首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical properties and distribution of dissolved organic matter in the surface waters of the Kara Sea and bays of Novaya Zemlya archipelago were studied during the 63th cruise of the R/V Akademik Mstislav Keldysh. The fluorescence of dissolved organic matter has been studied over wide excitation (230–550 nm) and emission (240–650 nm) wavelength ranges. Based on the results of fluorescence measurements, we propose a simple technique for estimating the relative content of humic compounds entering the Kara Sea shelf region with Ob and Yenisei river runoff. We have found that the blue shift parameters of the DOM fluorescence are Δ270–310 = 28 ± 2 nm and Δ355–310 = 29 ± 2 nm. The highest contents of humic compounds in surface waters were measured on the transect across the desalinated layer of the Kara Sea, near the continental slope on the transect along the St. Anna Trough, and in the area of Sedova, Oga and Tsivol’ki bays. Traces of labile terrigenous organic matter were found in the region of the Voronin Trough, in the bays of the Severny Island of Novaya Zemlya, as well as in some freshwater reservoirs and ice samples of the archipelago. We established a conservative distribution of dissolved organic matter, whose content in water varied from 1.25 to 8.55 mg/L.  相似文献   

2.
During cruise 54 of the R/V Akademik Mstislav Keldysh to the southwestern Kara Sea (September 6 to October 7, 2007), a large amount of hydrophysical data with unique spatial resolution was obtained on the basis of measurements using different instruments. The analysis of the data gave us the possibility to study the dynamics and hydrological structure of the southwestern Kara Sea basin. The main elements of the general circulation are the following: the Yamal Current, the Eastern Novaya Zemlya Current, and the St. Anna Trough Current. All these currents are topographically controlled; they flow over the bottom slopes along the isobaths. The Yamal Current begins at the Kara Gates Strait and turns to the east as part of the cyclonic circulation. Then, it turns to the north and propagates along the Yamal coast over the 100-m isobath. The Eastern Novaya Zemlya Current (its core is located over the eastern slope of the Novaya Zemlya Trough) flows to the northeast. Near the northern edge of Novaya Zemlya, it encounters the St. Anna Trough Current, separates from the coast, and flows practically to the east merging with the continuation of the Yamal Current. A strong frontal zone is formed in the region where the two currents merge above the threshold that separates the St. Anna Trough from the Novaya Zemlya Trough and divides the warm and saline Arctic waters from the cooler and fresher waters of the southwestern part of the Kara Sea. This threshold, whose depth does not exceed 100–150 m, is a barrier that prevents the spreading of the Barents Sea and Arctic waters to the southwestern part of the Kara Sea basin through the St. Anna Trough.  相似文献   

3.
利用加拿大环极冰间水道系统研究项目,作者对2007年11月24日至2008年1月26日北极群岛阿蒙森湾海域秋冬季节一年冰的物理和光学性质进行了观测研究。结果显示,观测期间的海冰厚度整体在27~108 cm范围内变化,积雪厚度仅为0~6 cm。海冰温度、盐度和密度在冰内的分布特征为:海冰表层最低温度为–22.4℃,底层最高温度为–2.2℃,冰内温度随深度单调增大;盐度变化范围为3.30~11.70,冰内盐度剖面呈现“C”形,即表层和底层盐度较大,而中间层盐度较小;海冰的平均密度略大,为(0.91±0.03)g/cm3。通过观测人造光源在海冰中的透射辐射谱分布,发现一年冰的光谱透射辐射在490 nm和589 nm处呈明显的双峰结构,但随着海冰厚度的增加,双峰结构逐渐减弱,体现了海冰对于不同谱段辐射能衰减作用的差异。在可见光范围内,裸冰和雪覆冰的吸收率最小值出现在490 nm,在443~490 nm范围内二者的吸收率随波长增大而降低,在490~683 nm范围内二者的吸收率随波长增大而升高,但雪覆冰的吸收率在可见光范围内基本保持不变,体现了雪覆冰吸收率的光谱独立性。一年冰的谱衰减系数随波长呈“U”字形分布,紫光和红光谱段的衰减系数较大,中间谱段的衰减系数较小,589 nm波长的衰减系数最小,为1.7 m–1。将谱衰减系数在可见光范围内积分,得到一年冰的积分漫射衰减系数约为2.3 m–1,略高于多年浮冰的漫射衰减系数1.5 m–1。阿蒙森湾一年冰与加拿大海盆北部多年浮冰辐射光学性质的差异,主要源于陆源物质输入引起的海冰内含物组分的改变,而不同组分对光谱的吸收和散射性质不同,进一步导致了光学性质的整体变化。  相似文献   

