首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the surface oxidation phase on pyrite, FeS2, reacted in aqueous electrolytes at pH = 2 to 10 and with air under ambient atmospheric conditions was studied using synchrotron-based oxygen K edge, sulfur LIII edge, and iron LII,III edge X-ray absorption spectroscopy. We demonstrate that O K edge X-ray absorption spectra provide a sensitive probe of sulfide surface oxidation that is complementary to X-ray photoelectron spectroscopy. Using total electron yield detection, the top 20 to 50 Å of the pyrite surface is characterized. In air, pyrite oxidizes to form predominantly ferric sulfate. In aqueous air-saturated solutions, the surface oxidation products of pyrite vary with pH, with a marked transition occurring around pH 4. Below pH = 4, a ferric (hydroxy)sulfate is the main oxidation product on the pyrite surface. At higher pH, we find iron(III) oxyhydroxide in addition to ferric (hydroxy)sulfate on the surface. Under the most alkaline conditions, the O K edge spectrum closely resembles that of goethite, FeOOH, and the surface is oxidized to the extent that no FeS2 can be detected in the X-ray absorption spectra. In a 1.667 × 10−3 mol/L Fe3+ solution with ferric iron present as FeCl3 in NaCl, the oxidation of pyrite is autocatalyzed, and formation of the surface iron(III) oxyhydroxide phase is promoted at low pH.  相似文献   

2.
Chalcopyrite, CuFeS2, is an important source of copper and is recovered from ore by the flotation process. Chalcopyrite is commonly associated with other metal sulfides, e.g. bornite, Cu5FeS4. In this study the effect of bornite on the oxidation and leaching of chalcopyrite has been investigated by probing the surface evolution of pure chalcopyrite, bornite, and heterogeneous samples containing both chalcopyrite and bornite using Synchrotron X-ray Photoelectron Spectroscopy (SXPS). Samples were freshly fractured in a N2 atmosphere and the resulting surfaces were oxidised in pH 9 KOH for 30 min or leached in pH 1 HCl for 2 h before being transferred into vacuum without leaving the N2 atmosphere. Analysis of the chalcopyrite region of each sample indicates that exposure to pH 9 for 30 min when bornite is present results in a decreased concentration of hydrophobic polysulfide species (from 43% to 36% of the total S 2p spectrum). In addition to this decrease in hydrophobic species, there is an increase in the amount of hydrophilic sulfate on the surface, from trace amounts to 3%. For those samples leached at pH 1 there was a small decrease in the amount of polysulfide species (43% to 39%), but also a slight increase in disulfide species (16% to 19%) indicating an alteration to the oxidation process at low pH in the presence of bornite.  相似文献   

3.
Single crystals of fayalite (Fe2SiO4) have been oxidized either in the hematite or the magnetite stability field to investigate the kinetics and mechanisms of oxidation. For samples heated in air at 770° C, a two-phase region composed of fine-grained iron oxide and silica phases formed as the reaction front moved into the sample, and an iron oxide layer formed external to this two-phase region. The presence of the single-phase oxide layer coating the specimens indicates that oxidation occurs by the migration of iron from the fayalite to the gas-solid interface rather than by the movement of oxygen in the opposite direction. For oxidation in air, the kinetics followed a parabolic growth law, with the rate of oxidation limited by the diffusion of iron from the internal reaction front to the gas-solid interface through the iron oxide. When fayalite was oxidized in the magnetite stability field, using a CO/CO2 gas mixture at 1030° C, oxidation was controlled by the reaction at the gas-solid interface, yielding an oxidation rate considerably slower than that predicted for diffusion-controlled growth of the oxide layer.  相似文献   

4.
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg LIII- and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca6Al2(SO4)3(OH)12.26H2O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20–25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg–Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg–Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.  相似文献   

