首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well-known twice-averaged Hill problem is considered by taking into account the oblateness of the central body. This problem has several integrable cases that have been studied qualitatively by many scientists, beginning with M.L. Lidov and Y. Kozai. However, no rigorous analytical solution can be obtained in these cases due to the complexity of the integrals. This paper is devoted to studying the case where the equatorial plane of the central body coincides with the plane of its orbital motion relative to the perturbing body, while the satellite itself moves in a polar orbit. A more detailed qualitative study is performed, and an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of the eccentricity and pericenter argument of the satellite orbit is proposed. The methodical accuracy for the polar orbits of lunar satellites has been estimated by comparison with the numerical solution of the system.  相似文献   

2.
Two special cases of the problem of the secular perturbations in the orbital elements of a satellite with a negligible mass produced by the joint influence of the oblateness of the central planet and the attraction by its most massive (or main) satellites and the Sun are considered. These cases are among the integrable ones in the general nonintegrable evolution problem. The first case is realized when the plane of the satellite orbit and the rotation axis of the planet lie in its orbital plane. The second case is realized when the plane of the satellite orbit is orthogonal to the line of intersection between the equatorial and orbital planes of the planet. The corresponding particular solutions correspond to those polar satellite orbits for which the main qualitative features of the evolution of the eccentricity and pericenter argument are described here. Families of integral curves have been constructed in the phase plane of these elements for the satellite systems of Jupiter, Saturn, and Uranus.  相似文献   

3.
We compute the normal forms for the Hamiltonian leading to the epicyclic approximations of the (perturbed) Kepler problem in the plane. The Hamiltonian setting corresponds to the dynamics in the Hill synodic system where, by means of the tidal expansion of the potential, the equations of motion take the form of perturbed harmonic oscillators in a rotating frame. In the unperturbed, purely Keplerian case, the post-epicyclic solutions produced with the normal form coincide with those obtained from the expansion of the solution of the Kepler equation. In all cases where the perturbed problem can be cast in autonomous form, the solution is easily obtained as a perturbation series. The generalization to the spatial problem and/or the non-autonomous case is straightforward.  相似文献   

4.
The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit constitute a system of equations that determines the evolution of the particle’s orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar System is also investigated. We consider icy particles with radii from 1 to 10 μm. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 105 to 2 × 106 years, approximately.  相似文献   

5.
The well-known problem of motion in a central field integrable in quadratures is considered. The force function of the problem depends only on the particle distance to the chosen coordinate origin. In the general case of an arbitrary central force, a rigorous analytical solution of the problem cannot be obtained due to the complexity of the integrals. In this paper we propose a semi-analytical method of constructing an approximate solution for the case where the distance varies in a limited range that allows the time dependences of the polar coordinates to be obtained using elliptic functions and integrals. As an example, we consider the model problems of the perturbed motion of hypothetical Jovian and lunar equatorial satellites as well as the problem of the motion of a single star in the principal plane of a galaxy. The methodical accuracy has been estimated by a comparison with the numerical solution.  相似文献   

6.
The microquasar GRO J1655−40 has a black hole with spin angular momentum apparently misaligned to the orbital plane of its companion star. We analytically model the system with a steady-state disc warped by Lense–Thirring precession and find the time-scale for the alignment of the black hole with the binary orbit. We make detailed stellar evolution models so as to estimate the accretion rate and the lifetime of the system in this state. The secondary can be evolving at the end of the main sequence or across the Hertzsprung gap. The mass-transfer rate is typically 50 times higher in the latter case but we find that, in both the cases, the lifetime of the mass-transfer state is at most a few times the alignment time-scale. The fact that the black hole has not yet aligned with the orbital plane is therefore consistent with either model. We conclude that the system may or may not have been counter aligned after its supernova kick but that it is most likely to be close to alignment rather than counter alignment now.  相似文献   

7.
Poincaré formulated a general problem of resonance in the case of a dynamical system which is reducible to one degree of freedom. He introduced the concept of a global solution; in essence, this means that the domain of the solution(s) covers the entire phase plane, comprising regions of libration and circulation. It is the author's opinion that the technique proposed by Poincaré for the construction of a global solution is impractical. Indeed, in §§201 and 211 ofLes méthodes nouvelles de la méchanique céleste, where he describes the passage from shallow resonance to deep resonance, Poincaré asserts an erroneous conclusion. An alternative procedure, which admits secular terms into the determining function and introduces a regularizing function, is outlined. The latter method has been successfully applied to the Ideal Resonance Problem, which is a special case of the more general problem considered by Poincaré, (Garfinkelet al. (1971); Garfinkel (1972).  相似文献   