4.
首先利用中国第八次北极考察队期间获取的走航观测数据分析了环北极考察的海雾特征。接下来利用在北冰洋密集浮冰区海雾加密观测实验期间获取的GPS探空观测数据和NCEP再分析资料,研究了北冰洋浮冰区海雾生成的气象要素特征、边界层特征和大气环流形势特征,发现浮冰区冰雪面之上的冷空气穹丘使得大气易于达到饱和,为北冰洋不同种类海雾的出现造了有利条件。平流雾、辐射雾和蒸汽雾生消的机理和影响期间边界层气象特征各不相同,并且根据特定环流形势对3种海雾进行预报是可行的。  相似文献   

5.
The transportation of rich mineral resources from the Arctic by means of large ice-going bulk and oil carrier, is expected to be a suitable and economical technique. The construction of such large vessels requires the knowledge of various glaciological parameters of the sea ice and their dependence on Arctic environmental conditions. Of particular interest on the small scale are the strength, elasticity, and metal to ice friction characteristics, on a larger geophysical scale relevant parameters are the ice stress, pressure, and movement rates and the relation of these parameters to the temperature and salinity of the ice and to the wind field and the ocean current. Furthermore electrical and electromagnetical properties of the ice are relevant to the navigation in ice covered waters by the aid of remote sensing techniques.The German shipyard A.G. Weser in Bremen initiated in 1972 an expedition to the Canadian Arctic to study all relevant physical properties at one location and at the same time to comprehend the whole glaciological regime. The expedition was a cooperative effort between Brook University, St. Catherines (Canada) and the University of Münster (W. Germany). The field measurements were carried out in May and June 1972 on the sea ice between Pond Inlet (Northern Baffin Island) and Bylot Island, N.W.T. This article sumarizes the essential results and presents a synthesis of all the results.  相似文献   

6.
Kongsfjorden is a typical fjord on the edge of the ice cap of the Arctic Svalbard-Barents Sea. Its inner bay is connected with a modern glacier front along the direction of the fjord axis with a significant gradient change in the parameters of hydrology, sedimentation, and biology. In summer, ice and snow melt-water and floating ice collapse continuously and thus transport the weathering products on the surrounding land into the sea. Thus Kongsfjorden is regards as a natural laboratory for the study of unique sedimentation in polar fjords under modern glacial-sea water conditions. In this study, fifty-two surface sediments were collected in Kongsfjorden for clay mineral analysis to study the sediment source and sediment-transport process. Our results indicate that clay minerals in the surface sediments from Kongsfjorden are mainly composed of illite, chlorite, and kaolinite, and no smectite is found. Rocks from different periods exposed extensively in the surrounding areas of Kongsfjorden provide an important material basis for clay minerals in the Kongsfjorden. Kaolinite may be mainly derived from the fluvial deposits, weathered from reddish sandstones and conglomerates during the Carboniferous Period.Illite is mainly derived from Proterozoic low-grade and medium-grade metamorphic phyllite, mica schist, and gneiss. While chlorite is mainly from Proterozoic low-grade metamorphic phyllite and mica schist. In the direction from the fluvio-glacial estuary to the sea of the glacier front of Kongsfjorden, illite increase gradually,and the content of kaolinite declines gradually. However, the change pattern of chlorite is insignificant, which may be related to the provenance. Kongsfjorden detritus is mainly transported by the fluvio-glacial streams and icebergs into the sea and deposited in the inner bay. Coarse sediments are rapidly deposited in the glacier front,estuary, and near-shore areas. Clay fraction begins to deposit significantly by 200–400 m after flowing into the sea,which due to the crystal behavior of clay minerals, hydrodynamic condition and flocculation. Kaolinite and chlorite on the south of the bay near the Blomstrandhalv?ya Island is mainly affected by ice-rafted detritus and thus can reveal the trajectory of transportation by the floating ice while entering the sea.  相似文献   

