首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
Using methods of molecular biology (PCR and cloning), we studied the diversity of microorganisms in the surface layers of bottom sediments from the bays of Gydan and Yenisei of the Kara Sea, which have different component composition of the pore water and mineralization level. Representatives of the domains Bacteria and Archaea were identified based on the analysis of the 16S rRNA gene fragment nucleotide sequences. The composition of the community of microorganisms in the bottom sediments changed with the changing salinity gradient of the pore waters. The phylogenetic analysis of the nucleotide sequences showed that the composition of the microbial communities in the southern parts of these bays was affected by fresh-water flows from rivers and streams from the lakes within the catchment area, whereas that in the northern parts was influenced by sea waters. The results indicate the presence of bacteria in the bottom sediments that are capable of using a wide range of substrates as a carbon source including hydrocarbons and organochlorine and aromatic compounds. These data can also indicate the presence of different pollutants in the sediments of these areas and the potential ability of bacteria to degrade chemical compounds that enter the waters and bottom sediments of the Kara Sea.  相似文献   

4.
The distribution of structural and functional characteristics of virioplankton in the north of the Ob River estuary and the adjacent Kara Sea shelf (between latitudes 71°44′44″ N and 73°45′24″ N) was studied with consideration of the spatial variations in the number (N B) and productivity (P B) of bacteria and water properties (temperature, salinity, density) by analyzing samples taken in September 2013. The number of plankton viruses (N V), the occurrence of visible infected bacteria cells, virus-induced mortality of bacteria, and virioplankton production in the studied region varied within (214?2917) × 103 particles/mL, 0.3?5.6% of NB, 2.2?64.4% of P B, and (6?17248) × 103 particles/(mL day), respectively. These parameters were the highest in water layers with a temperature of +7.3–7.5°C, salinity of 3.75?5.41 psu, and conventional density (στ) of 2.846?4.144. The number of bacterioplankton was (614?822) × 103 cells/mL, and the N V/N B ratio was 1.1?4.5. A large amount of virus particles were attached to bacterial cells and suspended matter. The data testify to the considerable role of viruses in controlling the number and production of heterotrophic bacterioplankton in the interaction zone of river and sea waters.  相似文献   

5.
The material was collected in the Ob River estuary and over the adjacent shallow Kara Sea shelf between 71°14′0 and 75°33′0N at the end of September 2007. Latitudinal zoning in the phytoplankton distribution was demonstrated; this zoning was determined by the changes in the salinity and concentration of nutrients. Characteristic of the phytocenosis in the southern desalinated zone composed of freshwater species of diatom and green algae were the high population density (1.5 × 106 cells/l), biomass (210 μgC/l), chlorophyll concentration (4.5 μg/l), and uniform distribution in the water column. High primary production (∼40 μgC/l/day) was recorded in the upper 1.5-m layer. The estuarine frontal zone located to the north contained a halocline at a depth of 3–5 m. Freshwater species with low population density (2.5 × 105 cells/l), biomass (24 μgC/l), and chlorophyll concentration (1.5 μg/l) dominated above the halocline. Marine diatom algae, dinoflagellates, and autotrophic flagellates formed a considerable part of the phytocenosis below the halocline; the community characteristics were twofold lower as compared with the upper layer. The maximal values of the primary production (∼10 μgC/l per day) were recorded in the upper 1.5-m layer. The phytocenosis in the seaward zone was formed by marine alga species and was considerably poorer as compared with the frontal zone. The assimilation numbers at the end of the vegetation season in the overall studied area were low, amounting to 0.4–1.0 μgC/μgChl/h in the upper layer and 0.03–0.1 μgC/μgChl/h under the pycnocline.  相似文献   

6.
Lepikhina  P. P.  Basin  A. B.  Kondar  D. V.  Udalov  A. A.  Chikina  M. V.  Mokievsky  V. O. 《Oceanology》2022,62(2):198-206
Oceanology - Macro- and meiobenthos of the Blagopoluchiya Bay (Novaya Zemlya, Kara Sea) have undergone significant changes in their quantitative distribution from 2013 to 2020. During this period,...  相似文献   

7.
Sukhanova  I. N.  Flint  M. V.  Sakharova  E. G.  Fedorov  A. V.  Makkaveev  P. N.  Nedospasov  A. A. 《Oceanology》2020,60(6):748-764
Oceanology - The research is based on the materials collected during cruise 66 of R/V Akademik Mstislav Keldysh in the Yenisei estuary and over the adjacent Kara Sea shelf in the latitudinal range...  相似文献   

