首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimates of mixing on the South China Sea shelf   总被引:3,自引:3,他引:0  
1 Introduction The outer shelf of the South China Sea is a di- verse environment characterized by sharp changes in bottom topography (Wang et al., 2002). Internal wave and diapycnal mixing may be a vital mechanism con- trolling the distribution of physical water properties, nutrient fluxes, and concentrations of particulate mat- ter. Therefore, the research on diapycnal mixing on the outer shelf in the South China Sea is of great impor- tance to explore the level and variability of the abov…  相似文献   

2.
A numerical study using a 3-D nonhydrostatic model has been applied to baroclinic processes generated by the K 1 tidal flow in and around the Kuril Straits. The result shows that large-amplitude unsteady lee waves are generated and cause intense diapycnal mixing all along the Kuril Island Chain to levels of a maximum diapycnal diffusivity exceeding 103 cm2s−1. Significant water transformation by the vigorous mixing in shallow regions produces the distinct density and potential vorticity (PV) fronts along the Island Chain. The pinched-off eddies that arise and move away from the fronts have the ability to transport a large amount of mixed water (∼14 Sv) to the offshore regions, roughly half being directed to the North Pacific. These features are consistent with recent satellite imagery and in-situ observations, suggesting that diapycnal mixing within the vicinity of the Kuril Islands has a greater impact than was previously supposed on the Okhotsk Sea and the North Pacific. To examine this influence of tidal processes at the Kurils on circulations in the neighboring two basins, another numerical experiment was conducted using an ocean general circulation model with inclusion of tidal mixing along the islands, which gives a better representation of the Okhotsk Sea Mode Water than in the case without the tidal mixing. This is mainly attributed to the added effect of a significant upward salt flux into the surface layer due to tidal mixing in the Kuril Straits, which is subsequently transported to the interior region of the Okhotsk Sea. With a saline flux into the surface layer, cooling in winter in the northern part of the Okhotsk Sea can produce heavier water and thus enhance subduction, which is capable of reproducing a realistic Okhotsk Sea Mode Water. The associated low PV flux from the Kuril Straits to the open North Pacific excites the 2nd baroclinic-mode Kelvin and Rossby waves in addition to the 1st mode. Interestingly, the meridional overturning in the North Pacific is strengthened as a result of the dynamical adjustment caused by these waves, leading to a more realistic reproduction of the North Pacific Intermediate Water (NPIW) than in the case without tidal mixing. Accordingly, the joint effect of tidally-induced transport and transformation dominating in the Kuril Straits and subsequent eddy-transport is considered to play an important role in the ventilation of both the Okhotsk Sea and the North Pacific Ocean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The pattern and magnitude of the global ocean overturning circulation is believed to be strongly controlled by the distribution of diapycnal diffusivity below 1000 m depth. Although wind stress fluctuation is a candidate for the major energy sources of diapycnal mixing processes, the global distribution of wind-induced diapycnal diffusivity is still uncertain. It has been believed that internal waves generated by wind stress fluctuations at middle and high latitudes propagate equatorward until their frequency is twice the local inertial frequency and break down via parametric subharmonic instabilities, causing diapycnal mixing. In order to check the proposed scenario, we use a vertically two-dimensional primitive equation model to examine the spatial distribution of “mixing hotspots” caused by wind stress fluctuations. It is shown that most of the wind-induced energy fed into the ocean interior is dissipated within the top 1000 m depth in the wind-forced area and the energy dissipation rate at low latitudes is very small. Consequently, the energy supplied to diapycnal mixing processes below 1000 m depth falls short of the level required to sustain the global ocean overturning circulation.  相似文献   

