首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sorption of 57Fe(II) onto an Fe-free, mineralogically pure and Ca-saturated synthetic montmorillonite sample (structural formula: Ca0.15(Al1.4Mg0.6)(Si4)O10(OH,F)2), was studied as a function of pH under strictly anoxic conditions (N2 glove box atmosphere, O2 content <1 ppm), using wet chemistry and cryogenic (T = 77 K) 57Fe Mössbauer spectrometry. No Fe(III) was detected in solution at any pH. However, in pH conditions where Fe(II) is removed from solution, a significant amount of surface-bound Fe(III) was produced, which increased with pH from 0% to 3% of total Fe in a pre-sorption edge region (i.e. at pH < 7.5 where about 15% of total Fe is sorbed) to 7% of total Fe when all Fe is sorbed. At low pH, where the pre-sorption edge plateau occurs (2 < pH < 7.5), the total sorbed-Fe amount remained constant but, within this sorbed-Fe pool, the Fe(III)/Fe(II) ratio increased with pH, from 0.14 at pH 2 up to 0.74 at pH 7. The pre-sorption edge plateau is interpreted as cation exchange on interlayer surfaces together with a sorption phenomenon occurring on highly reactive (i.e. high affinity) surface sites. As pH increases and protons are removed from the clay edge surface, we propose that more and more of these highly reactive sites acquire a steric configuration that stabilizes Fe(III) relative to Fe(II), thereby inducing a Fe to clay particle electron transfer. A sorption model based on cation exchange combined with surface complexation and electron transfers reproduces both wet chemical as well as the Mössbauer spectrometric results. The mechanism is fully reversible: sorbed-Fe is reduced as pH decreases (Mössbauer solid-state analyses) and all Fe returned to solution is returned as Fe(II) (solution analyses). This would not be the case if the observed oxidations were due to contaminant oxidizing agents in solution. The present work shows that alternating pH may induce surface redox phenomena in the absence of an electron acceptor in solution other than H2O.  相似文献   

2.
We present a chemical and mineralogical explanation, derived from powder X-ray diffraction and Mössbauer spectroscopy measurements of synthetic samples, of the P:Fe = 1:2 limiting ratio of P incorporation (as PO4) that was previously observed in natural aquatic oxic iron precipitates. The 57Fe Mössbauer hyperfine parameters are interpreted with the help of state-of-the-art ab initio electronic structure calculations. We find that there is a strong tendency for solid solution P-Fe mixing in the P-bearing hydrous ferric oxide (P-HFO) aqueous coprecipitate system, interpreted as occurring between the P-free (ferrihydrite) end-member and an inferred P:Fe = 1:2 end-member beyond which P is not incorporated in the structure of the P-HFO solid. Up to and somewhat beyond the limiting end-member P:Fe ratio, all available P is scavenged by the coprecipitation reaction, suggesting strong P-Fe complexation in the precipitation-precursor dissolved species. The P-HFO solids are more stable (i.e., have stronger chemical bonds) than the P-free ferrihydrite end-member. We show that in coprecipitation the P specifically incorporates within the nanoparticle structure rather than complexing to the nanoparticle surface. Our results are relevant to the question of the mechanisms of coupling between the Fe and P cycles in natural aqueous environments and highlight a strong affinity between Fe and P in aqueous environments.  相似文献   

3.
A combined 57Fe and 119Sn Mössbauer study is performed on the whole solid solution stannite-kesterite consisting of natural and synthetic samples. No discontinuous change of the Mössbauer parameters of 57Fe as well as of 119Sn as function of the composition is observed, thus confirming the existence of a complete solid solution between both compounds.  相似文献   