7.
During cruise 65 of the R/V Akademik Mstislav Keldysh in the Kara Sea, three transects were executed: one eastwards from the Novaya Zemlya Archipelago and two in the St. Anna and Voronin troughs. It was noted that the continental runoff affected the entire surveyed aquatic area, even at the northern extremity of the Novaya Zemlya Archipelago. The transect along the St. Anna Trough showed the presence of a slope frontal zone overlaid at the surface by a desalinated layer. The Voronin Trough was characterized by sliding of slope waters. The hydrochemical parameters show that the surveys were carried out during a recession of biological activity of the waters and that the peak bloom was over by that time. The hydrochemical structure of waters conformed to early autumn conditions, but before the beginning of intense cooling of surface waters.  相似文献   

8.
基于Icepack一维海冰柱模式,以2014年中国第6次北极科学考察长期冰站ICE06的3个融池的辐射参量和气象参量的连续观测作为大气强迫数据,对融池反照率及相关参量进行了模拟。本文引入观测的融池深度及海冰厚度作为初始条件,通过考虑融池覆盖率的作用,改进了平整冰融池参数化方案中海冰干舷的计算,修正了冰上可允许的最大融池深度,成功实现了对融池参数变化的模拟;同时,还修正了入射辐射分量比例系数与对应反照率分量权重系数不一致的问题。标准试验中,模拟的3个融池的反照率与观测结果之间的平均误差分别为0.01、0.05和0.13;入射辐射比例的敏感性试验结果表明,当可见光辐射比例增大8%时,融池反照率的模拟结果增大了6%~8%;融池表面再冻结试验的结果显示,当再冻结冰层厚度小于2 cm时,模拟冰面反照率的增加不足0.006,由此引起的表面能量收支减少了约1.1 W/m2。本文研究指出,准确的入射辐射比例对于改善北极海冰反照率模拟是必要的;并指出目前模式仍存在融池表面再冻结参数化、热收支计算、表面吹雪效应等有待解决的问题。  相似文献   

9.
The benthic fauna was studied in the Blagopoluchiya Bay (Kara Sea, Novaya Zemlya Archipelago) during an expedition of the R/V Professor Shtokman in autumn 2013. The inner basin of the bay, with depths of around 150 m, is separated from the outer slope of Novaya Zemlya by a shoal 30 m in depth. Six macrobenthic communities were described at nine stations (25 bottom grab samples) taken along a transect from the inner part of the bay to the outer part of the slope. The depths, position on the transect axis and sediment types were the major factors influencing the distribution of the communities. The benthic abundance and biomass in the inner and outer parts of the bay did not differ significantly. The diversity of macrobenthic organisms (α-diversity as the number of species in the sample and β-diversity as the rate of increase in species number in the area) was lower in the inner part of the bay. The intertidal zone (littoral) has been described. The littoral fauna was very poor; it comprised only the amphipods Gammarus setosus inhabiting the near-surface area.  相似文献   

10.
Halokinesis causes a dynamic structural evolution with the development of faults and fractures, which can act as either preferential fluid pathways or barriers. Reconstructing reactive fluid flow in salt dome settings remains a challenge. This contribution presents for the first time a spatial distribution map of diagenetic phases in a salt dome in northern Oman. Our study establishes a clear link between structural evolution and fluid flow leading to the formation of diagenetic products (barite and calcite) in the salt dome roof strata. Extensive formation of diagenetic products occurs along NNE-SSW to NE-SW faults and fractures, which initiated during the Santonian (Late Cretaceous) and were reactivated in the Miocene, but not along the E-W fault, which was generated during Early Paleocene time. We propose that the diagenetic products formed by mixing of a warm (100 °C) saline (17 wt% NaCl eq.) 87Sr enriched (87Sr/86Sr: 0.71023) fluid with colder (35 °C) meteoric fluid during Miocene to Pleistocene. The stable sulphur and strontium isotope composition and fluid inclusion data indicate that a saline fluid, with sulphate source derived from the Ara Group evaporite and Haima Supergroup layers, is the source for barite formation at about 100 °C, predominantly at fault conjunctions and minor faults away from the main graben structure in the dome. In the Miocene, the saline fluid probably ascended along a halokinesis-related fault due to fluid overpressure (due to the rising salt and impermeable layers in the overlying stratigraphic sequence), and triggered the formation of barite due to mixing with barium-rich fluids, accompanied by a drop in temperature. Subsequently, evolving salt doming with associated fault activity and erosion of the Jebel allows progressively more input of colder meteoric fluids, which mix with the saline warmer fluid, as derived from stable isotope data measured in the progressively younger barite-associated calcite, fault zone calcite and macro-columnar calcite. The reconstructed mixing model indicates a 50/50 to 90/10 meteoric/saline fluid mixing ratio for the formation of fault zone calcite, and a 10 times higher concentration of carbon in the saline fluid end member compared to the meteoric fluid end member. The presented mixing model of salt-derived fluids with meteoric fluids is suggested to be a general model applicable to structural diagenetic evolution of salt domes world wide.  相似文献   