8.
Suspended matter (SM) and surface sediments were analysed for polycyclic aromatic hydrocarbons (PAH) throughout the Ob and Yenisei River estuaries and in the Kara Sea in order to evaluate the contamination of Arctic shelves by these two major Siberian rivers. PAH concentrations were extremely low, among the lowest measured up to now in the Arctic region. Particle-associated PAH were in many cases non-detectable. A total PAH maximum value of 3·2ngl − 1was found in surface waters. In surficial sediments, they spanned a range from 24 to 115ngg − 2in the Ob River, from 40 to 131ngg − 2in the Yenisei and from 16 to 94ngg − 2in the Kara Sea. Compositional features revealed a contribution of detrital material eroded from soils of the drainage basins and inputs from airborne pyrolytic PAH emitted at lower latitudes and from industrial complexes in Siberia. Particulate and sedimentary PAH distributions were highly variable both in type and concentration. The Ob and Yenisei estuaries are geographically large features where hydro-dynamical and sedimentary processes are complex. As a consequence, inhomogeneities—in the form of patch-structures—develop and make it difficult to resolve the fate of riverborne constituents based on ship measurements only. Remote sensing in conjunction with oceanographic observations may provide further guidance to study large river systems.  相似文献   

9.
10.
In 1993 and 2007 when the expeditions of the Shirshov Institute of Oceanology were performed in the Kara Sea, a significant part of its aquatic area was occupied by lenses of desalinated water. The fresh-water is supplied by the runoff of the Ob and Yenisei rivers, as well as by meltwaters. The report considers the features of the freshwater chemical transformation in the sea. It is shown that the contribution of meltwaters is small in the highly desalinated lenses (with salinity below 15‰) and the freshwater is supplied by the riverine runoff. It is also shown that, under definite conditions, it is possible to determine the relative shares of the Ob and Yenisei waters using the chemical parameters (the silicon and alkalinity). The data of 1993 when two lenses as such were found in the sea were confirmed; at that, the waters of the Yenisei and Ob rivers were prevailing in the western and northeastern lenses, respectively. In 2007, one lens was found in the treated area of the sea. It is shown that the chemical characteristics of the freshwater in the lens appeared to be sufficiently different from those of the Ob river but similar to the Yenisei river’s characteristics according to the data of 1993. A map of the Ob’s and the Yenisei’s water spreading over the sea’s aquatic area is presented.  相似文献   

11.
Miroshnikov  A. Yu.  Flint  M. V.  Asadulin  En. E.  Komarov  Vl. B. 《Oceanology》2020,60(6):817-830
Oceanology - This paper reports the results of investigations on the radioecological state of bottom sediments of the Ob–Yenisei shoal area and Ob and Yenisei estuaries. Materials were...  相似文献   

12.
The quantitative characteristics and spatial distribution of the meiobenthos in Baidaratskaya Bay (Kara sea) were analyzed based on data collected in 1994–2007. The extremely high density of the meiobenthos (up to 8121 ind/10 cm2, average 2318 ind/10 cm2) makes it possible to consider Baidaratskaya Bay among the most productive Arctic regions. The spatial distribution of the meiobenthos was mostly determined by the depth and sediment properties in the subtidal zone of the bay. The density of meiobenthic organisms decreased with depth, and with the increase of the small sediment fraction. The difference in the meiobenthic densities between the two coastal areas of the bay (Yamal and Jugora CAs) is also revealed. Such difference caused by the combined effects of small-scale and mesoscale factors, mainly by the grain size. Opposite changes in the meio- and macrobenthic biomass with depth is shown.  相似文献   

13.
It has recently been realized that the Arctic undergoes drastic changes, probably resulting from global change induced processes. This acts on the cycling of matter and on biogenic elements in the Arctic Ocean having feedback mechanisms with the global climate, for example by interacting with atmospheric trace gas concentration. A contemporary budget for biogenic elements as well as suspended matter for the Arctic Ocean as a baseline for comparison with effects of further global change is, thus, needed. Available budgets are based on the late Holocene sedimentary record and are therefore quiet different from the present which has already been affected by the intense anthropogenic activity of the last centuries.

We calculated a contemporary suspended matter and organic carbon budget for the Kara Sea utilizing the numerous available data from the recent literature as well as our own data from Russian-German SIRRO (Siberian River Run-off) expeditions. For calculation of the budgets we used a multi-box model to simplify the Kara Sea shelf and estuary system: input was assumed to comprise riverine and eolian input as well as coastal erosion, output was assumed to consist of sedimentation and export to the Arctic Ocean. Exchange with the adjacent seas was considered in our budget, and primary production as well as recycling of organic material was taken into account. According to our calculations, about 18.5 × 106 t yr− 1 of sediments and 0.37 × 106 t yr− 1 of organic carbon are buried in the estuaries, whereas 20.9 × 106 t yr− 1 sediment and 0.31 × 106 t yr− 1 organic carbon are buried on the shelf. Most sources and sinks of our organic carbon budget of the Kara Sea are in the same order of magnitude, making it a region very sensitive to further changes.  相似文献   


