic zones passing through Sinai contributing to the earthquake activities of Sinai, these are the Negev shear zone and Central Sinai fault (Themed fault) zone. The source parameters, a and b values, and the maximum expected moment magnitude have been determined for each of these zones. These results will contribute to a great extent in the seismic hazard assessment and risk mitigation studies for Sinai Peninsula to protect the developmental projects.  相似文献   

10.
The Gulf of Suez is characterized by the presence of many hot springs and deep thermal wells scattered around its coastal areas. So it is considered one of the promised geothermal areas in Egypt. In this study, the main emphasis is to investigate the geothermal potential around the Gulf of Suez using the available logging and geothermometer datasets. The temperature profiles and well logging data of some hot springs and deep wells around or within the coastal area of the Gulf of Suez are used in this study. The temperature profiles are analyzed and some important thermophysical properties are estimated (geothermal gradient, thermal conductivity, heat flow, and specific heat capacity). Such analysis revealed that a medium to high geothermal gradient (22.0–30°C/Km) is given for the Gulf of Suez as a whole, with some spots of much higher gradient in the order of 35.0–44°C/Km (Ras Fanar and Hammam Faraun areas). The compiled thermal plots show that the thick evaporites and rock salt lithology, which is a major constituent in this area, attain the highest thermal conductivity (>3.10 W/m/K) and heat flow (>90 mW/m2) and the lowest specific heat capacity (<0.30 J/kg/K). The available gamma ray and the natural gamma ray spectroscopy logs are used to conduct a radioactive-based heat generation study using the characteristic radioactive nature of some elements like; 238U, 235U, 232Th, and of the isotope of 40K. A good linearity is observed between the heat production (A in microwatt per cubic meter) and the gamma ray (API) along a wide range of datasets (0–150 API) in all wells. The heat production factor increases in the carbonate lithology (up to 3.20?μW/m3) and is proportional to the shale volume. A geothermometer-based study is used to estimate the subsurface formation temperature and heat flow from the geochemical analysis of some water samples collected from the studied hot springs. The estimated thermal parameters are in harmony with the regional thermal regime concluded form logging data. A thermal basin growth study, in relation to the clay diagenesis is conducted concerning the thermal effects that take place with depth giving rise to another clay mineral (illite). Furthermore, a number of 2D thermal–burial history diagrams are constructed for the complied sections of some of the studied areas to show the vertical distribution of the estimated petrothermal properties. A reserve evaluation study is carried out to estimate the economic geothermal capacity of these hot springs to be used as alternative clean source for possible energy production (electricity) and other low-temperature purposes.  相似文献   

11.
The sedimentary pattern of the southern Gulf of Suez, Egypt, especially during the Cenozoic rift stage, was controlled mainly by tectonic activities (subsidence and uplift) and sea level change. The stratigraphic record of the southern Gulf of Suez can be divided into two megasequences: pre-rift and syn-rift. The pre-rift megasequence can be viewed as two distinctive depositional regimes, clastic rocks of continental to braided stream environment during Cambrian and open marine transgression extended from Upper Cretaceous till Eocene. The syn-rift deposits showed a distinctive contrast between the depocenter and peripheral basins. This difference can be shown clearly on the sedimentary sequence of Hilal and Shoab Ali oilfields. The syn-rift megasequence can be differentiated in relation to rift evolution into the following stages: initial rift stage with low subsidence rate, main rift stage with maximum subsidence rate, quiescence stage with the slowest subsidence rate throughout the rift evolution, evaporite stage with restriction conditions, and Pliocene–Recent stage with shallow marine condition.  相似文献   