5.
“Two-line” ferrihydrite samples precipitated and then exposed to a range of aqueous Zn solutions (10−5 to 10−3 M), and also coprecipitated in similar Zn solutions (pH 6.5), have been examined by Zn and Fe K-edge X-ray absorption spectroscopy. Typical Zn complexes on the surface have Zn-O distances of 1.97(.02) Å and coordination numbers of about 4.0(0.5), consistent with tetrahedral oxygen coordination. This contrasts with Zn-O distances of 2.11(.02) Å and coordination numbers of 6 to 7 in the aqueous Zn solutions used in sample preparation. X-ray absorption extended fine structure spectroscopy (EXAFS) fits to the second shell of cation neighbors indicate as many as 4 Zn-Fe neighbors at 3.44(.04) Å in coprecipitated samples, and about two Zn-Fe neighbors at the same distance in adsorption samples. In both sets of samples, the fitted coordination number of second shell cations decreases as sorption density increases, indicating changes in the number and type of available complexing sites or the onset of competitive precipitation processes. Comparison of our results with the possible geometries for surface complexes and precipitates suggests that the Zn sorption complexes are inner sphere and at lowest adsorption densities are bidentate, sharing apical oxygens with adjacent edge-sharing Fe(O,OH)6 octahedra. Coprecipitation samples have complexes with similar geometry, but these are polydentate, sharing apices with more than two adjacent edge-sharing Fe(O,OH)6 polyhedra. The results are inconsistent with Zn entering the ferrihydrite structure (i.e., solid solution formation) or formation of other Zn-Fe precipitates. The fitted Zn-Fe coordination numbers drop with increasing Zn density with a minimum of about 0.8(.2) at Zn/(Zn + Fe) of 0.08 or more. This change appears to be attributable to the onset of precipitation of zinc hydroxide polymers with mainly tetrahedral Zn coordination. At the highest loadings studied, the nature of the complexes changes further, and a second type of precipitate forms. This has a structure based on a brucite layer topology, with mainly octahedral Zn coordination. Amorphous zinc hydroxide samples prepared for comparison had a closely similar local structure. Analysis of the Fe K-edge EXAFS is consistent with surface complexation reactions and surface precipitation at high Zn loadings with little or no Fe-Zn solid solution formation. The formation of Zn-containing precipitates at solution conditions two or more orders of magnitude below their solubility limit is compared with other sorption and spectroscopic studies that describe similar behavior.  相似文献   

6.
The surface sulfur speciation of chalcopyrite leached by moderately thermophilic Sulfobacillus thermosulfidooxidans was investigated by employing scanning electron microscopy (SEM), X-ray diffraction (XRD) and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES), accompanying with the leaching behavior elucidation. Leaching experiment showed that there was an optimum range of the redox potential for chalcopyrite dissolution. Leaching products were found accumulating during the leaching process, which might be jarosite according to the XRD analysis. The sulfur K-edge spectra indicated that chalcocite might be the intermediate sulfur compound under a critical redox potential, which might explain the existence of optimum range of the redox potential and provide an evidence for the two-step leaching model of chalcopyrite at low Eh. In addition, the results of sulfur K-edge spectra showed jarosite would accumulate on mineral surface, which might be the main component of the passivation layer.  相似文献   

7.
In northern Saskatchewan, Canada, high-grade U ores and the resulting tailings can contain high levels of As. An environmental concern in the U mining industry is the long-term stability of As within tailings management facilities (TMFs) and its potential transfer to the surrounding groundwater. To mitigate this problem, U mill effluents are neutralized with lime to reduce the aqueous concentration of As. This results in the formation of predominantly Fe3+–As5+ secondary mineral phases, which act as solubility controls on the As in the tailings discharged to the TMF. Because the speciation of As in natural systems is critical for determining its long-term environmental fate, characterization of As-bearing mineral phases and complexes within the deposited tailings is required to evaluate its potential transformation, solubility, and long-term stability within the tailings mass. In this study, synchrotron-based bulk X-ray absorption spectroscopy (XAS) was used to study the speciation of As and Fe in mine tailings samples obtained from the Deilmann TMF at Key Lake, Saskatchewan. Comparisons of K-edge X-ray absorption spectra of tailings samples and reference compounds indicate the dominant oxidation states of As and Fe in the mine tailings samples are +5 and +3, respectively, largely reflecting their generation in a highly oxic mill process, deposition in an oxidized environment, and complexation within stable oxic phases. Linear combination fit analyses of the K-edges for the Fe X-ray absorption near edge spectra (XANES) to reference compounds suggest Fe is predominantly present as ferrihydrite with some amount of the primary minerals pyrite (8–15% in some samples) and chalcopyrite (5–15% in some samples). Extended X-ray absorption fine structure (EXAFS) analysis of As K-edge spectra indicates that As5+ (arsenate) present in tailings samples is adsorbed to the ferrihydrite though an inner-sphere bidentate linkage.  相似文献   