11.
Sea ice growth and consolidation play a significant role in heat and momentum exchange between the atmosphere and the ocean. However, few in situ observations of sea ice kinematics have been reported owing to difficulties of deployment of buoys in the marginal ice zone (MIZ). To investigate the characteristics of sea ice kinematics from MIZ to packed ice zone (PIZ), eight drifting buoys designed by Taiyuan University of Technology were deployed in the open water at the ice edge of the Canadian Basin. Sea ice near the buoy constantly increased as the buoy drifted, and the kinematics of the buoy changed as the buoy was frozen into the ice. This process can be determined using sea ice concentration, sea skin temperature, and drift speed of buoy together. Sea ice concentration data showed that buoys entered the PIZ in mid-October as the ice grew and consolidated around the buoys, with high amplitude, high frequency buoy motions almost ceasing. Our results confirmed that good correlation coefficient in monthly scale between buoy drift and the wind only happened in the ice zone. The correlation coefficient between buoys and wind was below 0.3 while the buoys were in open water. As buoys entered the ice zone, the buoy speed was normally distributed at wind speeds above 6 m/s. The buoy drifted mainly to the right of the wind within 45° at wind speeds above 8 m/s. During further consolidation of the ice in MIZ, the direct forcing on the ice through winds will be lessened. The correlation coefficient value increased to 0.9 in November, and gradually decreased to 0.7 in April.  相似文献   

12.
Over the past decades, sea ice in the polar regions has been significantly affecting local and even hemispheric climate through a positive ice albedo feedback mechanism. The role of fast ice, as opposed to drift ice, has not been well-studied due to its relatively small coverage over the earth. In this paper, the optical properties and surface energy balance of land fast ice in spring are studied using in situ observations in Barrow, Alaska. The results show that the albedo of the fast ice varied between 0.57 and 0.85 while the transmittance increased from 1.3×10?3 to 4.1×10?3 during the observation period. Snowfall and air temperature affected the albedo and absorbance of sea ice, but the transmittance had no obvious relationship with precipitation or snow cover. Net solar shortwave radiation contributes to the surface energy balance with a positive 99.2% of the incident flux, with sensible heat flux for the remaining 0.8%. Meanwhile, the ice surface loses energy through the net longwave radiation by 18.7% of the total emission, while the latent heat flux accounts for only 0.1%. Heat conduction is also an important factor in the overall energy budget of sea ice, contributing 81.2% of the energy loss. Results of the radiative transfer model reveal that the spectral transmittance of the fast ice is determined by the thickness of snow and sea ice as well as the amount of inclusions. As major inclusions, the ice biota and particulates have a significant influence on the magnitude and distribution of the spectral transmittance. Based on the radiative transfer model, concentrations of chlorophyll and particulate in the fast ice are estimated at 5.51 mg/m2 and 95.79 g/m2, which are typical values in the spring in Barrow.  相似文献   