4.
The modeling results obtained using the original version of the three-dimensional finite-element hydrostatic model QUODDY-4 testify that the spatial distributions of dissipation of baroclinic tidal energy and the related coefficient of diapycnal mixing in the deepwater stratified subdomain of the White Sea (the Basin and Kandalaksha and Dvina bays together) are highly similar to those found for low- and midlatitude oceans. It is in the open part of the sea that their values remain equal to the minimum possible values determined by the molecular kinematic viscosity; at its lateral boundaries (not all boundaries, but only individual segments (sites of mixing)), their values increase. In the shallow homogeneous subdomain of the White Sea, the dissipation of baroclinic tidal energy is considerably larger than in the deep stratified subdomain. Accordingly, the vertical eddy viscosity in the first subdomain is a few orders of magnitude higher than the coefficient of diapycnal mixing in the second subdomain. This is caused by an increased tidal velocity due to reduced depths.  相似文献   

5.
Using an idealized ocean general circulation model, we examine the effect of “mixing hotspots” (localized regions of intense diapycnal mixing) predicted based on internal wave-wave interaction theory (Hibiya et al., 2006) on the meridional overturning circulation of the Pacific Ocean. Although the assumed diapycnal diffusivity in the mixing hotspots is a little larger than the predicted value, the upwelling in the mixing hotspots is not sufficient to balance the deep-water production; out of 17 Sv of the downwelled water along the southern boundary, only 9.2 Sv is found to upwell in the mixing hotspots. The imbalance as much as 7.8 Sv is compensated by entrainment into the surface mixed layer in the vicinity of the downwelling region. As a result, the northward transport of the deep water crossing the equator is limited to 5.5 Sv, much less than estimated from previous current meter moorings and hydrographic surveys. One plausible explanation for this is that the magnitude of the meridional overturning circulation of the Pacific Ocean has been overestimated by these observations. We raise doubts about the validity of the previous ocean general circulation models where diapycnal diffusivity is assigned ad hoc to attain the current magnitude suggested from current meter moorings and hydrographic surveys.  相似文献   

6.
The prevailing view regarding the oceanic meridional overturning cell (MOC) in the Atlantic is that, for a given North Atlantic freshwater flux, it has at least two stable states, one with a large surface (northward) mass flux and the other with a small flux. It has been argued that some abrupt paleoclimatic changes which occurred in the North Atlantic and the regions surrounding it might be related to a shift between these two distinctly different states. Here, we argue that, although the Atlantic MOC can indeed collapse due to a large freshwater flux, the actual ocean does not have multiple states for the same freshwater flux.The two state scenarios has its origin in the analytical box model of Stommel [1961. Thermohaline convection with two stable regimes of flow. Tellus 2, 244–230] and in a series of numerical models starting with that of Bryan [1986. High latitude salinity effects and interhemispheric thermohaline circulations. Nature 303, 301–304]. Using hybrid global analytical models involving both wind and density variations we demonstrate here that the application of Stommel's model to the North Atlantic yields multiple solutions because it considers the origin of the MOC upper limb to be a box whose export of water depends on its temperature and salinity which are not known in advance. When this origination box is replaced by a (observationally supported) Southern Ocean box whose surface water export depends solely on the wind, and when, together with this choice, the diapycnal diffusivities and eddy viscosities are taken to be as small as the usually observed values, the multi-solution scenario disappears and one gets only a single solution.Using the Uvic climate model, we re-confirm earlier results and argue that numerical models have multiple stable states and a resulting hysteresis because of the spuriously high eddy diffusivity that is typically used explicitly or implicitly. This is so because the diffusivity artificially introduces dense-to-light water conversion analogous to Stommel's origination box. Since we used a level model rather than a layered or isopynic model, the small vertical diffusivity limit still retains significant cross-isopycnal mixing due to the horizontal diffusivity, which is not supported by observations. Consequently, while our runs shows a tendency to no-hysteresis in the limit of small cross-isopycnal flow, we cannot actually reach that limit.  相似文献   