4.
The mobility and availability of the toxic metalloid selenium in the environment are largely controlled by sorption and redox reactions, which may proceed at temporal scales similar to that of subsurface water movement under saturated or unsaturated conditions. Since such waters are often anaerobic and rich in Fe2+, we investigated the long-term (?1 month) kinetics of selenite sorption to montmorillonite in the presence of Fe2+ under anoxic conditions. A synthetic montmorillonite was used to eliminate the influence of structural Fe. In the absence of aqueous Fe2+, selenite was sorbed as outer-sphere sorption complex, covering only part of the positive edge sites, as verified by a structure-based MUSIC model and Se K-edge XAS (X-ray absorption spectroscopy). When selenite was added to montmorillonite previously equilibrated with Fe2+ solution however, slow reduction of Se and formation of a solid phase was observed with Se K-edge XANES (X-ray absorption near-edge spectroscopy) and EXAFS (extended X-ray absorption fine-structure) spectroscopy. Iterative transformation factor analysis of XANES and EXAFS spectra suggested that only one Se reaction product formed, which was identified as nano-particulate Se(0). Even after one month, only 75% of the initially sorbed Se(IV) was reduced to this solid species. Mössbauer spectrometry revealed that before and after addition and reduction of Se, 5% of total sorbed Fe occurred as Fe(III) species on edge sites of montmorillonite (≈2 mmol kg−1). The only change observed after addition of Se was the formation of a new Fe(II) species (15%) attributed to the formation of an outer-sphere Fe(II)-Se sorption complex. The combined Mössbauer and XAS results hence clearly suggest that the Se and Fe redox reactions are not directly coupled. Based on the results of a companion paper, we hypothesize that the electrons produced in the absence of Se by oxidation of sorbed Fe(II) are stored, for example by formation of surface H2 species, and are then available for the later Se(IV) reduction. The slow reaction rate indicates a diffusion controlled process. Homogeneous precipitation of an iron selenite was thermodynamically predicted and experimentally observed only in the absence of clay. Interestingly, half of Fe was oxidized in this precipitate (Mössbauer). Since DFT calculations predicted the oxidation of Fe at the water-FeSe solid interface only and not in the bulk phase, we derived an average particle size of this precipitate which does not exceed 2 nm. A comparison with the Mössbauer and XAS spectra of the clay samples demonstrates that such homogenous precipitation can be excluded as a mechanism for the observed slow Se reduction, emphasizing the role of abiotic, heterogeneous precipitation and reduction for the removal of Se from subsurface waters.  相似文献   

5.
A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with “sponge-like” internal porosity, large mineral crystallites, and Fe-containing micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10-15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe2+, Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mössbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mössbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)-Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products.  相似文献   

6.
The mechanism of thermally induced oxidation of Fe2+ from natural pyrope has been studied at 1000 and 1100 °C using 57Fe Mössbauer spectroscopy in conjunction with XRD, XRF, AFM, QELS, TG, DTA and electron microprobe analyses. At 1000 °C, the non-destructive oxidation of Fe2+ in air includes the partial stabilization of Fe3+ in the dodecahedral 24c position of the garnet structure and the simultaneous formation of hematite particles (15–20 nm). The incorporation of the magnesium ions to the hematite structure results in the suppression of the Morin transition temperature to below 20 K. The general garnet structure is preserved during the redox process at 1000 °C, in accordance with XRD and DTA data. At 1100 °C, however, oxidative conversion of pyrope to the mixed magnesium aluminium iron oxide, Fe-orthoenstatite and cristoballite was observed. During this destructive decomposition, Fe2+ is predominantly oxidized and incorporated into the spinel structure of Mg(Al,Fe)2O4 and partially stabilized in the structure of orthoenstatite, (Mg,Fe)SiO3. The combination of XRD and Mössbauer data suggest the definite reaction mechanism prevailing, including the refinement of the chemical composition and quantification of the reaction products. The reaction mechanism indicates that the respective distribution of Fe2+and Fe3+ to the enstatite and spinel structures is determined by the total content of Fe2+ in pyrope.  相似文献   

