首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 961 毫秒
1.
We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| > 15°) Galactic latitudes. The Declination coverage of the present survey is δ}> - 45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.  相似文献   

2.
A full-sky template map of the Galactic free–free foreground emission component is increasingly important for high-sensitivity cosmic microwave background (CMB) experiments. We use the recently published Hα data of both the northern and southern skies as the basis for such a template.
The first step is to correct the Hα maps for dust absorption using the 100-μm dust maps of Schlegel, Finkbeiner & Davis. We show that for a range of longitudes, the Galactic latitude distribution of absorption suggests that it is 33 per cent of the full extragalactic absorption. A reliable absorption-corrected Hα map can be produced for ∼95 per cent of the sky; the area for which a template cannot be recovered is the Galactic plane area  | b | < 5°, l = 260°–0°–160°  and some isolated dense dust clouds at intermediate latitudes.
The second step is to convert the dust-corrected Hα data into a predicted radio surface brightness. The free–free emission formula is revised to give an accurate expression (1 per cent) for the radio emission covering the frequency range 100 MHz–100 GHz and the electron temperature range 3000–20 000 K. The main uncertainty when applying this expression is the variation of electron temperature across the sky. The emission formula is verified in several extended H  ii regions using data in the range 408–2326 MHz.
A full-sky free–free template map is presented at 30 GHz; the scaling to other frequencies is given. The Haslam et al. all-sky 408-MHz map of the sky can be corrected for this free–free component, which amounts to a  ≈6  per cent correction at intermediate and high latitudes, to provide a pure synchrotron all-sky template. The implications for CMB experiments are discussed.  相似文献   

3.
We present the first tests of a new method, the correlated component analysis (CCA) based on second-order statistics, to estimate the mixing matrix, a key ingredient to separate astrophysical foregrounds superimposed to the Cosmic Microwave Background (CMB). In the present application, the mixing matrix is parametrized in terms of the spectral indices of Galactic synchrotron and thermal dust emissions, while the free–free spectral index is prescribed by basic physics, and is thus assumed to be known. We consider simulated observations of the microwave sky with angular resolution and white stationary noise at the nominal levels for the Planck satellite, and realistic foreground emissions, with a position-dependent synchrotron spectral index. We work with two sets of Planck frequency channels: the low-frequency set, from 30 to 143 GHz, complemented with the Haslam 408 MHz map, and the high-frequency set, from 217 to 545 GHz. The concentration of intense free–free emission on the Galactic plane introduces a steep dependence of the spectral index of the global Galactic emission with Galactic latitude, close to the Galactic equator. This feature makes difficult for the CCA to recover the synchrotron spectral index in this region, given the limited angular resolution of Planck , especially at low frequencies. A cut of a narrow strip around the Galactic equator  (| b | < 3°)  , however, allows us to overcome this problem. We show that, once this strip is removed, the CCA allows an effective foreground subtraction, with residual uncertainties inducing a minor contribution to errors on the recovered CMB power spectrum.  相似文献   

4.
A maximum entropy method (MEM) is presented for separating the emission resulting from different foreground components from simulated satellite observations of the cosmic microwave background radiation (CMBR). In particular, the method is applied to simulated observations by the proposed Planck Surveyor satellite. The simulations, performed by Bouchet &38; Gispert, include emission from the CMBR and the kinetic and thermal Sunyaev–Zel'dovich (SZ) effects from galaxy clusters, as well as Galactic dust, free–free and synchrotron emission. We find that the MEM technique performs well and produces faithful reconstructions of the main input components. The method is also compared with traditional Wiener filtering and is shown to produce consistently better results, particularly in the recovery of the thermal SZ effect.  相似文献   

5.
Summary. Due to the foreground extinction of the Milky Way, galaxies appear increasingly fainter the closer they lie to the Galactic Equator, creating a “zone of avoidance” of about 25% in the distribution of optically visible galaxies. A “whole-sky” map of galaxies is essential, however, for understanding the dynamics in our local Universe, in particular the peculiar velocity of the Local Group with respect to the Cosmic Microwave Background and velocity flow fields such as in the Great Attractor region. Various dynamically important structures behind the Milky Way have only recently been made “visible” through dedicated deep surveys at various wavelengths. The wide range of observational searches (optical, near infrared, far infrared, radio and X-ray) for galaxies in the Zone of Avoidance are reviewed, including a discussion on the limitations and selection effects of these partly complementary approaches. The uncovered and suspected large-scale structures are summarized. Reconstruction methods of the density field in the Zone of Avoidance are described and the resulting predictions compared with observational evidence. The comparison between reconstructed density fields and the observed galaxy distribution allow derivations of the density and biasing parameters and b. Received 4 April 2000 / Published online 18 July 2000  相似文献   