7.
《Ocean Modelling》2004,6(3-4):245-263
Astronomical data reveals that approximately 3.5 terawatts (TW) of tidal energy is dissipated in the ocean. Tidal models and satellite altimetry suggest that 1 TW of this energy is converted from the barotropic to internal tides in the deep ocean, predominantly around regions of rough topography such as mid-ocean ridges. A global tidal model is used to compute turbulent energy levels associated with the dissipation of internal tides, and the diapycnal mixing supported by this energy flux is computed using a simple parameterization.The mixing parameterization has been incorporated into a coarse resolution numerical model of the global ocean. This parameterization offers an energetically consistent and practical means of improving the representation of ocean mixing processes in climate models. Novel features of this implementation are that the model explicitly accounts for the tidal energy source for mixing, and that the mixing evolves both spatially and temporally with the model state. At equilibrium, the globally averaged diffusivity profile ranges from 0.3 cm2 s−1 at thermocline depths to 7.7 cm2 s−1 in the abyss with a depth average of 0.9 cm2 s−1, in close agreement with inferences from global balances. Water properties are strongly influenced by the combination of weak mixing in the main thermocline and enhanced mixing in the deep ocean. Climatological comparisons show that the parameterized mixing scheme results in a substantial reduction of temperature/salinity bias relative to model solutions with either a uniform vertical diffusivity of 0.9 cm2 s−1 or a horizontally uniform bottom-intensified arctangent mixing profile. This suggests that spatially varying bottom intensified mixing is an essential component of the balances required for the maintenance of the ocean’s abyssal stratification.  相似文献   

8.
In order to reproduce the diapycnal mixing induced by internal tidal waves (ITWs) in the Arctic Ocean, we use a modified version of the three-dimensional finite-element hydrothermodynamic model QUODDY-4. We found that the average (over the tidal cycle) and integral (by depth) baroclinic tidal energy dissipation rate in individual areas of the Siberian continental shelf and in the straits between the Canadian Arctic archipelago are much higher than in the open ocean and its values on ridges and troughs are qualitatively similar to one another. Moreover, in the area of open-ocean ridges, the baroclinic tidal energy dissipation rate increases as it approaches the bottom, but only in the bottom boundary layer; on the Mid-Atlantic and Hawaii ridges, such an increase is observed within a few hundreds of meters away from the bottom. The average (in area and depth of the open ocean) coefficient of diapycnal mixing defined by the baroclinic tidal energy dissipation rate is higher than the coefficient of molecular kinematic viscosity and only a few times lower than the canonical value of the coefficient of vertical turbulent viscosity, which is used in models of global oceanic circulation. Coupled with the reasoning on the localization of baroclinic tidal energy dissipation, this fact leads to the conclusion that disregarding the contribution that ITW-induced diapycnal mixing makes to the ocean-climate formation is hardly justified.  相似文献   

9.
The spatial and temporal variations of turbulent diapycnal mixing along 18°N in the South China Sea(SCS) are estimated by a fine-scale parameterization method based on strain, which is obtained from CTD measurements in yearly September from 2004 to 2010. The section mean diffusivity can reach ~10~(–4)m~2/s, which is an order of magnitude larger than the value in the open ocean. Both internal tides and wind-generated near-inertial internal waves play an important role in furnishing the diapycnal mixing here. The former dominates the diapycnal mixing in the deep ocean and makes nonnegligible contribution in the upper ocean, leading to enhanced diapycnal mixing throughout the water column over rough topography. In contrast, the influence of the wind-induced nearinertial internal wave is mainly confined to the upper ocean. Over both flat and rough bathymetries, the diapycnal diffusivity has a growth trend from 2005 to 2010 in the upper 700 m, which results from the increase of wind work on the near-inertial motions.  相似文献   