7.
We have used room temperature and cryogenic 57Fe Mössbauer spectroscopy, powder X-ray diffraction (pXRD), mineral magnetometry, and transmission electron microscopy (TEM), to study the synthetic precipitation of hydrous ferric oxides (HFOs) prepared either in the absence (abiotic, a-HFO) or presence (biotic, b-HFO) of nonmetabolizing bacterial cells (Bacillus subtilis or Bacillus licheniformis, ∼108 cells/mL) and under otherwise identical chemical conditions, starting from Fe(II) (10−2, 10−3, or 10−4 mol/L) under open oxic conditions and at different pH (6-9). We have also performed the first Mössbauer spectroscopy measurements of bacterial cell wall (Bacillus subtilis) surface complexed Fe, where Fe(III) (10−3.5-10−4.5 mol/L) was added to a fixed concentration of cells (∼108 cells/mL) under open oxic conditions and at various pH (2.5-4.3). We find that non-metabolic bacterial cell wall surface complexation of Fe is not passive in that it affects Fe speciation in at least two ways: (1) it can reduce Fe(III) to sorbed-Fe2+ by a proposed steric and charge transfer effect and (2) it stabilizes Fe(II) as sorbed-Fe2+ against ambient oxidation. The cell wall sorption of Fe occurs in a manner that is not compatible with incorporation into the HFO structure (different coordination environment and stabilization of the ferrous state) and the cell wall-sorbed Fe is not chemically bonded to the HFO particle when they coexist (the sorbed Fe is not magnetically polarized by the HFO particle in its magnetically ordered state). This invalidates the concept that sorption is the first step in a heterogeneous nucleation of HFO onto bacterial cell walls. Both the a-HFOs and the b-HFOs are predominantly varieties of ferrihydrite (Fh), often containing admixtures of nanophase lepidocrocite (nLp), yet they show significant abiotic/biotic differences: Biotic Fh has less intraparticle (including surface region) atomic order (Mössbauer quadrupole splitting), smaller primary particle size (magnetometry blocking temperature), weaker Fe to particle bond strength (Mössbauer center shift), and no six-line Fh (6L-Fh) admixture (pXRD, magnetometry). Contrary to current belief, we find that 6L-Fh appears to be precipitated directly, under a-HFO conditions, from either Fe(II) or Fe(III), and depending on Fe concentration and pH, whereas the presence of bacteria disables all such 6L-Fh precipitation and produces two-line Fh (2L-Fh)-like biotic coprecipitates. Given the nature of the differences between a-HFO and b-HFO and their synthesis condition dependences, several biotic precipitation mechanisms (template effect, near-cell environment effect, catalyzed nucleation and/or growth effect, and substrate-based coprecipitation) are ruled out. The prevailing present view of a template or heterogeneous nucleation barrier reduction effect, in particular, is shown not to be the cause of the large observed biotic effects on the resulting HFOs. The only proposed mechanism (relevant to Fh) that is consistent with all our observations is coprecipitation with and possible surface poisoning by ancillary bacteriagenic compounds. That bacterial cell wall functional groups are redox active and the characteristics of biotic (i.e., natural) HFOs compared to those of abiotic (i.e., synthetic) HFOs have several possible biogeochemical implications regarding Fe cycling, in the photic zones of water columns in particular.  相似文献   

8.
57Fe Mössbauer measurements were performed on two natural orthopyroxenes in the temperature range between 17 and 490 K. The temperature variations of the center shifts and of the quadrupole splittings have been interpreted using the Debye model for the lattice vibrations and the crystal-field model respectively. Two approaches have been applied to evaluate the crystal field. The first one, which is commonly used by Mössbauer spectroscopists, emanates from the approximative and simplified symmetry of the ferrous sites, whereas the second one takes into account the real C 1 symmetry of the ferrous sites, thus leading to a pointcharge calculation. For comparison, analogous calculations have been carried out on literature data for an iron-rich orthopyroxene (specimen XYZ).Industrial Highschool BME, Voskenslaan, B-9000, Gent, Belgium  相似文献   

9.
Oxygen isotope equilibrium fractionation constants (β18O-factors) of cassiterite were evaluated on the basis of heat capacity and X-ray resonant (Mössbauer spectroscopy and X-ray inelastic scattering) data.The low-temperature heat capacity of cassiterite was measured in the range from 13 to 340 K using an adiabatic calorimeter. Results of measurements of two samples agree very closely but deviate more than 5% from previous heat capacity data used for calculation of thermodynamic functions. The temperature dependence of heat capacity was treated using the modern version of the Thirring expansion, and the appropriate temperature dependence of the vibrational kinetic energy was found.Measurements of temperature-dependent Mössbauer parameters of cassiterite were conducted in the range from 300 to 900 K. The attempt to describe Mössbauer fraction and the second order Doppler (SOD) shift on the basis of the Debye model failed. The first term of the Thirring expansion of the Mössbauer SOD shift agrees with that calculated from the Sn sublattice vibration density of states (VDOS) obtained via synchrotron X-ray scattering. Based on this agreement we calculated the kinetic energy of the cassiterite Sn sublattice from VDOS.From the kinetic energy of the total cassiterite crystalline lattice and its Sn sublattice, β18O-factors of cassiterite were computed in the temperature range 300-1500 K by the method of Polyakov and Mineev (2000). Appropriate polynomials, which are valid at temperatures above 400 K, are the following:
  相似文献   