6.
We detected a ring-like distribution of far-infrared (FIR) emission in the direction of the centre of the Virgo cluster (VC). We studied this feature in the FIR, radio and optical domains, and deduced that the dust within the feature reddens the galaxies in the direction of the VC but does not affect stars within the Milky Way. This is likely to be a dusty feature in the foreground of the VC, presumably in the Galactic halo. The H  i distribution follows the morphology of the FIR emission and shows peculiar kinematic behaviour. We propose that a highly supersonic past collision between an H  i cloud and the Galactic H  i formed a shock that heated the interface gas to soft X-ray temperatures. H  i remnants from the projectile and from the shocked Galactic H  i rain down on to the disc as intermediate-velocity gas.
Our finding emphasizes that extragalactic astronomy must consider the possibility of extinction by dust at high galactic latitude and far from the Galactic plane, which may show structure on 1° and smaller scales. This is particularly important for studies of the VC, e.g. in the determination of the Hubble constant from Cepheids in cluster galaxies.  相似文献   

7.
The extinction properties of H  ii regions in the Large Magellanic Cloud are investigated using radio continuum data obtained from the Molonglo Observatory Synthesis Telescope, digitized and calibrated Hα data and published Balmer decrement measurements. The resulting extinction–colour excess diagram suggests that (1) most H  ii regions in the Magellanic Clouds have similar extinction properties to the Galactic ones, (2) all imaginable gas/dust configurations are possible, (3) the extinction of some highly reddened H  ii region cores originates externally in cocoon shells.   The puzzle of different extinction–colour excess ratios of Galactic and extragalactic H  ii regions is explained as being due to the different populations of observed samples rather than any intrinsic differences. The extinction of the observed Galactic H  ii regions produced by foreground dust overwhelms the internal extinction, while the situation in the observed extragalactic H  ii regions is just the opposite.  相似文献   

8.
The hypothesis of an extended red emission (ERE) in diffuse Galactic light (DGL) has been put forward in 1998 by Gordon, Witt & Friedmann who found that scattered starlight was not enough to explain the amount of DGL in the R band, in some high Galactic latitude directions. This paper re-investigates, for high Galactic latitudes, the brightnesses and colours of DGL, integrated star and galaxy light (ISGL), and of the total extrasolar light (ISGL+DGL) measured by Pioneer. Under the traditional assumption that DGL is forward scattering of background starlight by interstellar dust on the line of sight, ISGL and Pioneer have very close colours, as it is found by Gordon, Witt & Friedmann. Pioneer observations at high |b| thus accept an alternative and simple interpretation, with no involvement of ERE in DGL.  相似文献   

9.
We have carried out a sensitive high-latitude (|b| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3σ detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V1sr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s−1 and 21 ± 4 km s−1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm−2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4) × 1019 cm−2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.  相似文献   

10.
Topological defect theories lead to non-Gaussian features on maps of fluctuations of the cosmic microwave background radiation (CMBR), which enable us to distinguish them from maps predicted by standard inflationary models. We have recently presented a maximum entropy method (MEM) which simultaneously deconvolves interferometer maps of CMBR fluctuations, and separates out foreground contaminants. By applying this method to simulated observations using a realistic ground-based interferometer, we demonstrate that it is possible to recover the prominent hotspots in the CMBR maps which delineate individual defects, even in the presence of a significant Galactic foreground.  相似文献   

