首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Geological and geochemical characteristics of cherts of the low-middle parts of the Jinchang Formation indicate that cherts are associated with hydrothermal sedimentation,but the middle-upper parts of the Jinchang Formaiton are mixed with normal sediments.The cherts are characterized by high Fe,As,Sb,Si and Ga,low Al and totoal REE,negative Ce anomaly and HREE enrichment.Their δ^18O values show that the forming temperatures of the cherts range from 128℃ tp 146℃.  相似文献   

4.
5.
The Anqing-Lujiang quartz syenite rock belt consists of the Huangmeijian, Chengshan and Dalongshan composite batholiths which intruded into the Mesozoic strata. The country rocks were subjected to thermal contact metamorphism with little sign of folding and regional metamorphism. The rock belt is Late Yenshanian in age with a Rb-Sr isochron age of 135 Ma. Major rock types are quartz syenite and, to a lesser extent, syenite porphyry and alkali feldspar granite. Rock-forming minerals are dominantly potash feldspar (more than 50%) and lesser amounts of plagioclase and quartz. Mafic minerals, mostly Mg-biotite with lesser amounts of amphibole and pyroxene, are rare. Occasionally, alkalic mafic minerals (aegirine, riebeckite) are found. Characteristic accessary minerals of the earlier intrusives are magnetite, sphene and apatite and those of the later intrusives are ilmenite and zircon. Typologic distribution and evolutionary trend of zircon population are very similar to those of granites of mantle origin as suggested by Pupin, J. P. Petrochemically, the rock belt is poor in Ca but rich in alkali and Al with Na2O+K2O > 10%. It belongs to the K-Na transitional series, with a high alkalinity ratio (A. R. = 3–7) and a K /Na (atom) ratio close to unity. Rocks in the belt are rich in REE which tends to decrease from the early to the late stage, belonging to LREE type. The initial Sr ratio is 0.7078–0.7064. The rock belt is the Mesozoic anorogenic product of alkalic magmatic activity from a deep-seated source. According to a mantle-crust mixing model for Sr and Pb isotopes, it is estimated that 60.2–53.8% of the materials has been derived from the mantle. Additionally, its rich alkali, poor water content and anorogenic characteristics suggest that the belt is similar to the A-type granites.  相似文献   

6.
Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first largescale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the North China craton in recent years. It was discovered by the No. l Geophysical and Geochemical Exploration Party of Inner Mongolia as a result of prospecting a geochemical anomaly. By now, over 50 tonnes of gold has been defined, with an average Au grade of 4 g/t. The ore bodies occur in the first lithological unit of the Mesoproterozoic Zhulazhagamaodao Formation (MZF), which is composed mainly of epimetamorphic sandstone and siltstone and partly of volcanic rocks. With high concentration of gold,the first lithological unit of the MZF became the source bed for the late-stage ore formation. Controlled by the interstratal fracture zones, the ore bodies mostly appear along the bedding with occurrence similar to that of the strata. The primitiveore types are predominantly the altered rock type with minor ore belonging to the quartz veins type. There are also some oxidized ore near the surface. The metallic minerals are composed mainly of pyrite, pyrrhotite and arsenopyrite with minor chalcopyrite, galena and limonite. Most gold minerals appear as native gold and electrum. Hydrothermal alterations associated with the ore formation are actinolitization, silicatization, sulfidation and carbonation. A total of 100 two-phase H2O-rich and 7 three-phase daughter crystal-beating inclusions were measured in seven goldbearing quartz samples from the Zhulazhaga gold deposit. The homogenization temperatures of the two-phase H2O-rich inclusions range from 155 to 401℃, with an average temperature of 284℃ and bimodal distributions from 240 to 260℃ and 300 to 320℃ respectively. The salinities of the two-phase H2O-rich inclusions vary from 9.22wt% to 24.30wt% NaCl eqniv, with a mode between 23 wt% and 24wt% NaC1 equiv. Comparatively, the homogenization temperatures of the threephase daughter crystal-beating inclusions vary from 210 to 435℃ and the salinities from 29.13wt% to 32.62wt% NaCl equiv. It indicates that the ore-forming fluid is meso-hypothermal and characterized by high salinity, which is apparently different from the metamorphic origin with low salinity. It suggests a magmatic origin of the gold-bearing fluid. The δ^18O values of quartz from auriferous veins range from 11.9 to 16.3 per mil, and the calculated δ^18OH2O values in equilibrium with quartz vary from 1.06 to 9.60 per mil, which fall between the values of meteoric water and magmatic water. It reflects that the ore-forming fluid may be the product of mixing of meteoric water and magmatic water.Based on geological and geochemical studies of the Zhulazhaga gold deposit, it is supposed that the volcanism in the Mesoproterozoic might make gold pre-concentrate in the strata. The extensive and intensive Hercynian tectono-magmatic activity not only brought along a large number of ore-forming materials, but also made the gold from the strata rework. It can be concluded that the ore bodies were mainly formed in late hydrothermal reworking stage. Compared with typical gold deposits associated with epimetamorphic clastic rocks, the Zhulazhaga deposit has similar features in occurrence of ore bodies, ore-controlling structure, wall-rock alterations and mineral assemblages. Therefore, the Zhulazhaga gold deposit belongs to the epimetamorphic clastic rock type.  相似文献   