10.
The potential for reduction of 99TcO4(aq) to poorly soluble 99TcO2 · nH2O(s) by biogenic sediment-associated Fe(II) was investigated with three Fe(III)-oxide containing subsurface materials and the dissimilatory metal-reducing subsurface bacterium Shewanella putrefaciens CN32. Two of the subsurface materials from the U.S. Department of Energy’s Hanford and Oak Ridge sites contained significant amounts of Mn(III,IV) oxides and net bioreduction of Fe(III) to Fe(II) was not observed until essentially all of the hydroxylamine HCl-extractable Mn was reduced. In anoxic, unreduced sediment or where Mn oxide bioreduction was incomplete, exogenous biogenic TcO2 · nH2O(s) was slowly oxidized over a period of weeks. Subsurface materials that were bioreduced to varying degrees and then pasteurized to eliminate biological activity, reduced TcO4(aq) at rates that generally increased with increasing concentrations of 0.5 N HCl-extractable Fe(II). Two of the sediments showed a common relationship between extractable Fe(II) concentration (in mM) and the first-order reduction rate (in h−1), whereas the third demonstrated a markedly different trend. A combination of chemical extractions and 57Fe Mössbauer spectroscopy were used to characterize the Fe(III) and Fe(II) phases. There was little evidence of the formation of secondary Fe(II) biominerals as a result of bioreduction, suggesting that the reactive forms of Fe(II) were predominantly surface complexes of different forms. The reduction rates of Tc(VII)O4 were slowest in the sediment that contained plentiful layer silicates (illite, vermiculite, and smectite), suggesting that Fe(II) sorption complexes on these phases were least reactive toward pertechnetate. These results suggest that the in situ microbial reduction of sediment-associated Fe(III), either naturally or via redox manipulation, may be effective at immobilizing TcO4(aq) associated with groundwater contaminant plumes.  相似文献   

11.
Summary Fe and Mn distribution in the pumpellyite group minerals (W 8 X 4 Y 8 Z 12056-n (OH) n ) has been studied by using57Fe Mössbauer spectroscopy. The studied Fe-pumpellyites, belonging to the pumpellyite-julgoldite series, were collected from two localities; metabasites in the Tokoro belt, Hokkaido, and gabbroic sills in the Shimane Peninsula, Japan. Okhotskite, an Mn3+-dominant pumpellyite group mineral, was separated from the ores of metamorphosed manganiferous iron ore deposits in the Tokoro belt.57Fe Mössbauer spectrum of Tokoro Fe-pumpellyite is composed of two Fe2+- and two Fe3+-doublets. On the basis of the single crystal structure refinements of Al-pumpellyites published so far, doublets were assigned to Fe W 2+ (IS= 1.01 andQS = 2.73 mm/s), Fe X 2+ (IS = 0.97 andQS = 3.18 mm/s), Fe X 3+ (IS = 0.29 andQS =1.37 mm/s) and Fe Y 3+ (IS = 0.36 andQS = 2.09 mm/s), whereIS is isomer shift relative to a metallic iron absorber andQS is quadrupole splitting. The Mössbauer spectrum of the Mitsu Fepumpellyite is composed of three doublets assigned to Fe X 2+ (IS= 1.14 andQS = 3.20 mm/s), Fe X 3+ (IS = 0.36 andQS =1.13 mm/s) and Fe Y 3+ (IS = 0.37 andQS= 1.93 mm/s). These assignments show strong preference of Fe3+ in the X-site. The Mössbauer spectrum of the okhotskite is composed of two doublets by Fe X 3+ (IS= 0.37 andQS = 1.13 mm/s) and Fe Y 3+ (IS = 0.42 andQS = 2.18 mm/s). The area ratio shows that Fe X 3+ :Fe Y 3+ ratio is 94:6. On the basis of chemical and Mössbauer analyses, Mn X 3+ :Mn Y 3+ ratio is given as 19:81, indicating stronger Y-site preference of Mn3+ than Fe3+, what is consistent with Jahn-Teller theory. Al, Mn3+ and Fe3+ prefer the Y-site in this order.
Eine57Fe Mössbauer-Studie von Mineralen der Pumpellyit-Okhotskit-Julgoldit-Serie
Zusammenfassung Die Fe- und Mn-Verteilung in Mineralen der Pumpellyit-Gruppe (W 8 X 4 Y 8 Z 12O56-n (OH)n) wurde mittels Mössbauer-Spektroskopie studiert. Die untersuchten Fe-Pumpellyite der Pumpellyit-Julgoldit-Serie stammen von zwei verschiedenen japanischen Lokalitäten: von Metabasiten des Tokoro-Gürtels, Hokkaido, und von Gabbro-Sills der Shimane Halbinsel. Okhotskit, ein Mn3+-dominiertes Mineral der Pumpellyit-Gruppe, wurde aus Erzen einer Mn-führenden Eisenerzlagerstätte des Tokoro-Gürtels separiert. Das57Fe Mössbauer-Spektrum der Tokoro Fe-Pumpellyite zeigt zwei Fe2+- und zwei Fe3+-Doubletten. Auf Grund bisher publizierter verfeinerter Einkristall-Strukturuntersuchungen von Al-Pumpellyiten werden diese Doubletten folgendermaßen zugeordnet: Fe W 2+ (IS = 1.01 undQS = 2.73 mm/s), Fe X 2+ (IS = 0.97 undQS = 3.18 mm/s), Fe X 3+ (IS = 0.29 undQS =1.37 mm/s) und Fe Y 3+ (IS = 0.36 undQS = 2.09 mm/s).IS bezeichnet dabei die Isomer-Shift relativ zu einem metallischen Eisenabsorbenten,QS das Quadrupole-Splitting. Diese Zuordnungen belegen den bevorzugten Einbau von Fe3+ in die X-Position. Das Mössbauer-Spektrum von Okhotskit zeigt zwei Doubletten bei Fe X 3+ (IS = 0.37 undQS = 1.13 mm/s) und Fe Y 3+ (IS = 0.42 undQS = 2.18 mm/s). Das Flächenverhältnis zeigt, daß das Verhältnis Fe X 3+ :Fe Y 3+ 94:6 ist. Auf Grund der chemischen und der Mössbauer-Analysen wird das Mn X 3+ :Mn Y 3+ Verhältnis mit 19:81 angegeben. Mn3+ zeigt somit eine stärkere Präferenz für die Y-Position als Fe3+, ein Resultat, das mit der Jahn-Teller-Theorie konsistent ist. Der bevorzugte Einbau in die Y-Position ist, in dieser Reihenfolge, Al>Mn3+>Fe3+.


