共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
青藏高原大气低频振荡与低涡群发性的研究 总被引:13,自引:0,他引:13
本文指出,夏半年青藏高原低涡具有群发性,即低涡集中在某些时段连续不断地发生,而在另一些时段又不发生的特征。高原低涡的群发时段与高原大气低频振荡位相转换和垂直结构以及高原大气高频扰动的强弱有联系。这种联系,可能是高原大气扰动——高频部分与低频部分之间的相互作用。 相似文献
3.
夏季青藏高原低涡形成和发展的数值模拟 总被引:21,自引:3,他引:21
本文利用一有限区域数值预报模式和综合订正后的1979年6~8月FGGE IIIb级资料,选择该年雨季中三例包含形成和(或)发展阶段的较典型的青藏高原低涡过程,设计了控制性试验和降低高原地形、无地面感热和潜热通量、无凝结潜热、减小温度递减率、增大气柱斜压性、无摩擦影响的十余组试验方案,进行了24 h或48 h数值模拟。最后提出了青藏高原低涡发生发展的概念模式。简单地讲,青藏高原低涡可看作是一种强烈依赖于青藏高原地形,同时又受层结稳定度、地面热通量和凝结潜热控制的局地性低压涡旋。 相似文献
4.
数值模拟青藏高原东北边缘冰雹云形成的中尺度环境——个例研究 总被引:1,自引:0,他引:1
运用中尺度数值模式MM5,对2003年7月6~8日甘肃南部发生的一次典型区域性冰雹过程进行了数值模拟,并用模拟资料分析了大中尺度环流背景和局地对流单体群特征的演变。结果表明,模式MM5较好地模拟了这次冰雹天气过程和中尺度系统发生发展的特征;低层偏南暖湿气流和中高层西北气流为本次降雹过程提供了环流背景,地形等局地因素是本次冰雹天气发生的重要条件;对流单体主要在海拔较高的山脊处生成,并向低海拔地区移动传播,传播的速度和方向主要与地形和中高层风速风向有关。 相似文献
5.
青藏高原降雪的气候学分析 总被引:11,自引:0,他引:11
青藏高原上的自然天气季节和大气环流与我国东部平原极不相同,因此,高原上的降雪,无论是时空分布,或者是降雪天气系统都有很多特殊性。 本文根据1966—1975年青藏高原气象资料,阐述了高原上自然降雪的时空分布特点和形成的物理条件;归纳出有利于降雪的六种天气型式;分析了大气环流季节变化与高原降雪之间的联系。高原降雪主要集中发生在冬夏环流的转换季节。 相似文献
6.
青藏高原上中尺度对流系统(MCSs)的个例分析及其比较 总被引:3,自引:0,他引:3
对1995年7月25—28日高原上连续数日出现MCSs的现象进行了红外云图特征及其演变、大尺度环境背景场和对流有效位能的分析。可以发现,所有这些MCSs有着相似的日变化演变过程;它们的初始对流在中午由于日射加热开始活跃,之后迅速发展,这些MCSs在后下午形成,在傍晚达到最强,之后逐渐减弱。其中26日MCS最为强大,它是在单一的强大的近于圆形的高原反气旋高压背景下受强的低层热力强迫和条件不稳定的驱动而发生的。这些发生条件都与高原本身的热力作用紧密相关,所以它的发生发展主要与高原特有的较为纯粹的热力因子相联系。28日MCS是另一个很强的MCS,它明显地受到中纬度西风槽的斜压区的影响,这二个很强的MCS有着不同的发展机制和显著不同的表现特征。 相似文献
7.
利用1979年5—8月青藏高原科学实验取得的资料,对1979年6月15日00 GMT 100—850 hPa等9层FGGE Ⅲ b分析的高度和风场进行了客观分析订正,并以订正前后的资料为初值,用T21L5和T42L9两种不同分辨率的北半球谱模式作了5个5天预报的数值试验。研究结果表明,通过高原实验资料对FGGE Ⅲ b资料的订正,将使FGGE Ⅲ b资料在高原地区的分析得到改善。对流层上层的资料订正比下层效果明显。高原地区初值场的订正对数值预报结果有显著影响,并且对较高分辨率模式的预报结果影响更大。初值订正后不仅影响未来高原地区的预报,而且通过能量频散可以影响到我国东部和日本,大约经过5天左右,甚至可以影响到阿拉斯加和北美。 相似文献
8.