8.
9.
Aqueous oxidation of sulfide minerals to sulfate is an integral part of the global sulfur and oxygen cycles. The current model for pyrite oxidation emphasizes the role of Fe2+-Fe3+ electron shuttling and repeated nucleophilic attack by water molecules on sulfur. Previous δ18O-labeled experiments show that a variable fraction (0-60%) of the oxygen in product sulfate is derived from dissolved O2, the other potential oxidant. This indicates that nucleophilic attack cannot continue all the way to sulfate and that a sulfoxyanion of intermediate oxidation state is released into solution. The observed variability in O2% may be due to the presence of competing oxidation pathways, variable experimental conditions (e.g. abiotic, biotic, or changing pH value), or uncertainties related to the multiple experiments needed to effectively use the δ18O label to differentiate sulfate-oxygen sources. To examine the role of O2 and Fe3+ in determining the final incorporation of O2 oxygen in sulfate produced during pyrite oxidation, we designed a set of aerated, abiotic, pH-buffered (pH = 2, 7, 9, 10, and 11), and triple-oxygen-isotope labeled solutions with and without Fe3+ addition. While abiotic and pH-buffered conditions help to eliminate variables, triple oxygen isotope labeling and Fe3+ addition help to determine the oxygen sources in sulfate and examine the role of Fe2+-Fe3+ electron shuttling during sulfide oxidation, respectively.Our results show that sulfate concentration increased linearly with time and the maximum concentration was achieved at pH 11. At pH 2, 7, and 9, sulfate production was slow but increased by 4× with the addition of Fe3+. Significant amounts of sulfite and thiosulfate were detected in pH ? 9 reactors, while concentrations were low or undetectable at pH 2 and 7. The triple oxygen isotope data show that at pH ? 9, product sulfate contained 21-24% air O2 signal, similar to pH 2 with Fe3+ addition. Sulfate from the pH 2 reactor without Fe3+ addition and the pH 7 reactors all showed 28-29% O2 signal. While the O2% in final sulfate apparently clusters around 25%, the measurable deviations (>experimental error) from the 25% in many reaction conditions suggest that (1) O2 does get incorporated into intermediate sulfoxyanions (thiosulfate and sulfite) and a fraction survives sulfite-water exchange (e.g. the pH 2 with no Fe3+ addition and both pH 7 reactors); and (2) direct O2 oxidation dominates while Fe3+ shuttling is still competitive in the sulfite-sulfate step (e.g. the pH 9, 10, and 11 and the pH 2 reactor with Fe3+ addition). Overall, the final sulfate-oxygen source ratio is determined by (1) rate competitions between direct O2 incorporation and Fe3+ shuttling during both the formation of sulfite from pyrite and from sulfite to final sulfate, and (2) rate competitions between sulfite and water oxygen exchange and the oxidation of sulfite to sulfate. Our results indicate that thiosulfate or sulfite is the intermediate species released into solution at all investigated pH and point to a set of dynamic and competing fractionation factors and rates, which control the oxygen isotope composition of sulfate derived from pyrite oxidation.  相似文献   