With 4 Figures  相似文献   

12.
The coordination environment of Fe(II) has been examined in seven anhydrous ferrosilicate glasses at 298 K and 1 bar using 57Fe Mössbauer, Fe K-edge X-ray near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS), UV-Vis-NIR, and magnetic circular dichroism (MCD) spectroscopies. Glasses of the following compositions were synthesized from oxide melts (abbreviation and nonbridging oxygen:tetrahedral cation ratio (NBO/T) in parentheses): Li2FeSi3O8 (LI2: 1.33), Rb2FeSi3O8 (RB2: 1.33), Nal.08Fel.l7Si3.l3O8 (NAl: 1.09), Nal.46Ca0.24Fel.08Si2.97O8 (NC6: 1.38), Nal.09Ca0.51Fe0.72Si3.10O8 (NC2: 1.15), Na0.99Ca0.92Fe0.24 Si3.17O8 (NCl: 1.04), and Na0.29Mg0.53Ca0.52Fe0.56Al0.91Si2.44O8 (BAS: 1.05). Mössbauer, XANES, and EXAFS information suggests that iron is dominantly ferrous in all glasses (<10 atom% Fe(III)) with an average first-neighbor Fe(II) coordination varying from ∼ 4 to 5.2 (±0.2) oxygens. The UV-Vis-NIR spectrum of each sample exhibits intense absorption centered near 8100-9200 cm−1 and weak absorption near 5000 cm−l, which cannot be assigned unambiguously. The MCD spectrum of NC6 glass, which is the first such measurement on a silicate glass, shows three transitions at ∼8500 cm−1, ∼6700 cm−1, and ∼4500 cm−1. The behavior of these MCD bands as a function of temperature (1.6 K to 300 K) and magnetic field strength (1 T to 7 T) indicates that they most likely arise from three distinct Fe(II) sites with different ground states, two of which are 5-coordinated and one of which is 4-coordinated by oxygens.The combined results suggest that Fe(II) predominantly occupies 5- and 4-coordinated sites in each glass, with the ratios differing for the different compositions. Small amounts of 6-coordinated Fe(II) are possible as well, but primarily in the more basic glass compositions such as BAS. The substitution of Li(I) for Rb(I) in the M2FeSi3O8 base glass composition causes a weakening of the average Fe(II)-O bond, as indicated by the longer Fe(II)-O distance in the latter. The basalt composition glass was found to have the largest Fe(II) sites relative to those in the other glasses in this study. A bond valence model that helps predict the coordination number of Fe(II) in silicate glasses is proposed. The structural information extrapolated to Fe(II)-bearing melts is parameterized using bond valence theory, which helps to rationalize the melt-crystal partitioning behavior of ferrous iron in natural and synthetic melt-crystal systems.  相似文献   