11.
Polarized diffuse emission observations at 1.4 GHz in a high Galactic latitude area of the Northern celestial hemisphere are presented. The  3.2 × 3.2 deg2  field, centred at  RA = 10h58m, Dec. =+42°18' (B1950)  , has Galactic coordinates   l ∼ 172°, b ∼+63°  and is located in the region selected as northern target of the Balloon-borne Radiometers for Sky Polarization Observations experiment. Observations have been performed with the Effelsberg 100-m telescope. We find that the angular power spectra of the E and B modes have slopes of  β E =−1.79 ± 0.13  and  β B =−1.74 ± 0.12  , respectively. Because of the very high Galactic latitude and the smooth emission, a weak Faraday rotation action is expected, which allows both a fair extrapolation to cosmic microwave background polarization (CMBP) frequencies and an estimate of the contamination by the Galactic synchrotron emission. We extrapolate the E -mode spectrum up to 32 GHz and confirm the possibility to safely detect the CMBP E -mode signal in the Ka band found in another low-emission region. Extrapolated up to 90 GHz, the Galactic synchrotron B mode looks to compete with the cosmic signal only for models with a tensor-to-scalar perturbation power ratio   T / S < 0.001  , which is even lower than the T / S value of 0.01 found to be accessible in the only other high Galactic latitude area investigated to date. This suggests that values as low as   T / S = 0.01  might be accessed at high Galactic latitudes. Such low-emission values can allow a significant redshift of the best frequency to detect the CMBP B mode, also reducing the contamination by Galactic dust, and opening interesting perspectives to investigate inflation models.  相似文献   

12.
We present MERLIN observations of Galactic 21-cm H  i absorption at an angular resolution of  ∼0.1–0.2  arcsec and a velocity resolution of 0.5 km s−1, in the direction of three moderately low latitude  (−8° < b < −12°)  extragalactic radio sources, 3C 111, 3C 123 and 3C 161, all of which are heavily reddened. H  i absorption is observed against resolved background emission sources up to ∼2 arcsec in extent and we distinguish details of the opacity distribution within 1–1.5 arcsec regions towards 3C 123 and 3C 161. This study is the second MERLIN investigation of small-scale structure in interstellar H  i (earlier work probed Galactic H  i in the directions of the compact sources 3C 138 and 3C 147). The 0.1-arcsec scale is intermediate between H  i absorption studies made with other fixed element interferometers with resolution of 1–10 arcsec and very long baseline interferometry studies with resolutions of 10–20 mas. At a scale of 1 arcsec (about 500 au), prominent changes in Galactic H  i opacity in excess of 1–1.5 are determined in the direction of 3C 161 with a signal-to-noise ratio of at least 10σ. Possible fluctuations in the H  i opacity at the level of about 1 are detected at the  2.5–3σ  level in the direction of 3C 123.  相似文献   

13.
Magnetic fields are observed everywhere in the universe. In this review, we concentrate on the observational aspects of the magnetic fields of Galactic and extragalactic objects. Readers can follow the milestones in the observations of cosmic magnetic fields obtained from the most important tracers of magnetic fields, namely, the star-light polarization, the Zeeman effect, the rotation measures (RMs, hereafter) of extragalactic radio sources, the pulsar RMs, radio polarization observations, as well as the newly implemented sub-mm and mm polarization capabilities. The magnetic field of the Galaxy was first discovered in 1949 by optical polarization observations. The local magnetic fields within one or two kpc have been well delineated by starlight polarization data. The polarization observations of diffuse Galactic radio background emission in 1962 confirmed unequivocally the existence of a Galactic magnetic field. The bulk of the present information about the magnetic fields in the Galaxy comes from anal  相似文献   

14.
Transient microstructure in the diffuse interstellar medium (ISM) has been observed towards Galactic and extragalactic sources for decades, usually in lines of atoms and ions, and, more recently, in molecular lines. Evidently, there is a molecular component to the transient microstructure. In this paper, we explore the chemistry that may arise in such microstructure. We use a photodissociation region (PDR) code to model the conditions of relatively high density, low temperature, very low visual extinction and very short elapsed time that are appropriate for these objects. We find that there is a well-defined region of parameter space where detectable abundances of molecular species might be found. The best matching models are those where the interstellar microstructure is young (<100 yr), small (∼100 au) and dense  (>104 cm−3)  .  相似文献   

15.
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified “dark energy”, or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015M ) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this “dark repulsor” can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial “explosion” and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.  相似文献   