10.
南海北部中深层细结构混合研究   总被引:1,自引:0,他引:1  
基于2007年8月获得的ADCP(声学多普勒流速剖面仪)海流资料和CTD(温盐深剖面仪)水文资料,应用Gregg模型对南海中深层内波尺度的混合进行估计,同时应用Thorpe尺度对中深层存在的垂向翻转及由此引起的混合进一步分析。两种方法均显示,吕宋海峡附近上层400m的耗散率及混合率均强于18°N断面,中深层两个区域的混合率并没有显著区别。这表明吕宋海峡上层400m,可能存在更活跃的内波活动,从而产生更强的内波混合和垂向水团翻转。Gregg模型估计的耗散率和混合率量级分别为10^-9W·kg^-1和10^-6m^2·s^-1。大部分CTD站位在中深层均存在垂向翻转,而且保持较高的发生率,翻转所对应的混合率并不随深度增加而减小。以上南海北部的细结构混合特征增强对南海中深层混合的认识。  相似文献   

11.
Abyssal recipes II: energetics of tidal and wind mixing   总被引:11,自引:0,他引:11  
Without deep mixing, the ocean would turn, within a few thousand years, into a stagnant pool of cold salty water with equilibrium maintained locally by near-surface mixing and with very weak convectively driven surface-intensified circulation. (This result follows from Sandström’s theorem for a fluid heated and cooled at the surface.) In this context we revisit the 1966 “Abyssal Recipes”, which called for a diapycnal diffusivity of 10-4m2/s (1 cgs) to maintain the abyssal stratification against global upwelling associated with 25 Sverdrups of deep water formation. Subsequent microstructure measurements gave a pelagic diffusivity (away from topography) of 10-5 m2/s — a low value confirmed by dye release experiments.A new solution (without restriction to constant coefficients) leads to approximately the same values of global upwelling and diffusivity, but we reinterpret the computed diffusivity as a surrogate for a small number of concentrated sources of buoyancy flux (regions of intense mixing) from which the water masses (but not the turbulence) are exported into the ocean interior. Using the Levitus climatology we find that 2.1 TW (terawatts) are required to maintain the global abyssal density distribution against 30 Sverdrups of deep water formation.The winds and tides are the only possible source of mechanical energy to drive the interior mixing. Tidal dissipation is known from astronomy to equal 3.7 TW (2.50±0.05 TW from M2 alone), but nearly all of this has traditionally been allocated to dissipation in the turbulent bottom boundary layers of marginal seas. However, two recent TOPEX/POSEIDON altimetric estimates combined with dynamical models suggest that 0.6–0.9 TW may be available for abyssal mixing. A recent estimate of wind-driving suggests 1 TW of additional mixing power. All values are very uncertain.A surprising conclusion is that the equator-to-pole heat flux of 2000 TW associated with the meridional overturning circulation would not exist without the comparatively minute mechanical mixing sources. Coupled with the findings that mixing occurs at a few dominant sites, there is a host of questions concerning the maintenance of the present climate state, but also that of paleoclimates and their relation to detailed continental configurations, the history of the Earth–Moon system, and a possible great sensitivity to details of the wind system.  相似文献   

12.
海洋中的跨等密度面湍流混合对于热量和淡水输送、翻转环流以及全球气候变化都有重要影响,理解跨等密度面湍流混合的变化对于改进气候模式模拟和预测大尺度海洋环流的能力具有重要作用.基于细尺度参数化方法,本文利用黑潮延伸体区的一个长期潜标K7观测,对跨等密度面湍流混合的次季节变化进行了分析.结果 表明,在2004年6~9月,30...  相似文献   

13.
It is well known that, within the linear nonviscous equations of tidal dynamics, the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components unlimitedly increase when approaching the critical latitude. It is also known that the linear equations of tidal dynamics with a constant and specified vertical eddy viscosity indicate the occurrence of significant tidal velocity shears in the near-bottom layer, which are responsible for increasing the baroclinic tidal energy dissipation, the turbulent kinetic energy, and the thickness of the bottom boundary layer. The first circumstance—the growth of the amplitudes of oscillations of the barotropic and baroclinic tidal velocity components—is due to the elimination in the original equations of small terms, which are small everywhere except for the critical latitude zone. The second circumstance—the occurrence of significant tidal velocity shears—is due to the fact that internal tidal waves, which induce the dissipation of the baroclinic tidal energy and the diapycnal diffusion, are either not taken into account or described inadequately. It is suggested that diapycnal diffusion can lead to the degeneration (complete or partial) of tidal velocity shears, with all the ensuing consequences. The aforesaid is confirmed by simulation results obtained using the QUODDY-4 high-resolution three-dimensional finite-element hydrostatic model along the 66.25° E section, which passes in the Kara Sea across the critical latitude.  相似文献   