13.
Experimental investigations have been performed at T = 1200°C, P = 200 MPa and fH2 corresponding to H2O-MnO-Mn3O4 and H2O-QFM redox buffers to study the effect of H2O activity on the oxidation and structural state of Fe in an iron-rich basaltic melt. The analysis of Mössbauer and Fe K-edge X-ray absorption nearedge structure (XANES) spectra of the quenched hydrous ferrobasaltic glasses shows that the Fe3+/ΣFe ratio of the glass is directly related to aH2O in a H2-buffered system and, consequently, to the prevailing oxygen fugacity (through the reaction of water dissociation H2O ↔ H2 + 1/2 O2). However, water as a chemical component of the silicate melt has an indistinguishable effect on the redox state of iron at studied conditions. The experimentally obtained relationship between fO2 and Fe3+/Fe2+ in the hydrous ferrobasaltic melt can be adequately predicted in the investigated range by the existing empiric and thermodynamic models. The ratio of ferric and ferrous Fe is proportional to the oxygen fugacity to the power of ∼0.25 which agrees with the theoretical value from the stoichiometry of the Fe redox reaction (FeO + ¼ O2 = FeO1.5). The mean centre shifts for Fe2+ and Fe3+ absorption doublets in Mössbauer spectra show little change with increasing Fe3+/ΣFe, suggesting no significant change in the type of iron coordination. Similarly, XANES preedge spectra indicate a mixed (C3h, Td, and Oh, i.e., 5-, 4-, and sixfold) coordination of Fe in hydrous basaltic glasses.  相似文献   

14.
Iron (Fe) and manganese (Mn) are the two most common redox-active elements in the Earth’s crust and are well known to influence mineral formation and dissolution, trace metal sequestration, and contaminant transformations in soils and sediments. Here, we characterized the reaction of aqueous Fe(II) with pyrolusite (β-MnO2) using electron microscopy, X-ray diffraction, aqueous Fe and Mn analyses, and 57Fe Mössbauer spectroscopy. We reacted pyrolusite solids repeatedly with 3 mM Fe(II) at pH 7.5 to evaluate whether electron transfer occurs and to track the evolving reactivity of the Mn/Fe solids. We used Fe isotopes (56 and 57) in conjunction with 57Fe Mössbauer spectroscopy to isolate oxidation of Fe(II) by Fe(III) precipitates or pyrolusite. Using these complementary techniques, we determined that Fe(II) is initially oxidized by pyrolusite and that lepidocrocite is the dominant Fe oxidation product. Additional Fe(II) exposures result in an increasing proportion of magnetite on the pyrolusite surface. Over a series of nine 3 mM Fe(II) additions, Fe(II) continued to be oxidized by the Mn/Fe particles suggesting that Mn/Fe phases are not fully passivated and remain redox active even after extensive surface coverage by Fe(III) oxides. Interestingly, the initial Fe(III) oxide precipitates became further reduced as Fe(II) was added and additional Mn was released into solution suggesting that both the Fe oxide coating and underlying Mn phase continue to participate in redox reactions when freshly exposed to Fe(II). Our findings indicate that Fe and Mn chemistry is influenced by sustained reactions of Fe(II) with Mn/Fe oxides.
  相似文献   

15.
Experiments were performed herein to investigate the rates and products of heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to hematite and goethite, and by Fe(II) associated with a dithionite-citrate-bicarbonate (DCB) reduced natural phyllosilicate mixture [structural, ion-exchangeable, and edge-complexed Fe(II)] containing vermiculite, illite, and muscovite. The heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to the Fe(III) oxides increased with increasing pH and was coincident with a second event of adsorption. The reaction was almost instantaneous above pH 7. In contrast, the reduction rates of Tc(VII) by DCB-reduced phyllosilicates were not sensitive to pH or to added that adsorbed to the clay. The reduction kinetics were orders of magnitude slower than observed for the Fe(III) oxides, and appeared to be controlled by structural Fe(II). The following affinity series for heterogeneous Tc(VII) reduction by Fe(II) was suggested by the experimental results: aqueous Fe(II) ∼ adsorbed Fe(II) in phyllosilicates [ion-exchangeable and some edge-complexed Fe(II)] ? structural Fe(II) in phyllosilicates ? Fe(II) adsorbed on Fe(III) oxides. Tc-EXAFS spectroscopy revealed that the reduction products were virtually identical on hematite and goethite that were comprised primarily of sorbed octahedral TcO2 monomers and dimers with significant Fe(III) in the second coordination shell. The nature of heterogeneous Fe(III) resulting from the redox reaction was ambiguous as probed by Tc-EXAFS spectroscopy, although Mössbauer spectroscopy applied to an experiment with 56Fe-goethite with adsorbed 57Fe(II) implied that redox product Fe(III) was goethite-like. The Tc(IV) reduction product formed on the DCB-reduced phyllosilicates was different from the Fe(III) oxides, and was more similar to Tc(IV) oxyhydroxide in its second coordination shell. The heterogeneous reduction of Tc(VII) to less soluble forms by Fe(III) oxide-adsorbed Fe(II) and structural Fe(II) in phyllosilicates may be an important geochemical process that will proceed at very different rates and that will yield different surface species depending on subsurface pH and mineralogy.  相似文献   