利用美国大气研究中心(NCAR)的公用气候系统模式(CCSM2.01)进行了一组改变青藏高原地形高度和地球轨道(岁差)参数的数值模拟试验,以探讨青藏地区地球轨道和地形变化对高原气候的影响。结果表明:同样的岁差强迫,青藏地区与湿度相关的各种气候要素(如降水、地表径流、降雪和积雪深度)在高地形情况下的响应要比在低地形情况下的响应强烈得多。当近日点的时间由现代的1月份变为7月份时(如距今约1万年前的全新世初期),会造成高原中南部及高原南侧夏季降水和径流显著增加,冬季高原西北部降雪增加,但高原中南部的冬季降雪却会明显减少。上述区域气候变化特征与岁差强迫下大气环流的改变密切相关。这些数值模拟结果也有助于理解该地区相关地质气候记录中青藏高原隆升过程对轨道尺度气候变率的调制作用。 相似文献
9.
A method has been developed to determine the surface albedo over the Qinghai-Xizang Plateau region from NOAA polar orbiter AVHRR (Advanced Very High Resolution Radiometer) data. The empirical rela-tionship between clear-sky planetary and surface albedos is established the basis of surface global radiation measurements and the specified ratio between atmospheric reflection and absoption of solar radiation. The method is applied to the Qinghai-Xizang region with several measurements during the period of Sep. to Nov., 1985. A comparison is presented between the estimated surface albedos and that of surface observation. The results show that the presented method is suitable to detecting the spatial and temporal variation of surface albedo and is relevant for climatologies studies. The possible error sources and improvements are discussed as well. 相似文献
10.
青藏高原上中尺度对流系统(MCS)的数值模拟 总被引:4,自引:0,他引:4
A mesoscale convective system (MCS) developing over the Qinghai-Xizang Plateau on 26 July 1995 issimulated using the fifth version of the Penn State-NCAR nonhydrostatic mesoscale model (MM5). Theresults obtained are inspiring and are as follows. (1) The model simulates well the largescale conditionsin which the MCS concerned is embedded, which are the well-known anticyclonic Qinghai-Xizang PlateauHigh in the upper layers and the strong thermal forcing in the lower layers. In particular, the modelcaptures the meso-α scale cyclonic vortex associated with the MCS, which can be analyzed in the 500 hPaobservational winds; and to some degree, the model reproduces even its meso-β scale substructure similarto satellite images, reflected in the model-simulated 400 hPa rainwater. On the other hand, there aresome distinct deficiencies in the simulation; for example, the simulated MCS occurs with a lag of 3 hoursand a westward deviation of 3-5° longitude. (2) The structure and evolution of the meso-α scale vortexassociated with the MCS are undescribable for upper-air sounding data. The vortex is confined to thelower troposphere under 450 hPa over the plateau and shrinks its extent with height, with a diameter of4° longitude at 500 hPa. It is within the updraft area, but with an upper-level anticyclone and downdraftover it. The vortex originates over the plateau, and does not form until the mature stage of the MCS. Itlasts for 3-6 hours. In its processes of both formation and decay, the change in geopotential height fieldis prior to that in the wind field. It follows that the vortex is closely associated with the thermal effectsover the plateau. (3) A series of sensitivity experiments are conducted to investigate the impact of varioussurface thermal forcings and other physical processes on the MCS over the plateau. The results indicatethat under the background conditions of the upper-level Qinghai-Xizang High, the MCS involved is mainlydominated by the low-level thermal forcing. The simulation described here is a good indication that itmay be possible to reproduce the MCS over the plateau under certain large-scale conditions and with theincorporation of proper thermal physics in the lower layers. 相似文献
11.
12.
RegCM3模式对青藏高原地区气候的模拟 总被引:23,自引:7,他引:23
使用RegCM3区域气候模式,利用ECMWF的ERA40再分析资料,对东亚地区进行了长达15年(1987-2001年)时间的数值积分试验,重点分析了模式对青藏高原及青藏铁路沿线地区气温和降水的模拟。结果表明,RegCM3模式具有模拟青藏高原及周边地区当代降水和气温主要分布特征的能力,尤其在观测站点稀少地区可提供局地降水和气温分布的较可靠信息。模式较好地模拟了青藏铁路沿线地区的降水,特别是气温的年变化趋势,同时也较好地模拟了这一地区气温的年际变化,但对该区降水年际变化的模拟能力则有待进一步提高。 相似文献
13.