14.
The global diapycnal transport in the ocean interior is one of the significant branches to return the deep water back toward near-surface. However, the amount of the diapycnal transport and the seasonal variations are not determined yet. This paper estimates the dissipation rate and the associated diapycnal transports at 500 m, 750 m and 1 000 m depth throughout the global ocean from the wide-spread Argo profiles, using the finescale parameterizations and classic advection-diff usion balance. The net upwelling is ~5.2±0.81 Sv (Sverdrup) which is approximately one fifth in magnitude of the formation of the deep water. The Southern Ocean is the major region with the upward diapycnal transport, while the downwelling emerges mainly in the northern North Atlantic. The upwelling in the Southern Ocean accounts for over 50% of the amount of the global summation. The seasonal cycle is obvious at 500 m and vanishes with depth, indicating the energy source at surface. The enhancement of diapycnal transport occurs at 1000min the Southern Ocean, which is pertinent with the internal wave generation due to the interaction between the robust deep-reaching flows and the rough topography. Our estimates of the diapycnal transport in the ocean interior have implications for the closure of the oceanic energy budget and the understanding of global Meridional Overturning Circulation.  相似文献   

15.
利用1992—2002年的温盐深数据与2012—2016年的Argo数据,基于细尺度参数化方法研究了吕宋海峡及周边海域(12°—30°N,115°—129°E)湍流混合的时空分布特征,并分析了地形粗糙度、内潮以及风输入的近惯性能通量对湍流混合的影响。结果表明,吕宋海峡和东海陆坡处具有强混合的特征,扩散率高达4×10~(-3) m~2/s,主要是由内潮产生导致的,其中吕宋海峡主要是M2、K1和O1内潮的贡献,而东海陆坡处主要是M_2内潮的贡献;南海北部也呈现较强的混合,且陆坡处的混合比海盆高1—2个量级;南海中央海盆和离岸的菲律宾海混合较弱,扩散率为O (10-5 m2/s)。此外,在研究区域内,湍流混合的年际变化和季节变化均不明显,且混合扩散率与风输入的近惯性能通量未表现出明显的季节相关。  相似文献   

16.
《Ocean Modelling》2011,40(3-4):351-361
In large-scale ocean flows diffusion mostly occurs along the density surfaces and its representation resorts to the Redi isopycnal diffusivity tensor containing off-diagonal terms. This study focuses on the Lagrangian/particle framework for simulating such diffusive processes. A two-dimensional idealised test case for purely isopycnal diffusion on non-flat isopycnal surfaces is considered. Implementation of the higher order strong Euler, Milstein and order 1.5 Taylor schemes on our idealised test case shows that the higher order strong schemes produce the better pathwise approximations. The effective spurious diapycnal diffusivity is measured for each Lagrangian scheme under consideration. The propensity of the particles to move away from the isopycnal surface on which they were released is also measured. This shows that for non-flat isopycnals the order of convergence of the Euler scheme is not sufficient to achieve the desired accuracy. However, the Milstein scheme seems to be a good choice to achieve in an efficient way a fairly accurate result.  相似文献   