16.
Fe cycling at two sites in the Mediterranean Sea (southwest of Rhodes and in the North Aegean) has been studied, combining the pore water determination of nutrients, manganese, and iron, citrate-bicarbonate-dithionite (CDB) and total sediment extractions, X-ray diffraction, and 57Fe Mössbauer spectroscopy (MBS). At the Rhodes site, double peaks in the CDB-extractable Mn and Fe profiles indicate non-steady-state diagenesis. The crystalline iron oxide hematite, identified at both sites by room temperature (RT) MBS, appears to contribute little to the overall Fe reduction. MBS at liquid helium temperature (LHT) revealed that the reactive sedimentary Fe oxide phase was nanophase goethite, not ferrihydrite as is usually assumed. The pore water data at both sites indicates that upon reductive dissolution of nanophase goethite, the upward diffusing dissolved Fe2+ is oxidized by Mn oxides, rather than by nitrate or oxygen. The observed oxidation of Fe2+ by Mn oxides may be more common than previously thought but not obvious in sediments where the nitrate penetration depth coincides with the Mn oxide peak. At the Rhodes site, the solid-phase Fe(II) increase occurred at a shallower depth than the accumulation of dissolved Fe2+ in the pore water. The deeper relict Mn oxide peak acts as an oxidation barrier for the upward diffusing dissolved Fe2+, thereby keeping the pore water Fe2+ at depth. At the North Aegean site, the solid-phase Fe(II) increase occurs at approximately the same depth as the increase in dissolved Fe2+ in the pore water. Overall, the use of RT and cryogenic MBS provided insight into the solid-phase Fe(II) gradient and allowed identification of the sedimentary Fe oxides: hematite, maghemite, and nanophase goethite.  相似文献   

17.
Application of the Fe isotope system to studies of natural rocks and fluids requires precise knowledge of equilibrium Fe isotope fractionation factors among various aqueous Fe species and minerals. These are difficult to obtain at the low temperatures at which Fe isotope fractionation is expected to be largest and requires careful distinction between kinetic and equilibrium isotope effects. A detailed investigation of Fe isotope fractionation between [FeIII(H2O)6]3+ and hematite at 98°C allows the equilibrium 56Fe/54Fe fractionation to be inferred, which we estimate at 103lnαFe(III)-hematite = −0.10 ± 0.20‰. We also infer that the slope of Fe(III)-hematite fractionation is modest relative to 106/T2, which would imply that this fractionation remains close to zero at lower temperatures. These results indicate that Fe isotope compositions of hematite may closely approximate those of the fluids from which they precipitated if equilibrium isotopic fractionation is assumed, allowing inference of δ56Fe values of ancient fluids from the rock record. The equilibrium Fe(III)-hematite fractionation factor determined in this study is significantly smaller than that obtained from the reduced partition function ratios calculated for [FeIII(H2O)6]3+ and hematite based on vibrational frequencies and Mössbauer shifts by [Polyakov 1997] and [Polyakov and Mineev 2000], and Schauble et al. (2001), highlighting the importance of experimental calibration of Fe isotope fractionation factors. In contrast to the long-term (up to 203 d) experiments, short-term experiments indicate that kinetic isotope effects dominate during rapid precipitation of ferric oxides. Precipitation of hematite over ∼12 h produces a kinetic isotope fractionation where 103lnαFe(III)-hematite = +1.32 ± 0.12‰. Precipitation under nonequilibrium conditions, however, can be recognized through stepwise dissolution in concentrated acids. As expected, our results demonstrate that dissolution by itself does not measurably fractionate Fe isotopes.  相似文献   