10.
We have used synchrotron-based soft X-ray core-level photoemission and adsorption spectroscopies to study the reaction of aqueous sodium chromate solutions with freshly fractured pyrite surfaces. Pyrite surfaces were reacted with 50 μM sodium chromate solution at pH 7 for reaction times between 1 min and 37 hr. Additional experiments were performed at pH 2 and pH 4 with 50 μM sodium chromate solutions and at pH 7 with 5 mM solutions. At chromate concentrations of 50 μM, all chromium present on the pyrite surface was in the form of Cr(III), while at 5 mM, both Cr(III) and Cr(VI) were present at the pyrite surface. Minor quantities of oxidized sulfur species (sulfate, sulfite, and zero-valent sulfur) were identified as reaction products on the pyrite surface. The amount of oxidized sulfur species observed on the surface was greater when pyrite was reacted with 5 mM Cr(VI) solutions because the rate of chromium deposition exceeded the rate of dissolution of pyrite oxidation products, effectively trapping Cr(VI) and oxidized sulfur species in an overlayer of iron(III)-containing Cr(III)-hydroxide. This work shows that pyrite, an extremely cheap and readily available waste material, may be suitable for the removal of hexavalent chromium from acidic to circumneutral waste streams. The reduced chromium ultimately forms a coating on the pyrite surface, which passivates the pyrite surface towards further oxidation.  相似文献   

11.
The adsorption of copper ions on synthetic sphalerites of various iron contents was measured using a radiotracer technique. The correlation of Cu2+ ions adsorption with the pH of solution, the iron content of the solid and the degree of surface oxidation of synthetic sphalerite were determined. The experiments proved that oxidation of the surface of the sphalerite samples caused a decrease in Cu2+ ions sorption with the exception of samples of iron containing sphalerite. Acidity of the solution affected the adsorption of Cu2+ ions by deoxidized sphalerite surfaces, whereas the adsorption on oxidized surfaces did not depend on the pH.  相似文献   

12.
Metal L2,3, sulfur K and oxygen K near-edge X-ray absorption fine structure (NEXAFS) spectra for chalcopyrite, bornite, chalcocite, covellite, pyrrhotite and pyrite have been determined from single-piece natural mineral specimens in order to assess claims that chalcopyrite should be regarded as CuIIFeIIS2 rather than CuIFeIIIS2, and that copper oxide species are the principal initial oxidation products on chalcopyrite and bornite exposed to air. Spectra were obtained using both fluorescence and electron yields to obtain information representative of the bulk as well as the surface. Where appropriate, NEXAFS spectra have been interpreted by comparison with the densities of unfilled states and simulated spectra derived from ab initio calculations using primarily the FEFF8 code and to a lesser extent WIEN2k. Metal 2p and S 2p photoelectron spectra excited by monochromatised Al Kα X-rays were determined for each of the surfaces characterised by NEXAFS spectroscopy. The X-ray excited Cu LMM Auger spectrum was also determined for each copper-containing sulfide. FEFF8 calculations were able to simulate the experimental NEXAFS spectra quite well in most cases. For covellite and chalcocite, it was found that FEFF8 did not provide a good simulation of the Cu L3-edge spectra, but WIEN2k simulations were in close agreement with the experimental spectra. Largely on the basis of these simulations, it was concluded that there was no convincing evidence for chalcopyrite to be represented as CuIIFeIIS2, and no strong argument for some of the Cu in either bornite or covellite to be regarded as Cu(II). The ab initio calculations for chalcopyrite and bornite indicated that the density of Cu d-states immediately above the Fermi level was sufficient to account for the Cu L3-edge absorption spectrum, however these incompletely filled Cu d-states should not be interpreted as indicating some Cu(II) in the sulfide structure. It was also concluded that the X-ray absorption spectra were quite consistent with the initial oxidation products on chalcopyrite and bornite surfaces being iron oxide species, and inconsistent with the concomitant formation of copper-oxygen species.  相似文献   

