首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper is dedicated to the studies of formation mechanisms of additional layers in the equatorial ionosphere carried out using numerical simulations with use of the Global Self-Consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) modified in the part of the solution of the electric field equation in the Earth’s ionosphere. Calculations were preformed for quiet geomagnetic conditions using the MSIS-90 model for the calculation of thermospheric parameters. The obtained spatio-temporal pattern of thermospheric circulation and the variations in the dynamo electric field obtained on its basis make it possible to reproduce the stratification effect of the F2 layer and the appearance of the F3 layer in the equatorial ionosphere due to the action of the nonuniform in height zonal electric field at the geomagnetic equator. On the basis of the earlier presented results of calculations using the modified GSM TIP model, the appearance of a maximum in the vertical profile of the electron density at a height of ∼1000 km formed by H+ ions, which we called the G layer, has been predicted. Numerical simulations showed that this layer is formed by the meridional component of the thermospheric wind and is related to the formation of the nighttime midlatitude maximum at heights of the ionospheric F region.  相似文献   

2.
The behavior of the vertical structure of the ionospheric F2 layer, including the variations in the heights of the maximum and bottom of the layer, its half-thickness, and electron content at some fixed heights during postmidnight enhancements in the electron density at the F2 layer maximum (NmF2), has been studied based on the data of the ionospheric vertical sounding, conducted in Alma-Ata (76°55′ E, 43°15′ N) in 2005–2006. The analysis of the amplitude and phase relationships between the measured parameters of the layer made it possible to qualitatively complete the existing concepts of the mechanisms by which the discussed effect is maintained. It is shown that the accelerated decrease in the electron density of the layer within a short time interval preceding the beginning of the postmidnight increase in NmF2 is governed not only by recombination processes but also by the plasma redistribution over the increasing thickness of the layer. The regularly observed effect of the delay in the moment of reversal in the motion direction of the layer bottom relative to the corresponding moment for the layer maximum made it possible to conclude that the meridional wind asynchronously reverses its direction from the poleward daytime to the equatorward nighttime in the entire layer: the direction changes later with decreasing height.  相似文献   

3.
This work is devoted to a numerical simulation of the equatorial ionosphere, performed using the GSM TIP model completed with a new block for calculating the electric field. It has been indicated that the usage of the wind system calculated according to the MSIS-90 model makes it possible to reproduce the electromagnetic drift velocities at the equator, the effect of the F2-layer stratification, and the appearance of the F3 layer in the equatorial ionosphere. The calculations performed using the modified GSM TIP model made it possible to detect a maximum in the electron density vertical profile at an altitude of ∼1000 km, formed by H+ ions, which we called the G layer. If this layer actually exists, it can be observed during sounding the low-latitude ionosphere from satellites during dark time of day.  相似文献   

4.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

5.
A method for constructing the empirical model of the F2 layer critical frequency (foF2) under magnetically quiet conditions, aimed at analyzing disturbances of any nature, is proposed. This method has been analyzed, and typical features of regular changes in foF2 of the quiet ionosphere and day-to-day foF2 variability are analyzed using the data from Irkutsk and Slough stations as an example. In particular, it has been obtained that this model differs from the international IRI model, and this difference is mainly caused by the fact that the foF2 values in the IRI model do not correspond to quiet conditions. Therefore, this model gives a larger amplitude of the annual and semiannual variations in foF2 than the IRI model. In addition, this model more accurately reproduces the rate of foF2 annual variations at a fixed local time, especially in equinoxes, when foF2 variations can exceed 1 MHz within one month.  相似文献   

6.
The observations of spread F during the nighttime hours (0000–0500 LT) have been statistically analyzed based on data of Tokyo, Akita, Wakkanai, and Yamagawa Japan vertical ionospheric sounding stations for the time intervals a month before and a month after an earthquake. The disturbances in the probability of spread F appearance before an earthquake are revealed against a background of the variations depending on season, solar activity cycle, geomagnetic and solar disturbances. The days with increased solar (Wolf number W > 100) and geomagnetic (ΣK > 30) activity are excluded from the analysis. The spread F effects are considered for more than a hundred earthquakes with magnitude M > 5 and epicenter depth h < 80 km at distances of R < 1000 km from epicenters to the vertical sounding station. An average decrease in the spread F occurrence probability one-two weeks before an earthquake has been revealed using the superposed epoch method (the probability was minimal approximately ten days before the event and then increased until the earthquake onset). Similar results are obtained for all four stations. The reliability of the effect has been estimated. The dependence of the detected effect on the magnitude and distance has been studied.  相似文献   