13.
High-resolution (3.5 kHz and multi-channel) seismic profiles and piston cores were collected from Maxwell Bay and its tributary embayment, Marian Cove, in the South Shetland Islands, Antarctica, during the Korea Antarctic Research Program (1992/93 and 1995/96) to elucidate the glaciomarine sedimentation processes and recent glacial history of the area. Seismic data from Maxwell Bay reveal a rugged bay margin and flattened basin floor covered with well-stratified hemipelagic muds. On the base-of-slope, acoustically transparent debris flows occur, indicating downslope resedimentation of glaciomarine sediments. Despite the subpolar and ice-proximal settings of Marian Cove, the seafloor is highly rugged with a thin sediment drape, suggesting that much of the area has been recently eroded by glaciers. Sediment cores from the cove penetrated three distinct fining-upward lithofacies: (1) basal till in the lower part of the core, accumulated just seaward of the grounding line of the tidewater glacier; (2) interlaminated sand and mud in the middle part, deposited in ice-proximal zone by a combination of episodic subglacial meltwater inflow and iceberg dumping; and (3) pebbly mud in the upper part, deposited in ice-distal zone by both surface meltwater plume and ice-rafting from the glacier front. A reconstruction of the glacial history of these areas since the late glacial maximum shows an ice sheet filling Maxwell Bay in late Wisconsin time and grounding of the tidewater glacier in Marian Cove until about 1300 yr BP.  相似文献   

14.
A combination of δ~(18)O and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008.The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members.The fractions of total river water,including the Arctic and Pacific river water,were high in the upper 50 m and decreased with depth as well as increasing latitude.In contrast,the fraction of Pacific river water increased gradually with depth but decreased toward north.The inventory of total river water in the Canada Basin was higher than other arctic seas,indicating that Canada Basin was a main storage region for river water in the Arctic Ocean.The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m.As a result,the inventories of Pacific river water were higher than those of Arctic river water,demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin.Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted.The fractions of total river water,Arctic river water,Pacific river water increased northward to the north of 82°N,indicating an additional source of river water in the permanent ice zone of the northern Canada Basin.A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift.The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin,while it extended to 125 m in the northern Canada Basin.The inventory of seaice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone,attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.  相似文献   

15.
The present extent of European ice coasts, their spatial changes in the past 50 years and the velocities of ice flow in marginal parts of tidewater glaciers were determined and mapped at a regional scale using space-borne image data, both optical and radar. The methods of satellite photogrammetry and radar interferometry provided efficient solutions to the integral estimation of ice-coast dynamics in the Franz Josef Land, Novaya Zemlya and Svalbard archipelagos. Studies revealed significant degradation of the ice coasts (–7.7% by length) compared to the situation represented in the available maps. The results obtained in the laboratory were verified during several field campaigns.  相似文献   

16.
A coupled ocean-ice-wave model is used to study ice-edge jet and eddy genesis during surface gravity wave dissipation in a frazil-pancake ice zone. With observational data from the Beaufort Sea, possible wave dissipation processes are evaluated using sensitivity experiments. As wave energy dissipated, energy was transferred into ice floe through radiation stress. Later, energy was in turn transferred into current through ocean-ice interfacial stress. Since most of the wave energy is dissipated at the ice edge, ice-edge jets, which contained strong horizontal shear, appeared both in the ice zone and the ocean. Meanwhile, the wave propagation direction determines the velocity partition in the along-ice-edge and cross-ice-edge directions, which in turn determines the strength of the along-ice-edge jet and cross-ice-edge velocity. The momentum applied in the along-ice-edge(cross-ice-edge)direction increased(decreased) with larger incident angle, which is favorable condition for producing stronger mesoscale eddies, vice versa. The dissipation rate increases(decreases) with larger(smaller) wavenumber, which enhances(reduces) the jet strength and the strength of the mesoscale eddy. The strong along-ice-edge jet may extend to a deep layer(> 200 m). If the water depth is too shallow(e.g., 80 m), the jet may be largely dampened by bottom drag, and no visible mesoscale eddies are found. The results suggest that the bathymetry and incident wavenumber(magnitude and propagation direction) are important for wave-driven current and mesoscale eddy genesis.  相似文献   

17.
Abstract

Intra and inter-annual variations in the sea ice thickness are highly sensitive indicators of climatic variations undergoing in the earth’s atmosphere and oceans. This paper describes the method of estimating sea ice thickness using radar waveforms data acquired by SARAL/Altika mission during its drifting orbit phase from July 2016 onwards yielding spatially dense data coverage. Based on statistical analysis of return echoes, classification of the surface has been carried out in three different types, viz. floe, lead and mixed. Time delay correction methods were suitably selected and implemented to make corrections in altimetric range measurements and thereby freeboard. By assuming hydrostatic equilibrium, freeboard data were converted into sea ice thickness. Results show that sea ice thickness varies from 4 to 5?m near ice shelves and 1 to 2.5?m in the marginal sea ice regions. Freeboard and sea ice thickness estimates were also validated using NASA’s Operation Ice Bridge (OIB) datasets. Freeboard measurements show very high correlation (0.97) having RMSE of 0.13. Overestimation of approximately 1–2?m observed in the sea ice thickness, which could be attributed to distance between AltiKa footprint and OIB locations. Moreover, sensitivity analysis shows that snow depth and snow density over sea ice play crucial role in the estimation of sea ice thickness.  相似文献   