7.
8.
The development of Early Cretaceous mafic dikes in northern and southern Jiangxi allows an understanding of the geodynamic setting and characteristics of the mantle in southeast China in the Cretaceous. Geological and geochemical characteristics for the mafic dikes from the Wushan copper deposit and No. 640 uranium deposit are given in order to constrain the nature of source mantle, genesis and tectonic implications. According to the mineral composition,the mafic dikes in northern Jiangxi can be divided into spessartite and olive odinite types, which belong to slightly potassium-rich calc-alkaline lamprophyre characterized by enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), large depletion in high strength field elements (HSFE) and with negative Nb, Ta and Ti anomalies, as well as 87Sr/86Sr ratios varying from 0.7055 to 0.7095 and 143Nd/r44Nd ratios varying from 0.5119 to 0.5122.All features indicate that the magma responsible for the mafic dikes was derived mainly from metasomatic lithosphere mantle related to dehydration and/or upper crust melting during subduction. Differences in geochemical characteristics between the mafic dikes in northern Jiangxi and the Dajishan area, southern Jiangxi were also studied and they are attributed to differences in regional lithospheric mantle components and/or magma emplacement depth. Combining geological and geochemical characteristics with regional geological history, we argue that southeast China was dominated by an extensional tectonic setting in the Early Cretaceous, and the nature of the mantle source area was related to enrichment induced by asthenosphere upwelling and infiltration of upper crust-derived fluids responding to Pacific Plate subduction.  相似文献   

9.
10.
The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K2O(1.21%),∑REE (278μg/g) ,and LILE(such as Rb, Ba, K, Th, etc.) , with high (La/Yb)N ratios(14.4),on the basis of the analyses of major elements, rare-earth elements (REE) and trace elements. Their enrichment in LILE, notable Nb-Ta depletion through, and depletion in HFSE relative to REE in comparison with the primitive mantle and N-MORB indicate that the protoliths of the eclogite gravels were formed in an island-arc setting. According to the Th-Hf-Ta discrimination diagram, the protoliths of the eclogite gravels are characterized by volcanic arc basalts.Trace element data indicate that the subducted marine sediments were assimilated in the magma chamber, resulting in the enrichment of LILE in the protoliths. Therefore, the protoliths of the eclogite gravels are considered to have been formed in an inland-arc setting, indicating that there had developed a paleo-inland arc before Triassic collision between the North and South China blocks in the Dabie orogenic belt. There is a marked difference between the eclogite gravels and the eclogites developed along the Dabie orngenic belt, solely based on their geochemical data,especially REE. Therefore, the eclogite gravels may not be derived from eclogite terrains preserved in the Dabie orogenic belt.  相似文献   

11.
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. εNd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the  相似文献   

12.
Geochemical and isotopic investigations have been carded out on the Chebu gabbroite in southern Jiangxi Province, southeast China and these results are compared with gabbro bodies along the coast of Fujian Province in order to understand their magma sources and tectonic implications. The Chebu intrusion formed at the beginning of the Middle Jurassic (172~4.3 Ma). These rocks are Ti-rich and Al-poor in major elements, characterized by strong enrichment in large-ion lithophile elements (LILE) and moderate enrichment in high field strength elements (HFSE) and light rare-earth elements CLREE), without pronounced Nb or Ta anomalies. Age-correlated Sr-Nd isotope ratios show moderately high ranges of (^87Sr/^86Sr)i from 0.7065 to 0.7086 and 0.5124 to 0.5125 of (^143Nd/^144Nd)i. The geochemical characteristics of the Chebu gabbroite suggest that it is notably different from island-arc basalt and similar to intra-plate basaltic rocks. By combining interpretations of its geological and geochemical characteristics and the regional geological development history, the Chebu gabbroitic intrusion is thought to be the product of asthenosphere upwelling and rapid lithosphere extension during a transition of tectonic systems in southeast China. The tectonic environment and source characteristics of the intrusion are different from Cretaceous gabbro bodies along the coast of Fujian Province, The former formed in a tectonic environment of rapid intra-plate lithospheric extension and the source characteristics were of a weakly enriched primitive mantle, whereas the latter originated mainly in a volcanic-magmatic arc extensional tectonic environment and the nature of the source was an enriched mantle with more subduct subducted components.  相似文献   

13.
14.
1. Introduction The uplift and evolution of the Qinghai Tibet Plateau has been the most important projects for studying the dynamic process of the plateau, and the uplift mechanism and history are the essential problems. Researches have been done extensively in terms of tectonics, sedimentology, geophysics, paleontology, paleoclimate and paleomagnetism for several tens of years. Many evolution models have been suggested but so far none of them have been explained perfectly. In recent years,…  相似文献   