7.
Using a mathematical modeling method, evolutions of super-small-scale irregularities of electron concentration stretched along the geomagnetic field which could be formed in the magnetized ionospheric plasma of the F2 layer both in a natural way and at an artificial impact on it, in particular, during heating experiments, are studied. Evolution in time of the initially formed irregularities of two types having different shape of the cross sections lateral to the magnetic field (types of direct narrow long band and with a circular cross section) is calculated. It is found that such irregularities during times tens of times shorter than the time of the electron free path time spread out and disappear, accomplishing thereby periodic attenuating oscillations. The period of these oscillations can be equal to both the period of Langmuir oscillations of electrons and the period of cyclotron oscillations of electrons depending on the irregularity type and its initial parameters.  相似文献   

8.
The interrelation between different variants of the method of linear integral representations in the spaces of an arbitrary dimension is considered. The combined approximations of the topography and geopotential fields allows the selection of the optimal parameters of the method in solving a wide range of inverse problems in geophysics and geomorphology, as well as a most thorough use of the a priori information about the elevations and elements of anomalous fields. A method for numerically solving an inverse problem on finding the equivalent, in terms of the external field, mass distributions in the ordinary three-dimensional (3D) space and in the four-dimensional (4D) space is described.  相似文献   

9.
The results of the Cosmos-900 satellite observ ations of plasma density inhomogeneities in the geomagnetic equator region and the longitudinal distributions of the equatorial spread-F, according to the Intercosmos-19 satellite data are presented. It is show n that the dependence of radiosignal propagation in the ionosphere on geophysical parameters is related to development of the electrostatic instability of the inhomo-geneous ionospheric plasma. The longitudinal dependence of the spread-F, can reflect the influence of the energetic sources, located outside the ionospheric layer that scatters a radio pulse, on the ionosphere. The manifestation of the longitudinal effect in the equatorial spread-F, in the Atlantic region can be explained by the influence of the cone instability on the plasma electrodynamics in the South Atlantic geomagnetic anomaly.  相似文献   

10.
The time behavior of the foF2 and hmF2 values at the time moment T(ss + 2 h) 2 h after sunset is considered. It is assumed that at this moment, the horizontal winds in the thermosphere in the strongest way influence hmF2 and, therefore, foF2. It is found that a fairly well pronounced and statistically significant change (trend) is observed for the foF2(ss + 2)/foF2(14) ratio, the sign of the change being different for different stations and even different seasons at the same station. A similar picture is obtained for the value of hmF2(ss + 2). It is shown that a positive correlation between the trends of these two values is observed. This confirms the initial concept of the paper that the foF2 and hmF2 trends are caused by long-term trends in the thermospheric dynamics.  相似文献   

11.
The interrelation between different modifications of the method of linear integral representation is studied. Combined approximations of the topography and geopotential fields enable more refined tuning of the method in solving inverse problems of geophysics and geomorphology and provide a more complete allowance for the a priori information about the surface elevation data and elements of anomalous fields. A technique for finding the numerical solution for the inverse problem for determining the mass distributions equivalent in terms of the external field is presented. The results of the mathematical experiment are discussed.  相似文献   

12.
The dependence of the origination of G conditions in the ionospheric F region on solar and geomagnetic activity has been determined based on numerical simulation of the ionosphere over points 50° N, 105° E and 70° N, 105° E for summer conditions at noon. It has been found that the threshold value of the Kp geomagnetic activity index (Kp S ), beginning from which a G condition can originate, is minimal for a low solar activity level at relatively high latitudes during the recovery phase of a geomagnetic storm. On average, Kp S increases with increasing solar activity, but G conditions can originate at high solar activity levels and be absent at moderate ones for certain Kp values, which was apparently predicted for the first time. These properties of the origination of G conditions do not contradict the known results of a G-condition statistical analysis performed based on the data from the global network of ionospheric stations.  相似文献   

13.
The change in the dependence of the F2-layer critical frequency on its height hmF2 is considered based on two sources of initial data used earlier by the authors. It is found that the slope k of the foF2 dependence on hmF2 systematically decreases from the earlier (“etalon”) period, 1958–1980, to the later periods of 1988–2010, 1998–2010, and 1998–2014. Since the foF2 value depends on the atomic oxygen concentration in the F region much more strongly than hmF2, the found decrease in k confirms the concept of a decrease in the atomic oxygen concentration in the thermosphere with time previously formulated by the authors.  相似文献   

14.
The 40-year period of observations of short-term variations (with characteristic times of up to 1–2 days) in the critical frequency of the ionospheric F2 layer (foF2) is analyzed. The continuous (with a step of 1 h) series of fluctuations (F) of the foF2 critical frequency (with eliminated daily variations) has been calculated using the hourly variations in foF2 at Moscow stations. The fractal dimension (FRH) of the fluctuations, characterizing short-term variations in foF2, has been determined and analyzed on a 30-day interval, using the Higuchi method. It has been established that FRH estimates substantially change in time. The 11-year cycle, which is in antiphase with the solar cycle, and the total annual and semiannual variations, similar to the variations observed in the normalized critical frequency of the E region and in the electron density of the D region, are clearly defined in these changes. Thus, the parameters of fast variations in the ionospheric F2 layer are affected by the phase of the 11-year solar cycle and by the position of the Earth in the orbit or seasonal variations in the atmosphere.  相似文献   