18.
During the 54th cruise of the R/V Akademik Mstislav Keldysh the macrobenthos of the Novaya Zemlya Trough was studied using a Sigsby trawl along the submeridional transect near 75°30′N latitude at a depth range from 68 to 362 m. In total, 140 species of bottom animals were found. The relative role of the taxons was assessed using three indices: the number, biomass, and energy flow. Similarity indices were used for the comparison of the samples. The new material greatly contributes to the data on the composition of the fauna and the structure of the communities of the studied region. It was revealed that small scyphozoid polyps and sipunculoids play an important role in the trough’s community. The presence of the community dominated by Ophiocten sericeum (with the important role of small bivalves) was revealed for the first time not only at the eastern by also at the western slope of the Novaya Zemlya Trough. The sharpest changes in the composition and structure of the bottom community were confined to the zone of the transition from the trough floor to the slope. These changes are determined by the specificity of the macrorelief (of the floor and slope), the composition of the ground (soft brown silts abound in rhizopods and dense gray silts with an admixture of pebbles), and possibly by the hydrodynamic processes near the bottom.  相似文献   

19.
北极地区不同冰龄的海冰厚度变化研究   总被引:1,自引:0,他引:1  
In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite(ICESat)-based results show a thickness reduction over perennial sea ice(ice that survives at least one melt season with an age of no less than 2 year) up to approximately 0.5–1.0 m and 0.6–0.8 m(depending on ice age) during the investigated winter and autumn ICESat periods, respectively. Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)-based results provide a view of a continued thickness reduction over the past four decades. Compared to 1980 s, there is a clear thickness drop of roughly 0.50 m in 2010 s for perennial ice. This overall decrease in sea ice thickness can be in part attributed to the amplified warming climate in north latitudes. Besides, we figure out that strongly anomalous southerly summer surface winds may play an important role in prompting the thickness decline in perennial ice zone through transporting heat deposited in open water(primarily via albedo feedback) in Eurasian sector deep into a broader sea ice regime in central Arctic Ocean. This heat source is responsible for enhanced ice bottom melting, leading to further reduction in ice thickness.  相似文献   

20.
利用美国冰雪中心(NSIDC)高分辨率海冰密集度等多种数据,定义了北极高密集度冰区(High concentration ice region:HCIR)海冰变化指数,在此基础上研究了1989—2017年HCIR海冰多尺度变化特征及其极端低值事件的可能形成原因。结果表明:北极HCIR海冰密集度具有显著的单峰型季节变化特征,4月密集度最高,9月密集度最低,年较差达17.70%,兼有夏季融冰期短、冬季结冰期长且持续稳定的特点。HCIR海冰存在显著的年际年代际变化,在2007年发生了年代际转折以后,海冰变化指数的年际变化幅度和频次明显加强,且在2016、2012、2007、2011、2008和2010年依次出现海冰密集度极端降低事件;2016年9月初HCIR海冰密集度达到历史最低值,接近50%。对HCIR海冰密集度极端低值事件的统计研究表明,29年间共出现874天(次)极端低值事件,约占总频次的8%;空间上海冰密集度的降低主要出现在沿HCIR边界线一带,存在巴伦支海-喀拉海北缘的斯瓦尔巴群岛-北地群岛和东西伯利亚-波弗特海两个中心区域,该空间分布与气旋式大气环流引起的北冰洋Ekman漂流的辐散分布相一致。这表明HCIR海冰密集度的极端降低与极涡的动力作用有关,同时风场对海冰的动力辐散作用还会引起HCIR开阔水域的扩大,进一步加强海冰反照率的正反馈机制,使得热力和动力作用耦合起来共同影响HCIR海冰的加速融化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号