青藏高原地表温度的变化分析 总被引:51,自引:15,他引:51
利用青藏高原86个气象观测站建站~2001年历年各月地面0cm温度资料,在分析高原冬季、夏季和年平均地表温度基本气候特征的基础上,通过主成分分析、主值函数和功率谱分析等方法,对高原地表温度异常变化的空间结构和时间演变趋势作了诊断研究。结果表明:高原地表温度主要受海拔高度与纬度的影响,海拔越高温度越低,纬度越高温度越低。年平均温度最高值在雅鲁藏布江河谷的察隅为14.9℃;夏季平均温度最高值在柴达木盆地的格尔木为23.0℃。高原外围的南疆盆地南缘,川西温度更高,但其中心不在高原。高原地表温度最低值在中部的托托河、五道梁,年平均温度为-0.2℃,冬季更低,平均为~14.2~-15.8℃;夏季平均地表温度最低值在清水河为9.8℃,7月平均温度为10.7℃。高原地表温度第一载荷向量除南部小范围为负值外,大部分地方为一致的正值,即第一空间尺度表现为整体一致性;第二空间尺度有南正(负)北负(正)之差异。第一主分量在近30年中表现为明显的上升趋势,主要反映了高原主体偏北和东北部地区地表温度显著升温趋势,而第二主分量的缓慢下降说明高原中部和东南部地表温度呈下降趋势。代表站温度变化表现出准3年和准6年的周期振荡。铁路线北段和南段线性升温率较大,在0.42~0.58℃/10a之间;铁路线中段的高海拔地区升温率较小,为0.32~0.39℃/10a。 相似文献
14.
15.
《高原气象》2016,(1)
利用2000—2012年青藏高原附近地区251个台站的降水观测资料评估了CMOR.PH、PERSI—ANN、TRMM3B41RT、TRMM3B42RT和TRMM3B42V7等5种卫星反演降水资料在青藏高原地区的差异性和一致性。结果表明,5种卫星反演降水资料均能较好地表征降水量在青藏高原地区从东南向西北递减和夏季降水多、冬季降水少的特征。通过分析相对误差和空间相关系数表明,5种卫星资料在夏季的反演效果最好、冬季最差,白天好于夜间。相对于其他4种资料,TRMM3B42V7资料与观测值之间的差异最小,除了冬季一段较短时间内空间相关系数较低外,一年之中大部分时段空间相关系数都在0.5以上。CMORPH仅次于TRMM3B42V7,在青藏高原地区的适用性也较好;对不同等级降水频数的反演效果表明,CMORPH和TRMM3B42V7反演的小雨降水频数与台站观测值基本一致,高估了大雨和暴雨的降水频数,而TRMM3B42V7对中雨降水频数的反演较为合理。 相似文献
16.
17.
18.
青藏高原那曲地区冻融过程的数值模拟研究 总被引:3,自引:0,他引:3
利用中国科学院那曲高寒气候环境观测研究站冻融期(2013年3月1日至6月1日)的气象和土壤观测资料,通过陆面模式Co LM对那曲地区土壤冻融过程进行了数值模拟。模拟结果表明,Co LM模式对土壤温度、感热通量和潜热通量的模拟与观测较吻合,但对土壤湿度的模拟偏差较大,而模式冻融参数化方案的不足是造成这一较大偏差的主要原因。根据热力学平衡下土壤水势与温度之间的关系以及Clapp-Hornberger经验公式对冻融参数化方案进行了优化,优化冻融参数化方案后,模式能够更真实地模拟出土壤冻融过程特征,尤其是对土壤湿度偏低的现象改进较大。 相似文献
19.
青藏高原云闪起始阶段放电特征分析 总被引:1,自引:0,他引:1
2003年夏季在青藏高原那曲地区进行了雷电综合观测试验,利用宽带干涉仪系统获取的闪电资料,根据辐射源定位结果和相应的电场变化对云闪放电起始阶段进行了分析,初步分析结果表明:雷暴过境时地面电场为正值的情况下,云闪放电多发生在中部负电荷区和下部正电荷区之间,上部正电荷区一般不参与放电。虽然不同的云闪会有不同的放电发展过程,但放电起始阶段具有相似的特征。云闪放电起始于中部负电荷区,在初始几十毫秒内,辐射源垂直向下发展,云内负流光向下发展速度约为1.14~1.72×105m/s。在下部正电荷区内,闪电通道可以垂直发展,也可以水平发展。且发生在正电荷区的放电过程比较复杂,正电荷区辐射点比负电荷区要多。 相似文献
20.
本文用1979年夏季6—8月青藏高原地区17个站资料(包括青藏高原科学实验资料),通过直接法求得长波辐射、短波辐射、凝结潜热和感热输送等四项加热分量,在此基础上求出高原地区的平均大气热量输送,并和国内外其它作者所估计的高原大气热源情况进行比较。计算结果表明,对高原大气热源的主要贡献是长波辐射,文中还探讨了青藏高原地区大气加热场与高原季风爆发前后以及高原季风活跃和中断时期环流的关系。 相似文献