14.
The composition and distribution of the macrobenthic communities in the Ob estuary and the adjacent Kara Sea shelf were studied during the 54th cruise of the R/V Akademik Mstislav Keldysh. With the transition from the Ob River’s mouth to the open parts of the sea, the gradual changes of the bottom biocenoses included changes in the leading taxa. Along with the increase in the salinity, the freshwater and brackish water taxa are replaced by related forms adapted to dwelling in seawater. The comparison of the original data with the results of the previous investigations revealed considerable spatial and temporal variations of the bottom communities in the studied area. The main environmental factors determining the fauna distribution in the estuarine zone are discussed. The extensive biocenosis dominated by Portlandia aestuariorum in the Ob estuary was found for the first time.  相似文献   

15.
Udalov  A. A.  Vedenin  A. A.  Chava  A. I.  Schuka  S. A. 《Oceanology》2020,60(5):617-624
Oceanology - The benthic fauna of Sedova Bay (Kara Sea, Novaya Zemlya Archipelago) was studied during two cruises of the R/V Academik Mstislav Keldysh in 2015–2016. Three macrobenthic...  相似文献   

16.
Udalov  A. A.  Vedenin  A. A.  Chava  A. I.  Shchuka  S. A. 《Oceanology》2019,59(6):931-940
Oceanology - The benthic fauna of Oga Bay (Kara Sea, Novaya Zemlya archipelago) was studied in 2015–2016 during the R/V Akademik Mstislav Keldysh expeditions. Five grab stations at depths of...  相似文献   

17.
The phytoplankton community and its distribution were investigated in the eastern branch of the St. Anna Trough and over the adjacent Kara Sea shelf in September 2011 and in August 2014. The spatial and seasonal differences in the phytoplankton structure were analyzed in connection with ice melting and changes in the temperature, salinity, and biogenic regime. Four 4 zones were defined: the Kara Sea shelf, the upper part of the St. Anna Trough slope, the lower part of the St. Anna Trough slope, and its deep part. It was shown that over the Kara Sea shelf where riverine runoff influence was observed, the phytoplankton community differs from the community of the St. Anna Trough in both investigated periods: in September and August. Rearrangement of the phytoplankton community was observed in the frontal zone associated with the upper part of the slope in September of 2011. The main features of this rearrangement were a change in dominant species composition and a 1.5–2-fold increase in the number and biomass of algae. Over the lower part of the slope and deep area of the St. Anna Trough in August 2014 and September 2011, the phytoplankton community was at different successive stages: in August, at the late spring and summer stage, and in September, at the summer–autumn stage.  相似文献   

18.
Benthic fauna in Tsivolki Bay (Novaya Zemlya Archipelago, Kara Sea) has been studied during the voyage of the R/V Professor Shtokman in 2013 and 2014. A peculiar feature of the bay is the presence of the Serp i Molot glacier in its inner part, which determines the extremely high content of suspended particles in the water column. The bay is divided into three parts: the inner part (close to the glacier), the middle basin, and the outer slope. These parts are separated from each other by several rises. Benthic communities changed gradually from the inner part of the bay towards the outer slope. Three communities were described from the data of nine grab stations (26 samples). The apex of the bay is occupied by the depleted community dominated by the isopod Saduria sabini and the bivalve Yoldiella lenticula, which can successfully survive the increased mineral sedimentation. In the middle basin, it is replaced by the transitional community with Ennucula tenuis and Portlandia arctica being the main dominants. Finally, the outer slope is inhabited by the community typical for the open parts of the Kara Sea. It is dominated by Astarte crenata, Ophiacantha bidentata, and Ophiopleura borealis. The main reason for macrobenthic distribution in the studied region is the content of mineral particles in the water column and bottom layers.  相似文献   

19.
The benthic fauna was studied in the Blagopoluchiya Bay (Kara Sea, Novaya Zemlya Archipelago) during an expedition of the R/V Professor Shtokman in autumn 2013. The inner basin of the bay, with depths of around 150 m, is separated from the outer slope of Novaya Zemlya by a shoal 30 m in depth. Six macrobenthic communities were described at nine stations (25 bottom grab samples) taken along a transect from the inner part of the bay to the outer part of the slope. The depths, position on the transect axis and sediment types were the major factors influencing the distribution of the communities. The benthic abundance and biomass in the inner and outer parts of the bay did not differ significantly. The diversity of macrobenthic organisms (α-diversity as the number of species in the sample and β-diversity as the rate of increase in species number in the area) was lower in the inner part of the bay. The intertidal zone (littoral) has been described. The littoral fauna was very poor; it comprised only the amphipods Gammarus setosus inhabiting the near-surface area.  相似文献   

20.
Udalov  A. A.  Vedenin  A. A.  Chava  A. I. 《Oceanology》2018,58(6):838-846
Oceanology - Benthic fauna in Stepovoi Bay (Kara Sea, Novaya Zemlya) was studied during expeditions of the R/V Professor Shtokman in 2013–2014. Sampling was carried out at ten grab stations...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号