16.
We use a model of polarized Galactic emission developed by the Planck collaboration to assess the impact of foregrounds on B -mode detection at low multipoles. Our main interest is in applications of noisy polarization data and in particular in assessing the feasibility of B -mode detection by Planck . This limits the complexity of foreground subtraction techniques that can be applied to the data. We analyse internal linear combination techniques and show that the offset caused by the dominant E -mode polarization pattern leads to a fundamental limit of   r ∼ 0.1  for the tensor–scalar ratio even in the absence of instrumental noise. We devise a simple, robust, template fitting technique using multifrequency polarization maps. We show that template fitting using Planck data alone offers a feasible way of recovering primordial B -modes from dominant foreground contamination, even in the presence of noise on the data and templates. We implement and test a pixel-based scheme for computing the likelihood function of cosmological parameters at low multipoles that incorporates foreground subtraction of noisy data.  相似文献   

17.
Polarized intensity and polarization angles are calculated from Stokes parameters Q and U in a nonlinear way. The statistical properties of polarized emission hold information about the structure of magnetic fields in a large range of scales, but the contributions of different stages of data processing to the statistical properties should first be understood. We use 1.4 GHz polarization data from the Effelsberg 100‐m telescope of emission in the Galactic plane, near the plane and far out of the plane. We analyze the probability distribution function and the wavelet spectrum of the original maps in Stokes parameters Q, U and corresponding PI. Then we apply absolute calibration (i.e. adding the large‐scale emission to the maps in Q and U), subtraction of polarized sources and subtraction of the positive bias in PI due to noise (“denoising”). We show how each procedure affects the statistical properties of the data. We find a complex behavior of the statistical properties for the different regions analyzed which depends largely on the intensity level of polarized emission. Absolute calibration changes the morphology of the polarized structures. The statistical properties change in a complex way: Compact sources in the field flatten the wavelet spectrum over a substantial range. Adding large‐scale emission does not change the spectral slopes in Q and U at small scales, but changes the PI spectrum in a complex way. “Denoising” significantly changes the p.d.f. of PI and raises the entire spectrum. The final spectra are flat in the Galactic plane due to magnetic structures in the ISM, but steeper at high Galactic latitude and in the anticenter. For a reliable study of the statistical properties of magnetic fields and turbulence in the ISM based on radio polarization observations, absolute calibration and source subtraction are required. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. cosmic microwave background experiments have focused on frequencies ≳10 GHz, whereas 21-cm tomography of the high-redshift universe will mainly focus on ≲0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.42-GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multifrequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 and 408 MHz and 1.42, 2.326, 23, 33, 41, 61, 94 GHz) to an accuracy around 1–10 per cent depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm .  相似文献   

19.
We have observed a sample of 64 small-diameter sources towards the central  −6° < l < 6°, −2° < b < 2°  of the Galaxy with the aim of studying the Faraday rotation measure near the Galactic Centre region. All the sources were observed at 6- and 3.6-cm wavelengths using the ATCA and the VLA. 59 of these sources are inferred to be extragalactic. The observations presented here constitute the first systematic study of the radio polarization properties of the background sources towards this direction and increase the number of known extragalactic radio sources in this part of the sky by almost an order of magnitude. Based on the morphology, spectral indices and lack of polarized emission, we identify four Galactic H  ii regions in the sample.  相似文献   

20.
We investigate the Galactic disc distribution of a sample of planetary nebulae characterized in terms of their mid-infrared spectral features. The total number of Galactic disc PNe with 8–13 μm spectra is brought up to 74 with the inclusion of 24 new objects, the spectra of which we present for the first time. 54 PNe have clearly identified warm dust emission features, and form a sample that we use to construct the distribution of the C/O chemical balance in Galactic disc PNe. The dust emission features complement the information on the progenitor masses brought by the gas-phase N/O ratios: PNe with unidentified infrared emission bands have the highest N/O ratios, while PNe with the silicate signature have either very high N enrichment or close to none. We find a trend for a decreasing proportion of O-rich PNe towards the third and fourth Galactic quadrants. Two independent distance scales confirm that the proportion of O-rich PNe decreases from     per cent inside the solar circle to     per cent outside. PNe with warm dust are also the youngest. PNe with no warm dust are uniformly distributed in C/O and N/O ratios, and do not appear to be confined to     They also have higher 6-cm fluxes, as expected from more evolved PNe. We show that the IRAS fluxes are a good representation of the bolometric flux for compact and IR-bright PNe, which are probably optically thick. Selection of objects with     should probe a good portion of the Galactic disc for these young, dense and compact nebulae, and the dominant selection effects are rooted in the PN catalogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号