12.
October Field is one of the most prolific offshore oil fields in the Gulf of Suez of Egypt. It consists of a number of marine platforms and produces oil from different reservoirs of different geological ages from the Lower Cretaceous to the Miocene. The aim of this study was to enhance a seismic-log evaluational procedure to evaluate the Miocene-aged Asl and Hawara Formations which encounter the main hydrocarbon and source rock potentials in the area North of October Oil Field. The well logging data, the borehole seismic data, and the velocity surveys are all used in this study. A number of synthetic seismograms are constructed and interpreted together with the deduced seismic impedance and reflection coefficient data for many wells in the study area. In addition, a comprehensive velocity analysis is performed using the seismic times and the computed average and interval velocities. These seismic-derived parameters are primarily used in recognizing and locating precisely the marl and sand sections of Asl Formation which show low to middle amplitudes. Furthermore, a quantitative well logging analysis is carried out over Asl and Hawara Formations to shed light over their hydrocarbon potentiality. Good oil saturation is exhibited by the Asl sand section which reaches to more than 90% in the southern parts of the study area. The petrophysical characters of this sand are very good in terms of good effective porosity (9% to13%), low shale volume (V sh?<?5%), and high oil saturation (S h?>?85%). The sections of the Asl marl and the Hawara shale on the other hand are considered completely wet. An integrated model making use of the seismic- and log-derived properties is applied over the two studied formations for better understanding the reservoir of interest. Many relations are constructed between velocity, seismic impedance, and the rock pore spaces on one hand and between the velocity, lithology, and fluid content on the other hand. This study revealed that the sand section attains very good oil-bearing potentiality in the study area and proved that the application of an integrated model of the log- and seismic-derived properties led to an enhanced evaluation of the Asl and Hawara Formations, good discrimination between their lithological components besides precise differentiation from the overlying Middle to Late Miocene sections.  相似文献   

13.
The Hammam Faroun has a particular importance due to its geothermal activity which constitutes the main geothermal resource of Egypt. The area is located on the Sinai Peninsula, a subplate bounded by two seismically active structural zones along the Gulf of Suez and Gulf of Aqaba. High-resolution ground-based gravity and magnetic data are available for the entire Hammam Faroun area, acquired as part of a national project to explore for mineral, geothermal, and hydrocarbon resources. Gravity and magnetic data were analyzed using Source Edge Detection and Source Parameter Imaging (SPI) techniques to image subsurface structures. These analyses show that the area is characterized by a set of northwest-striking faults lying parallel to the Gulf of Suez. Orthogonal patterns are also present, possibly related to rifting of the Gulf of Suez. Depth analysis using the SPI method indicates that surface faults extend to 5-km depth. Analysis of potential-field data elucidates the structurally complex subsurface structure of the Hammam Faroun area.  相似文献   

14.
15.
The Gulf of Suez is characterized by the presence of many hydrocarbon-bearing fields including reservoirs ranging in age from the Palaeozoic to the Tertiary. East Morgan oil field is one of the promising oil fields which are located in the southern part of the Gulf of Suez and tapping hydrocarbon deposits and potentials of the Miocene age. The purpose of this work is to evaluate the Miocene sediments of the Asl and Hawara Formations in East Morgan oil field (western sub-basin) through carrying out an integrated petrophysical, seismic structural and sequence stratigraphy study. Quantitative well logging analyses are carried out over Asl and Hawara Formations to throw light over their hydrocarbon potentiality. Good oil saturation is exhibited by the sand sections of Asl Formation, and fair to good are assigned for those of Hawara Formation in the Belayim dip province. On the other hand, a little hydrocarbon saturation is represented by both formations to the south of the study area in the Morgan accommodation zone (MAZ). The estimated petrophysical parameters of Asl reservoir throughout the study area range between 4 % and 10 % for effective porosity, 18 % and 89 % for shale volume and 2 % and 48 % for hydrocarbon saturation. Meanwhile, the ranges of 1–8 %, 20–98 % and 2–32 % are given for Hawara Formation for effective porosity, shale volume and hydrocarbon saturation, respectively. The lateral distribution maps show that the central and the western parts of the MAZ attain the best petrophysical parameters and hydrocarbon potentiality. Seismic facies analysis, structural framework and depositional history of the study area were studied through interpreting the seismic reflection data of 27 seismic profiles. A number of geo-seismic cross sections are constructed and interpreted to investigate the structural setting of the study area and clarify the main structural elements that affect the hydrocarbon bearing reservoirs. A group of simple NW–SE step-like normal faults, parallel to the Clysmic trend, is found cutting through the reservoir rocks at the bottom layers of the section (Rudeis Formation) and extending upwards to overlying layers (Zeit Formation). Some graben- and horst-shaped structures are found and usually bounded by two sets of oppositely dipping normal step-like cross faults. The seismic facies and sequence analysis revealed that the Miocene rocks are subdivided into two major third-order depositional sequences (S1 and S2), separated by two major depositional sequence boundaries (DSB1 and DSB2). The first sequence (S1, Lower–Middle Miocene rocks) is of prime interest, as it encounters the main hydrocarbon reservoirs in the study area (Asl and Hawara Formations that are equivalent to Rudeis Formation). The seismic facies of this sequence are characterized by low to moderate amplitude, discontinuous horizons and bounded by the depositional sequence boundary (DSB1) at the top. The reflection geometry at the cycle boundaries is considered as erosional truncation, toplaps and even concordant along the upper boundary of the cycle. The external form of these sediments is considered as sheet-like and wedge-shaped units. The entrapment of hydrocarbons seems to be of a combined effect of the stratigraphic and structural elements. It appears clear that both of the step-like structural fault system and the lateral variation of facies are the key parameters that control the accumulation of hydrocarbon in this area and in East Morgan field as a whole.  相似文献   