18.
Two pumpellyites with the general formula W 8 X 4 Y 8 Z 12O56-n (OH) n were studied using 57Fe Mössbauer spectroscopic and X-ray Rietveld methods to investigate the relationship between the crystal chemical behavior of iron and structural change. The samples are ferrian pumpellyite-(Al) collected from Mitsu and Kouragahana, Shimane Peninsula, Japan. Rietveld refinements gave Fe(X):Fe(Y) ratios (%) of 41.5(4):58.5(4) for the Mitsu pumpellyite and 46(1):54(1) for the Kouragahana pumpellyite, where Fe(X) and Fe(Y) represent Fe content at the X and Y sites, respectively. The Mössbauer spectra consisted of two Fe2+ and two Fe3+ doublets for the Mitsu pumpellyite, and one Fe2+ and two Fe3+ doublets for the Kouragahana pumpellyite. In terms of the area ratios of the Mössbauer doublets and the Fe(X):Fe(Y) ratios determined by the Rietveld refinements, Fe2+(X):Fe3+(X):Fe3+(Y) ratios are determined to be 22:14:64 for the Mitsu pumpellyite and 27:8:65 for the Kouragahana pumpellyite. By applying the Fe2+:Fe3+-ratio determined by the Mössbauer analysis and the site occupancies of Fe at the X and Y sites given by the Rietveld method together with chemical analysis, the resulting formula of the Mitsu and Kouragahana pumpellyites are established as Ca8(Fe 0.88 2+ Mg0.68Fe 0.77 3+ Al1.66)Σ3.99(Al5.67Fe 2.34 3+ )Σ8.01Si12O42.41(OH)13.59 and Ca8(Mg1.24Fe 0.65 2+ Fe 0.46 3+ Al1.66)Σ4.01(Al6.71Fe 1.29 3+ )Σ8.00Si12O42.14(OH)13.86, respectively. Mean Y–O distances and volumes of the YO6 octahedra increase with increasing mean ionic radii, i.e., the Fe3+→Al substitution at the Y site. However, change of the sizes of XO6 octahedra against the mean ionic radii at the X site is not distinct, and tends to depend on the volume change of the YO6 octahedra. Thus, the geometrical change of the YO6 octahedra with Fe3+→Al substitution at the Y site is essential for the structural changes of pumpellyite. The expansion of the YO6 octahedra by the ionic substitution of Fe3+ for Al causes gradual change of the octahedra to more symmetrical and regular forms.  相似文献   

19.
Samples of the eosphorite-childrenite [(Mn2+, Fe2+)AlPO4(OH)2H2O] series from Divino das Laranjeiras and Araçuaí (Minas Gerais State) and Parelhas (Rio Grande do Norte State) pegmatites have been investigated by X-ray diffraction, microprobe analysis and Mössbauer spectroscopy at 295 and 77 K. The Mössbauer spectra of ernstite [(Mn2+, Fe3+)AlPO4(OH)2-xOx] showed the existence of ferric ions in both A and B sites, whereas ferrous ions seem to be located exclusively in the A site. Nonoxidised samples show ferrous ions located in both sites, and no Fe3+ could be detected. The interpretation of the Mössbauer spectra of both, oxidised and nonoxidised samples, is difficult because the hyperfine parameters of these minerals are rather similar, rendering it difficult to make proper site assignments.  相似文献   

20.
Iron(III) (hydr)oxides formed at extracellular biosurfaces or in the presence of exopolymeric substances of microbes and plants may significantly differ in their structural and physical properties from their inorganic counterparts. We synthesized ferrihydrite (Fh) in solutions containing acid polysaccharides [polygalacturonic acid (PGA), alginate, xanthan] and compared its properties with that of an abiotic reference by means of X-ray diffraction, transmission electron microscopy, gas adsorption (N2, CO2), X-ray absorption spectroscopy, 57Fe Mössbauer spectroscopy, and electrophoretic mobility measurements. The coprecipitates formed contained up to 37 wt% polymer. Two-line Fh was the dominant mineral phase in all precipitates. The efficacy of polymers to precipitate Fh at neutral pH was higher for polymers with more carboxyl C (PGA ∼ alginate > xanthan). Pure Fh had a specific surface area of 300 m2/g; coprecipitation of Fh with polymers reduced the detectable mineral surface area by up to 87%. Likewise, mineral micro- (<2 nm) and mesoporosity (2-10 nm) decreased by up to 85% with respect to pure Fh, indicative of a strong aggregation of Fh particles by polymers in freeze-dried state. C-1s STXM images showed the embedding of Fh particles in polymer matrices on the micrometer scale. Iron EXAFS spectroscopy revealed no significant changes in the local coordination of Fe(III) between pure Fh and Fh contained in PGA coprecipitates. 57Fe Mössbauer spectra of coprecipitates confirmed Fh as dominant mineral phase with a slightly reduced particle size and crystallinity of coprecipitate-Fh compared to pure Fh and/or a limited magnetic super-exchange between Fh particles in the coprecipitates due to magnetic dilution by the polysaccharides. The pHiep of pure Fh in 0.01 M NaClO4 was 7.1. In contrast, coprecipitates of PGA and alginate had a pHiep < 2. Considering the differences in specific surface area, porosity, and net charge between the coprecipitates and pure Fh, composites of exopolysaccharides and Fe(III) (hydr)oxides are expected to differ in their geochemical reactivity from pure Fe(III) (hydr)oxides, even if the minerals have a similar crystallinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号