15.
Based on an analysis of data from the European ionospheric stations at subauroral latitudes, it has been found that the main ionospheric trough (MIT) is not characteristic for the monthly median of the F2-layer critical frequency (foF2), at least for low and moderate solar activity. In order to explain this effect, the properties of foF2 in the nocturnal subauroral ionosphere have been additionally studied for low geomagnetic activity, when the MIT localization is known quite reliably. It has been found that at low and moderate solar activity during night hours in winter, the foF2 data from ionospheric stations are often absent in the MIT area. For this reason, a model of the foF2 monthly median, which was constructed from the remaining data of these stations, contains no MIT or a very weakly pronounced MIT.  相似文献   

16.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

17.
The paper addresses estimation of the Hurst exponent for time series of the hourly values of the Dst index for the period from 1957 to 2011. It is found that the Hurst exponent is 0.79–0.94 for yearly intervals and 0.8–1.0 for monthly intervals. Based on R/S graphs, the Dst cycles are identified; they range from 3–4 months to 2.2 years and from 8.5 to 22 years in length. It is shown that a Dst time series can be quite satisfactorily described by an α-stable Levy process.  相似文献   

18.
The bases of the classification method of ionospheric disturbances caused by solar-geomagnetic activity on the basis of the critical frequency of the F2 layer are developed. Data for the total solar activity cycle from 1975 to 1986 were used for studying variations in the critical frequency of the ionospheric F2 layer. The critical frequency was measured at the Moscow ionospheric observatory (55°45′N, 37°37′E) at an interval of 1 h. The gaps in the critical frequency values were filled in by the cubic interpolation method. The solar activity level was estimated using the F10.7 index. The geomagnetic disturbance was determined using the Kp · 10, Dst, and AE indices. According to the developed classification, an index of ionospheric activity is introduced. An analysis of the obtained values of the index for years of solar activity minimum and maximum shows that an increase in the absolute values of the index as a rule occurs at an increase in global geomagnetic and/or auroral disturbances. This fact indicates the sufficient information content of the developed index for characterizing ionospheric activity in any season. Moreover, using the sign of the index, one can form an opinion regarding an increase or decrease in the concentration of the ionospheric F2 layer, because the values of the considered index correspond to real oscillations in the critical frequency of the midlatitude ionosphere.  相似文献   

19.
Morphological analysis of variations of the critical frequency foF2 in the midlatitude ionosphere at various sectors of local time is carried out on the basis of data from ground-based stations of vertical sounding of the ionosphere in the period when during use of the incoherent scatter radar at Saint-Santin an anomalously strong increase in the electric field was observed at heights of the ionospheric F region in the period of enhanced geomagnetic activity (4+ < Kp < 6−). The obtained picture of the space-time distribution of disturbances in foF2 makes it possible to assume that they could be caused by penetration to middle latitudes of the large-scale electric field of the magnetospheric convection directed westward in the nighttime and morning hours and eastward in the noon and evening sectors.  相似文献   

20.
We analyze the anelasticity of the earth using group delays of P-body waves of deep (>200 km) events in the period range 4–32 s for epicentral distances of 5–85 degrees. We show that Time Frequency Analysis (TFA), which is usually applied to very dispersive surface waves, can be applied to the much less dispersive P-body waves to measure frequency-dependent group delays with respect to arrival times predicted from the CMT centroid location and PREM reference model. We find that the measured dispersion is due to: (1) anelasticity (described by the P-wave quality factor Q p ), (2) ambient noise, which results in randomly distributed noise in the dispersion measurements, (3) interference with other phases (triplications, crustal reverberations, conversions at deep mantle boundaries), for which the total dispersion depends on the amplitude and time separation between the different phases, and (4) the source time function, which is dispersive when the wavelet is asymmetrical or contains subevents. These mechanisms yield dispersion ranging in the order of one to 10 seconds with anelasticity responsible for the more modest dispersion. We select 150 seismograms which all have small coda amplitudes extending to ten percent of the main arrival, minimizing the effect of interference. The main P waves have short durations, minimizing effects of the source. We construct a two-layer model of Q p with an interface at 660 km depth and take Q p constant with period. Our data set is too small to solve for a possible frequency dependence of Q p . The upper mantle Q 1 is 476 [299–1176] and the lower mantle Q 2 is 794 [633–1064] (the bracketed numbers indicate the 68 percent confidence range of Q p –1). These values are in-between the AK135 model (Kennett et al., 1995) and the PREM model (Dziewonski and Anderson, 1981) for the lower mantle and confirm results of Warren and Shearer (2000) that the upper mantle is less attenuating than PREM and AK135.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号