16.
The echinoid fauna from the Miocene sedimentary succession cropping out south Wadi Tweirig, and Wadi Hommath, south Gebel Ataqa, NW Gulf of Suez, has been examined with the aim to known their stratigraphic and paleogeographic distribution. The Miocene succession includes two formations: Sadat Formation, unconformably overlying the middle/upper Eocene rocks at the base and Hommath Formation at the top. Twenty-eight echinoid species (8 regular and 20 irregular) belonging to 18 genera, 13 families, and 7 orders have been identified, systematically described, and illustrated in this work. Eleven species are recorded for the first time from Egypt: ten of these came from the Hommath Formation (Schizechinus cf. serresii Desor (1856), Schizechinus pentagonus Kier 1972, Clypeaster cf. martini des Moulins 1837, Scutella checchiae occidentalis Desio 1934, Scutella melitensis Airaghi 1902, Echinodiscus desori Duncan and Sladen 1883, Echinolampas cf. zeitensis Fourtau 1920, Schizaster lovisatoi Cotteau 1895, Agassizia (Agassizia) powersi Kier 1972, and Hemipatagus ocellatus Defrance (1827)), and one from the Sadat Formation (Clypeaster campanulatus Schlotheim (1820)). The identified fauna shows a strong affinity with the Mediterranean bio-province.  相似文献   

17.
Application of geographic information systems and remote sensing are a powerful tool for the assessment of risk and management of flood hazards. By using these techniques to extract new drainage network with more details to prepare natural hazard maps which may help decision makers and planners to put suitable solutions reducing the impact of these hazards. Ras Sudr city and surrounding area had been attacked by flash floods of Wadi Sudr and Wadi Wardan which are nearly perpendicular to the eastern side of the Gulf of Suez, Egypt, and many infrastructures had destroyed. GIS techniques and remote sensing are used to find the interrelation between the morphometric parameters by using statistical correlation to determine the area under varying flood conditions. The results of morphometric parameters and the new data of last flood which occurred on 17-18th January 2010 indicate that the two basins are threatened by the risk of flash floods and Wadi Wardan is more risky than Wadi Sudr.  相似文献   

18.
Gemsa has been chosen as the site for one of a new generation of power stations along the south-western margin of the Gulf of Suez. This site has been affected by a number of destructive earthquakes (Mw> 5), in addition to large number of earthquakes with magnitudes of less than 5. In this study seismic activities in the region were collected and re-evaluated, and the main earthquake prone zones were identified. It is indicated that this site is affected by the southern Gulf of Suez, northern Red Sea and Gulf of Aqaba source zones. The southern Gulf of Suez source zone is the nearest to the proposed site. The stochastic simulation method has been applied to estimate the Peak GroundAcceleration at the site of the proposed Gemsa power plant. It was noticed that the pseudo-spectral acceleration (PSA) reaches 175 cm/sec2 resulting from the southern Gulf of Suez seismic source. In addition, the response spectrum was conducted with a damping value of 5% of the critical damping, and the predominant period reached 0.1sec at the site. These results should be taken into consideration by civil engineers and decision-makers for designing earthquake resistant structures.  相似文献   

19.
20.
Earthquake focal mechanism solutions from 18 events in the central and northern parts of the Gulf of Suez with local magnitudes ranging from 2.8 to 5.2 and occurring between 1983 and 2004 are used to determine the type of motion and stress pattern of the region. Fault plane solutions show mostly normal component; pure normal faulting mechanisms and normal faulting with a strike-slip component. Only some mechanisms show pure strike-slip faulting. The fault planes strike in NW, WNW, NNE and ENE directions, in conformity with the geologically observed striking faults in the northern and central parts of the gulf. The principal stress orientation is also estimated by inverting the selected focal mechanism solutions. The results show that the northern part of the Gulf is subjected to NE–SW to NNE–SSW extension, with a horizontal σ3 (plunge 3°) and subvertical σ1 (plunge 80°). This means that the horizontal extensional stresses are still present in the central/northern Gulf of Suez.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号