13.
Permanganate (MnO4) has widely been used as an effective oxidant for drinking water treatment systems, as well as for in situ treatment of groundwater impacted by various organic contaminants. The reaction stoichiometry of As(III) oxidation by permanganate has been assumed to be 1.5, based on the formation of solid product, which is putatively considered to be MnO2(s). This study determined the stoichiometric ratio (SR) of the oxidation reaction with varying doses of As(III) (3-300 μM) and MnO4 (0.5 or 300 μM) under circumneutral pH conditions (pH 4.5-7.5). We also characterized the solid product that was recovered ∼1 min after the oxidation of 2.16 mM As(III) by 0.97 mM MnO4 at pH 6.9 and examined the feasibility of secondary heterogeneous As(III) oxidation by the solid product. When permanganate was in excess of As(III), the SR of As(III) to Mn(VII) was 2.07 ± 0.07, regardless of the solution pH; however, it increased to 2.49 ± 0.09 when As(III) was in excess. The solid product was analogous to vernadite, a poorly crystalline manganese oxide based on XRD analysis. The average valence of structural Mn in the solid product corresponded to +III according to the splitting interval of the Mn3s peaks (5.5 eV), determined using X-ray photoelectron spectroscopy (XPS). The relative proportions of the structural Mn(IV):Mn(III):Mn(II) were quantified as 19:62:19 by fitting the Mn2p3/2 spectrum of the solid with the five multiplet binding energy spectra for each Mn valence. Additionally, the O1s spectrum of the solid was comparable to that of Mn-oxide but not of Mn-hydroxide. These results suggest that the solid product resembled a poorly crystalline hydrous Mn-oxide such as (MnII0.19MnIII0.62MnIV0.19)2O3·nH2O, in which Mn(II) and Mn(IV) were presumably produced from the disproportionation of aqueous phase Mn(III). Thermodynamic calculations also show that the formation of Mn(III) oxide is more favorable than that of Mn(IV) oxide from As(III) oxidation by permanganate under circumneutral pH conditions. Arsenic(III), when it remained in the solution after all of the permanganate was consumed, was effectively oxidized by the solid product. This secondary heterogeneous As(III) oxidation consisted of three steps: sorption to and oxidation on the solid surface and desorption of As(V) into solution, with the first step being the rate-limiting process as observed in As(III) oxidation by various Mn (oxyhydr)oxides reported elsewhere. We also discussed a potential reaction pathway of the permanganate oxidation of As(III).  相似文献   

14.
《Applied Geochemistry》2005,20(1):193-205
Sorption and precipitation of Co(II) in simplified model systems related to the Hanford site high-level nuclear waste tank leakage were investigated through solution studies, geochemical modeling, and X-ray absorption fine structure (XAFS) spectroscopy. Studies of Co(II) sorption to pristine Hanford sediments (ERDF and Sub), which consist predominantly of quartz, plagioclase, and alkali feldspar, show an adsorption edge centered at pH  8.0 for both sediments studied, with sorption >99% above pH  9.0. Aqueous SiO2 resulting from dissolution of the sediments increased in concentration with increasing pH, though the systems remained undersaturated with respect to quartz. XAFS studies of Co(II) sorption to both sediment samples reveal the oxidation of Co(II) to Co(III), likely by dissolved O2, although this oxidation was incomplete in the Sub sediment samples. The authors propose that Fe(II) species, either in aqueous solution or at mineral surfaces, partially inhibited Co(II) oxidation in the Sub sediment samples, as these sediments contain significantly higher quantities of Fe(II)-bearing minerals which likely partially dissolved under the high-pH solution conditions. In alkaline solutions, Al precipitated as bayerite, gibbsite, or a mixture of the two at pH > 7; an amorphous gel formed at pH values less than 7. Aqueous Co concentrations were well below the solubility of known Co-bearing phases at low pH, suggesting that Co was removed from solution through an adsorption mechanism. At higher pH values, Co concentrations closely matched the solubility of a Co-bearing hydrotalcite-like solid. XAFS spectra of Co(II) sorbed to Al-hydroxide precipitates are similar to previously reported spectra for such hydrotalcite-like phases. The precipitation processes observed in this study can significantly reduce the environmental hazard posed by 60Co in the environment.  相似文献   

15.
Mössbauer spectroscopy of three suites of oxidized coals shows that the transformation of pyrite to FeOOH correlates with other parameters of oxidation. As pyrite is very common in coals and the transformation to FeOOH is sensitive to small degrees of oxidation, the Mössbauer technique shows considerable promise as a means for the detection of coal oxidation.  相似文献   