8.
By the new vector method in a nonlinear setting, a physical libration of the Moon is studied. Using the decomposition method on small parameters we derive the closed system of nine differential equations with terms of the first and second order of smallness. The conclusion is drawn that in the nonlinear case a connection between the librations in a longitude and latitude, though feeble, nevertheless exists; therefore, the physical libration already is impossible to subdivide into independent from each other forms of oscillations, as usually can be done. In the linear approach, ten characteristic frequencies and two special invariants of the problem are found. It is proved that, taking into account nonlinear terms, the invariants are periodic functions of time. Therefore, the stationary solution with zero frequency, formally supposing in the linear theory a resonance, in the nonlinear approach gains only small (proportional to e) periodic oscillations. Near to zero frequency of a resonance there is no, and solution of the nonlinear equations of physical libration is stable. The given nonlinear solution slightly modifies the previously unknown conical precession of the Moon’s spin axis. The character of nonlinear solutions near the basic forcing frequency Ω1, where in the linear approach there are beats, is carefully studied. The average method on fast variables is obtained by the linear system of differential equations with almost periodic coefficients, which describe the evolution of these coefficients in a nonlinear problem. From this follows that the nonlinear components only slightly modify the specified beats; the interior period T ≈ 16.53 days appears 411 times less than the exterior one T ≈ 18.61 Julian years. In particular, with such a period the angle between ecliptic plane and Moon orbit plane also varies. Resonances, on which other researches earlier insisted, are not discovered. As a whole, the nonlinear analysis essentially improves and supplements a linear picture of the physical libration.  相似文献   

9.
A general approach to the solution of the perturbed oscillation problem for celestial bodies is considered. The solution sought describes unperturbed virial oscillations (zero approximation) affected by external perturbing effects. In the general case, these perturbations can be expressed by an arbitrary given function of time, Jacobi's function and its first derivative. Standard methods and modes of perturbation theory are used for solution of the problem.It is shown that while studying the evolution of a celestial body as a dissipative system in the framework of perturbed virial oscillations, the analytical expression for perturbing function can be derived, assuming the celestial body to be an oscillating electrical dipole emitting electromagnetic energy.The general covariant form of Jacobi's equation is derived and its spur is examined. It is shown that the scalar form of Jacobi's equation appears to be more universal than Newton's laws of motion from which it is derived.  相似文献   

10.
11.
The problem triaxial satellite having a plane of dynamical symmetry in the restricted problem of three bodies has been studied. The first integrals are established and the general solution of the problem can be written in quadratures. The results show that the semi-major axis of the satellite orbit and its rotational angular momentum remain unchanged. The singular solution of this problem has been considered and the elements of satellite orbit can be determined.  相似文献   

12.
It is well known that the equations governing the motion of a freely-rotating rigid body possess an exact analytical solution, involving Jacobi's elliptic functions. Andoyer (1923) and Deprit (1967) have shown that the problem may be very usefully reduced to a one-degree-of-freedom Hamiltonian system. When two of the body's principal moments of inertia are very nearly equal, the Hamiltonian system has the same form as the Ideal Resonance Problem. In earlier publications (Jupp, 1969, 1972, 1973), the author has constructed formal power-series solutions of the latter problem.In this article, the general solution of the Ideal Resonance Problem is employed to formulate a second-order formal series solution of the problem of a freely-rotating rigid body which has two of its principal moments of inertia differing by a small quantity. This solution is firstly expressed in terms of the mean elements, and then in terms of the initial conditions. The latter solution is global in nature being applicable over the whole phase plane. It is demonstrated that the exact solution and the second-order formal series solution, written in terms of the initial conditions, differ by terms of at most third order in the small parameter, over the whole domain of possible motions. This serves as an important check on the general results published in the earlier articles.  相似文献   

13.
We introduce a three-dimensional version of Hill’s problem with oblate secondary, determine its equilibrium points and their stability and explore numerically its network of families of simple periodic orbits in the plane, paying special attention to the evolution of this network for increasing oblateness of the secondary. We obtain some interesting results that differentiate this from the classical problem. Among these is the eventual disappearance of the basic family g′ of the classical Hill problem and the existence of out-of-plane equilibrium points and a family of simple-periodic plane orbits non-symmetric with respect to the x-axis.  相似文献   

14.
The magneto-rotational evolution of a neutron star in the massive binary system 4U 2206+54 is discussed in light of the recent discovery of its 5555 s rotational period and its average rate of spin-down. We show that this behavior of the neutron star means that its magnetic field exceeds the quantum mechanical critical limit and it is an accretion magnetar. The system’s evolution is explained by wind driven mass transfer without formation of an accretion disk. The constant character of the x-ray source indicates a steady rate of accretion and raises anew the question of the stability of the boundary of the magnetosphere of a star undergoing spherical accretion. A solution to this problem is also a key to determining the mechanism for the slowing down of the star’s rotation.  相似文献   