17.
Locally enhanced turbulent mixing over rough bottom bathymetry is one of the candidates that might make up for the lack of diapycnal diffusivity in maintaining the global overturning circulation. In the present study, using a two-dimensional vertical numerical model for the Brazil Basin, we numerically examine the intensity and vertical structure of tide-induced mixing over multi-beam bottom bathymetry via the comparison with those over somewhat smoothed bottom bathymetry. Note that even this smoothed bottom bathymetry is finer than in commonly used datasets. In comparison to the response over the smoothed bottom bathymetry, energy dissipation rates are enhanced within a few hundred meters over the multi-beam bottom bathymetry. In spite of several limitations of the two-dimensional vertical numerical model, the magnitude and vertical distribution of the calculated dissipation rates agree well with those from microstructure measurements. We find that tidal interaction with fine-scale (≤2 km) bottom bathymetry efficiently generates high wavenumber internal waves, which are subject to local energy dissipation and hence strongly control the abyssal mixing; the most important finding is that the intensity and vertical decay scale of abyssal mixing are in a trade-off relationship with each other, which is not taken into account in the existing parameterizations.  相似文献   

18.
基于Vector Geometry方法对2016—2018年的高度计资料进行涡旋识别,并使用细尺度参数化方法和Argo数据计算了涡旋附近的海洋内部扩散率,分析了北太平洋的涡旋对海洋内部混合的影响。结果显示,研究区域在涡旋影响下的平均扩散率比无涡旋影响下的值大6%,并且气旋涡增强了600—1200m深度的混合,对600—900m深度的混合影响最大,可达18%;反气旋涡明显增强了300—900m深度的混合,但对900—1200m深度的混合没有明显影响。随着与涡旋中心距离的增大,涡旋外围混合扩散率缓慢减小,涡旋内部混合扩散率变化不明显,此结果与2014年3—10月在24°—36°N、132°—152°E区域的一个个例分析结果一致。此外,随着涡旋强度的增大,海洋内部混合明显增强。统计结果表明,在研究区域, 90%的扩散率值在10-5.5—10-4m2/s范围内。  相似文献   

19.
The near-inertial waves (NIWs) are important for energy cascade in the ocean. They are usually significantly reinforced by strong winds, such as typhoon. Due to relatively coarse resolutions in contemporary climate models, NIWs and associated ocean mixing need to be parameterized. In this study, a parameterization for NIWs proposed by Jochum in 2013 (J13 scheme), which has been widely used, is compared with the observations in the South China Sea, and the observations are treated as model outputs. Under normal conditions, the J13 scheme performs well. However, there are noticeable discrepancies between the J13 scheme and observations during typhoon. During Typhoon Kalmaegi in 2014, the inferred value of the boundary layer is deeper in the J13 scheme due to the weak near-inertial velocity shear in the vertical. After typhoon, the spreading of NIWs beneath the upper boundary layer is much faster than the theoretical prediction of inertial gravity waves, and this fast process is not rendered well by the J13 scheme. In addition, below the boundary layer, NIWs and associated diapycnal mixing last longer than the direct impacts of typhoon on the sea surface. Since the energy dissipation and diapycnal mixing below the boundary layer are bounded to the surface winds in the J13 scheme, the prolonged influences of typhoon via NIWs in the ocean interior are missing in this scheme. Based on current examination, modifications to the J13 scheme are proposed, and the modified version can reduce the discrepancies in the temporal and vertical structures of diapycnal mixing.  相似文献   

20.
A regional reanalysis product—China Ocean Reanalysis(CORA)—has been developed for the China's seas and the adjacent areas. In this study, the intraseasonal variabilities(ISVs) in CORA are assessed by comparing with observations and two other reanalysis products(ECCO2 and SODA). CORA shows a better performance in capturing the intraseasonal sea surface temperatures(SSTs) and the intraseasonal sea surface heights(SSHs) than ECCO2 and SODA do, probably due to its high resolution, stronger response to the intraseasonal forcing in the atmosphere(especially the Madden-Julian Oscillation), and more available regional data for assimilation. But at the subsurface, the ISVs in CORA are likely to be weaker than reality, which is probably attributed to rare observational data for assimilation and weak diapycnal eddy diffusivity in the CORA model. According to the comparison results, CORA is a good choice for the study related to variabilities at the surface, but cares have to be taken for the study focusing on the subsurface processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号