16.
Stable Fe isotope fractionations were investigated during exposure of hematite to aqueous Fe(II) under conditions of variable Fe(II)/hematite ratios, the presence/absence of dissolved Si, and neutral versus alkaline pH. When Fe(II) undergoes electron transfer to hematite, Fe(II) is initially oxidized to Fe(III), and structural Fe(III) on the hematite surface is reduced to Fe(II). During this redox reaction, the newly formed reactive Fe(III) layer becomes enriched in heavy Fe isotopes and light Fe isotopes partition into aqueous and sorbed Fe(II). Our results indicate that in most cases the reactive Fe(III) that undergoes isotopic exchange accounts for less than one octahedral layer on the hematite surface. With higher Fe(II)/hematite molar ratios, and the presence of dissolved Si at alkaline pH, stable Fe isotope fractionations move away from those expected for equilibrium between aqueous Fe(II) and hematite, towards those expected for aqueous Fe(II) and goethite. These results point to formation of new phases on the hematite surface as a result of distortion of Fe-O bonds and Si polymerization at high pH. Our findings demonstrate how stable Fe isotope fractionations can be used to investigate changes in surface Fe phases during exposure of Fe(III) oxides to aqueous Fe(II) under different environmental conditions. These results confirm the coupled electron and atom exchange mechanism proposed to explain Fe isotope fractionation during dissimilatory iron reduction (DIR). Although abiologic Fe(II)aq - oxide interaction will produce low δ56Fe values for Fe(II)aq, similar to that produced by Fe(II) oxidation, only small quantities of low-δ56Fe Fe(II)aq are formed by these processes. In contrast, DIR, which continually exposes new surface Fe(III) atoms during reduction, as well as production of Fe(II), remains the most efficient mechanism for generating large quantities of low-δ56Fe aqueous Fe(II) in many natural systems.  相似文献   

17.
Chalcopyrite is known to be slow reacting mineral in hydrometallurgical systems and is considered one of the most inert sulphide minerals with respect to leaching. Such character of chalcopyrite seems to be linked to a formation of a passive layer on its surface. This work reports that freshly fractured chalcopyrite surfaces exhibit highly selective reactivity depending on the exposed fracture planes. ToF-SIMS was used to qualitatively characterize various fracture planes in freshly fractured chalcopyrite particles, prior to and after hydrometallurgical treatment. It was found that, prior to treatment, certain areas exhibited pronounced contamination from atmospheric hydrocarbons; whereas, others were highly unreactive and remarkably free from adventitious hydrocarbon contamination. The positive ion spectra recorded from these areas were found to be dominated by peaks from Fe- and Cu-elements and related compounds. The negative ion spectra for the reactive areas on the other hand showed a high content of oxidized (sulphur) species.The differences between the areas of low and high reactivity, as detected after leaching, were more subtle than prior to leaching; whereas, SEM analysis showed clear evidence for selective attack of ferric sulphate to specific planes. Furthermore, it was shown that, when chalcopyrite is in intimate contact with pyrite, it experiences an enhanced oxidation compared to when there is no electric contact with pyrite.Attempts were made to explain the preferential oxidation observed based on the different chemistry of the fracture surfaces.  相似文献   

18.
Cobalt behavior during the oxidation of sulfide ores, unlike that during the oxidation of Co ores, is poorly known. Moreover, cobalt sulfates are rare in the world. Complex hydrous cobalt-containing and cobalt sulfates have been found in technogenic zones at the Letnee chalcopyrite deposit (Southern Urals). They have been identified at pit bottoms, in the ore stockpile, as well as directly on ore fragments and the evaporation barriers of underdump water puddles. The paper reports the first experimental data on the oxidative leaching of Co-containing sulfide ores in the laboratory. Also, parts of a thermodynamic model for Co behavior in oxidized zones are presented.Experiments have revealed an increase in acidity up to pH = 4.14, along with transport of sulfate sulfur and metals into solution. This suggests acid mine drainage during the development of the Letnee deposit. The published stability diagrams for hydrous Cu, Mg, Zn, Co, and Ni sulfates were analyzed and compared with mineralogical finds in a technogenic oxidized zone. This made it possible to explain the precipitation sequence of minerals from solutions during their concentration by evaporation. As salts of these elements are highly soluble, significant contents of toxic metals will inevitably remain in equilibrium solution, necessitating additional waste-water treatment (for example, creating sorption geochemical barriers). Therefore, the paper describes regularities in Co behavior during its sorption on solid phases.  相似文献   