15.
Based on the ideas of Lyapunov’s method, we construct a family of symmetric periodic solutions of the Hill problem averaged over the motion of a zero-mass point (a satellite). The low eccentricity of the satellite orbit and the sine of its inclination to the plane of motion of the perturbing body are parameters of the family. We compare the analytical solution with numerical solutions of the averaged evolutionary system and the rigorous (nonaveraged) equations of the restricted circular three-body problem.  相似文献   

16.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We study numerically the photogravitational version of the problem of four bodies, where an infinitesimal particle is moving under the Newtonian gravitational attraction of three bodies which are finite, moving in circles around their center of mass fixed at the origin of the coordinate system, according to the solution of Lagrange where they are always at the vertices of an equilateral triangle. The fourth body does not affect the motion of the three bodies (primaries). We consider that the primary body m 1 is dominant and is a source of radiation while the other two small primaries m 2 and m 3 are equal. In this case (photogravitational) we examine the linear stability of the Lagrange triangle solution. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points on the orbital plane are given. The existence and the number of the collinear and the non-collinear equilibrium points of the problem depends on the mass parameters of the primaries and the radiation factor q 1. Critical masses m 3 and radiation q 1 associated with the existence and the number of the equilibrium points are given. The stability of the relative equilibrium solutions in all cases are also studied. In the last section we investigate the existence and location of the out of orbital plane equilibrium points of the problem. We found that such critical points exist. These points lie in the (x,z) plane in symmetrical positions with respect to (x,y) plane. The stability of these points are also examined.  相似文献   

18.
An analytical study of MHD free-convective and mass-transfer flow past a moving infinite vertical plate, in a rotating fluid, is presented, taking into account the thermal diffusion effects. The solution of the problem is obtained with the help of the Laplace transform technique. Analytical expressions are given for the velocity field and for skin-friction for two different cases, e.g., when the plate is impulsively started, moving on its own plane (case I) and when it is uniformly accelerated (case II). The effects on the velocity field and skin-friction, of the various parameters entering into the problem, are discussed with the help of graphs.  相似文献   

19.
We present here a model for the tidal evolution of an isolated two-body system. Equations are derived, including the dissipation in the planet as in the satellite, in a frequency dependent lag model. The set of differential equations obtained is still valid for large eccentricity, as well as for all inclinations. The reference plane chosen enables us to study the evolution for both the orbital plane and the equatorial plane.The results obtained show the Moon, after having approached the Earth with small variations for the inclination and the eccentricity, exhibits strong increase for the two parameters in the vicinity of the closest approach. In every case the eccentricity tends towards the value 1, whereas the variations of the in clinations are dependent on the magnitude of the dissipation in the satellite.Some qualitative results are also investigated for the final behaviour of satellites such as Triton and the Galilean satellites.  相似文献   

20.
The aim of the present study has been to set the system of differential equations which govern the precession and nutation of self-gravitating globes of compressible viscous fluid, due to the attraction exerted on the rotating configuration by its companion; and to construct their approximate solution which are correct to terms of the second order in small dependent variables of the problem. Section 2 contains an explicit formulation of the effects of viscosity arising in this connection, given exactly as far as the viscosity remains a function of radial distancer only; but irrespective of its magnitude. In Section 3 the equations of motion will be linearized for the case of near-circular orbits and small inclinations andi of the equator of the rotating configuration, and of its orbital plane, to the invariable plane of the system; while in Section 4 further simplifications will be introduced which are legitimate for studies of secular (or long-periodic) motions of the nodes and inclinations. The actual solutions of so simplified a system of equations are constructed in Section 5; and these represent a generalization of the results obtained in our previous investigation (Kopal, 1969) of the inviscid case.The physical significance of the new results will be discussed in the concluding Section 6. It is demonstrated that the axes of rotation of deformable components in close binary systems are initially inclined to the orbital plane, viscous dissipation produced by dynamical tides will tend secularly to rectify their positions until perpendicularity to the orbital plane has been established, and the equators as well as orbit made to coincide with the invariable plane of the system-in a similar manner as other effects of tidal friction are bound eventually to synchronize the velocity of axial rotation with that of orbital revolution in the course of time.An application of the results of the present study to the dynamics of the Earth-Moon system discloses that the observed inclination of 1°.5 of the lunar equator to the ecliptic cannot be regarded as being secularly constant, but representing the present deviations from perpendicularity of oscillatory motion of very long period.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR-09-051-001 with the National Aeronautics and Space Administration. This paper constitutes the Lunar Science Institute Contribution No. 85.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号