15.
The gigantic fold-thrust fracture belt that ex-tends for 900 kmto the NWin the southern NorthChina plate strides across three provinces : Shaanxi ,Henan and Anhui .It is one of the most characteristicstructural deformations in the North China plate .Along this structural belt a series of i mportantcoalfields occur ( e . g. Pingdingshan, Queshan,Huainan) inthe southernmost edge of the North Chi-na coal-concentrating basin. Consequently ,this beltis not only of key value for research onthe…  相似文献   

16.
The thermal characteristic of cristobalite plays an important role in the application of casting industry. Because the phase transition of silica glass and cristobalite has low volume change, the block cristobalite had been manufactured by calcining fused silica ceramic, the XRD, SEM and thermal characteristics of the cristobalite had been tested. The result shows the formation of porous structure in the block cristobalite, and thermal expansion rate of the phase transition of β/αcristobalite reaches 1.5% at the temperature range of 250-290 ℃.  相似文献   

17.
18.
In this paper we present new data for the Tianquan (TQ) and Dabure (DB) ocean islands in the western segment of the Longmuco–Shuanghu–Lancangjiang suture zone, northern Tibet, including the results of major and trace element analyses, zircon U–Pb dating, and Hf isotope analyses. Our aim was to assess the genesis of these ocean islands and to consider the implications for the tectonic evolution of the region as a whole. Both TQ and DB retain an ocean-island-type double-layered structure comprising a volcanic basement (basalt and andesite) and an oceanic sedimentary cover sequence (conglomerate, limestone, and chert). The basalts and andesites in the TQ and DB are enriched in light rare earth elements and high field strength elements (Nb, Ta, Zr, Hf, and Ti), yielding chondrite-normalized REE patterns and primitive-mantle-normalized trace element patterns that are similar to those of ocean island basalts. Given the small and generally positive εHf(t) values of the TQ andesites (+ 4.25 to + 6.22) and DB andesites (− 0.59 to + 1.97, mostly > 0), we conclude that the basalts were derived from the partial melting of garnet peridotite in the mantle and that the andesites were formed by fractional crystallization of the mafic parent magma derived from the garnet peridotite mantle. The ascending magmas underwent varying degrees of fractional crystallization but were not contaminated by crustal material. These features indicate that both TQ and DB are typical ocean islands that formed in an ocean basin. Geochemical analyses of cherts from TQ and DB show that they contain terrigenous material, indicating the proximity of a continental margin. The andesites of TQ contain zircons that yield two U–Pb ages of 251 Ma. Given that ages of 246, 247, and 254 Ma had been reported previously, we conclude that TQ formed during the late Permian–Early Triassic. The andesites of DB contain zircons that yield U–Pb ages of 242 and 246 Ma. Taking into account the youngest age of 244 Ma from the DB basalt, we conclude that DB formed during the Middle Triassic. These data, combined with the geological history of the region, indicate that the development of the Longmuco–Shuanghu–Lancangjiang Paleo-Tethys Ocean continued after the early Permian and that the closure of this ocean was diachronous from east to west. The eastern segment of the ocean closed during the Early Triassic; however, the western segment remained at least partially open until the Middle Triassic, although the ocean was relatively small at this time. The ocean finally closed in the Late Triassic.  相似文献   

19.
This paper,based on the fundamental inorganic chemical and organic geochemical characteristics of oilfield waters from the Turpan Depression,presents the contents of organic matter,the distribution of low-carbon fatty acids and the contents of aromatic hydrocarbons as well as their principal ultraviolet absorption spectral and fluorescence spectral characteristics in oilfield waters from different oil/gas-bearing areas.The oil/gas reservoirs in this depression are classified in terms of their conserving conditions.In additon,the paper also discusses the chemical characteristics of oilfield waters from different types of oil/gas reservoirs with an emphasis on the characteristics of their localization in the γNa/γCa-γN a/γCl correction diagram.On this basis it is attempted to expound the fundamental geochemical characteristics of oilfield waters from the Turpan Depression and their geological significance.  相似文献   

20.
The Tangquan granodioritic pluton in Dalian County, southwestern Fujian, China, which extends in a NE direction with an exposed area of about 130 km2, used to be considered a product of Early Cretaceous magmatism. The present study suggests for the first time that the pluton was formed in the Early Jurassic by using multiple methods for isotopic dating, which give zircon U-Pb ages of 186.8 Ma and 179.0 Ma, Rb-Sr isochron age of 162.02±4.5 Ma, and biotite 40Ar/39Ar plateau age of 158.1±0.7 Ma. The cooling rate for the pluton was relatively low (4.76℃/Ma) during the early stage (183-162 Ma) because of the compressional environment. It was emplaced in a higher cooling rate (50℃/Ma) in an extensional environment during the later stage (162-158 Ma). The granodiorites are metaluminous-peraluminous, relatively enriched in Na2O and depleted in K2O, and characteristic of I-type granites of crust-mantle mixed sources. They are moderately enriched in Rb, Th, Hf and LREE, and depleted in Ti, Nb, Ta and Sr, and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号