19.
The aim of this paper is to find an effective method for the separation of the undesirable constituents, namely, chalcopyrite and arsenopyrite from pyrite used for the production of H2SO4. A new effective method is developed for co-depressing chalcopyrite with arsenopyrite by AsI3, followed by the addition of magnesia mixture. This method has been shown to be based on the fact that iron sites exist in the three minerals, whereas copper and arsenic sites exist only in chalcopyrite and arsenopyrite, respectively. This is coupled with the ability of both Cu(I) and Cu(II) to precipitate As(III) in the form of insoluble copper arsenides, namely Cu3As, Cu3As2. In contrast, neither Fe(II) nor Fe(III) form stable arsenides. Consequently, As3+ ions are selectively adsorbed onto the surface of chalcopyrite. The facility for oxidizability of As(III) is well known and hence it adsorbs oxygen from the pulp and changes to As(V) of higher valency and smaller size, with ionic potential over 10. Accordingly, it yields a stable complex anion with covalent bonding, namely, [AsO4]3?. These newly created arsenate sites on the surface of chalcopyrite, as well as the corresponding original arsenate sites on the surface of arsenopyrite combine with magnesia mixture to form cations leading to the formation of tightly abutting strongly hydrophilic layers of … AsO4NH4Mg.6H2O. The spread of this hydrophilic film on arsenopyrite and chalcopyrite surfaces leads to the screening of their surfaces, making them difficult of access for the collector, ethyl xanthate. Since the pKa of xanthic acid occurs at pH below 3, xanthate species predominate at pH above 8 and are adsorbed selectively on the pyrite surface in sufficient quantity for its selective flotation and hence for its separation to take place in the pH range 8–9.  相似文献   

20.
A mixing of metal-loaded acid mine drainage with shallow groundwater or surface waters usually initiates oxidation and/or hydrolysis of dissolved metals such as iron (Fe) and aluminum (Al). Colloidal particles may appear and agglomerate with increasing pH. Likewise chemical conditions may occur while flooding abandoned uranium mines. Here, the risk assessment of hazards requires reliable knowledge on the mobility of uranium (U). A flooding process was simulated at mesocosm scale by mixing U-contaminated acid mine water with near-neutral groundwater under oxic conditions. The mechanism of U-uptake by fresh precipitates and the molecular structure of U bonding were determined to estimate the mobility of U(VI). Analytical and spectroscopic methods such as Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy at the Fe K-edge and the U LIII-edge, and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy were employed. The freshly formed precipitate was identified as colloidal two-line ferrihydrite. It removed U(VI) from solution by sorption processes, while surface precipitation or structural incorporation of U was not observed. EXAFS data suggest a mononuclear inner-sphere, edge-sharing complex of U(VI) with ferrihydrite in the absence of dissolved carbonate. By employing a novel EXAFS analysis method, Monte Carlo Target Transformation Factor Analysis, we could for the first time ascertain a 3-D configuration of this sorption complex without the necessity to invoke formation of a ternary complex. The configuration suggests a slightly tilted position of the adsorbed unit relative to the edge-sharing Fe(O, OH)6 octahedra. In the presence of dissolved carbonate and at pH ∼8.0, a distal carbonate O-atom at ∼4.3 Å supports formation of ternary U(VI)-carbonato surface complexes. The occurrence of these complexes was also confirmed by ATR-FTIR. However, in slightly acidic conditions (pH 5-6) in equilibrium with atmospheric CO2, the U(VI) sorption on ferrihydrite was dominated by the binary complex species Fe(O)2UO2, whereas ternary U(VI)-carbonato surface complexes were of minor relevance. While sulfate and silicate were also present in the mine water, they had no detectable influence on U(VI) surface complexation. Our experiments demonstrate that U(VI) forms stable inner-sphere sorption complexes even in the presence of carbonate and at slightly alkaline pH, conditions which previously have been assumed to greatly accelerate the mobility of U(VI) in aqueous environments. Depending on the concentrations of U(VI) and carbonate, the type of surface complexes may change from binary uranyl-ferrihydrite to ternary carbonato-uranyl-ferrihydrite complexes. These different binding mechanisms are likely to influence the binding stability and retention of U(VI) at the macroscopic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号