首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Research on soil fertility is presented in the context of runoff agriculture, a venerable farming system that has been used for millennia in arid to semiarid regions, where water is a major limiting resource for crop production. The agroecology of runoff farming was studied with the Zuni to evaluate nutrient and hydrologic processes, management, maize productivity, and soil quality in some of the oldest recognized fields in the United States. This ancient Southwest agriculture has functioned without conventional irrigation or fertilization by tapping into biogeochemical processes in natural watersheds connected to fields. Carefully placed fields are managed on alluvial fans and other valley margin landforms to intercept runoff and associated sediment and organic debris transported from adjoining forested uplands. We report on research to evaluate and link nitrogen and phosphorus, two key nutrients for crop production, in watershed, soil, and crop components of this agroecosystem. Nutrient data have been collected by observational and experimental methods for each component and the transport of nutrients from watershed to field to maize. The condition of Zuni agricultural soils suggests that their knowledge and management of soils contributed to effective conservation. This study and others indicate the need for further long‐term monitoring and experimental research on watersheds, runoff processes, field soils, and crops across a range of arid to semiarid ecosystems. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
以辽西城子山文化遗存剖面为研究对象,运用花粉、炭屑、炭化种子和果壳等指标,重建城子山地区夏家店下层文化期农业活动特征及环境效应.研究显示城子山原生植被主要为松属针叶林,先民采用"刀耕火种"农业模式毁林开荒,导致原生植被消失以及次生榛属灌丛和杂草增加.城子山剖面中禾本科花粉含量峰值与炭屑浓度峰值相对应,表明先民高强度或频...  相似文献   

3.
Improper cultivation practices are seriously degrading native forest ecosystems in northern Iran. Hence, the objectives of this study are to compare selected soil properties, runoff amount, erosion and also introducing equations to predict the runoff and soil erosion in three types of land use (forest, garden and cultivated). A simple portable rainfall simulator has been set in 90 random points to create experimental rainfall. Result showed that changes in natural forest led to a significant clay, organic carbon of soil, total N and antecedent soil moisture decrease and sand, pH and bulk density increasing. The rainfall runoff experiments indicate that runoff content of the natural forest soils was 35 % and respectively 38.45 % higher than the garden and cultivated land soils .This result could be related to the higher antecedent soil moisture in natural forest compared with the other land uses. According to the obtained results, garden soil erosion and cultivated land was 1.351 and respectively 1.587 times higher than the forest. The correlation matrix revealed that runoff content was positively correlated with antecedent soil moisture, bulk density and silt, and negatively with soil organic carbon, total N and sand. Also, soil organic carbon, total N, clay and sand showed negative correlation with soil erosion, while there is a positive correlation between erosion and silt, bulk density, pH and antecedent soil moisture. The results of multiple linear regression showed that runoff in forest, garden and cultivated land can be predicted with correlation coefficient of 0.637, 0.547 and 0.624, respectively. The correlation coefficients of 0.798, 0.628 and 0.560 in equations indicate their moderate potential in simulating soil erosion.  相似文献   

4.
在实地采访、地块土地利用/覆盖调查和1 260个土样的收集和实验室分析等野外工作的基础上,对比分析了1984—1985年和2003—2004年265个家户的人口、农业系统、土地利用和土壤质量数据,研究了孟加拉国6个村庄农业诱导强度增强对土地和土壤质量的影响。1984—2004年家户和土质数据的百分比变化用来构建诱导强度增强模型和土地退化模型中的统计变量和土地退化指标。结果表明:研究区种植强度和土地生产力的增加主要是由于低压泵灌溉的普及,化肥和杀虫剂的使用以及水稻、蔬菜和虾生产的多元化高产。诱导强度增强模型可以解释研究区81%的种植强度增量和73%的土地生产力增量。人口压力和市场驱动也诱发了农业利用强度的增加;环境约束起到了一定制约作用;低压泵灌溉等应对干旱的技术也对农业增产有一定贡献。然而动力耕作机、低压泵灌溉和化学物质的持续利用再加上除草性水稻、蔬菜和虾的频繁耕作和养殖已经导致土壤结构、质地和化学属性的退化,生产力也有所降低。利用强度越大的土地退化现象越严重,生产力下降得也更多。土地的不断退化将有可能会引发孟加拉国的马尔萨斯危机。  相似文献   

5.
Soil moisture variability and the depth of water stored in the arable layer of the soil are important topics in agricultural research and rangeland management. In this study, we use the distributed rainfall-runoff (DR2) model to perform a detailed mapping of topsoil moisture status (SMS) in a mountain Mediterranean catchment. This model, previously tested in the same study area against the Palmer Z-index, is run at monthly scale for the current scenario of land uses and under three scenarios that combine the land abandonment and the application of the new common agricultural policy (CAP) of the European Union. Under the current conditions, runoff yield is scarce and presents a high spatial variability when monthly rainfall intensity and depth are low, and infiltration processes mainly lead to water storage in the soil. When rainfall intensity is high, runoff accumulation along the hillslopes controls the depth of available water in the soil, and SMS is more homogeneous. On average, scrublands and pasture have the wettest values, crops of winter cereal and abandoned fields have intermediate conditions, and areas of bare soil and forest have the driest conditions all the year around. The abandonment and no revegetation of the low productive fields located in steep areas and the collapse of their landscape linear elements (LLEs) produce not only an increase of 2.3 % of the overall SMS in the catchment in comparison with the current scenario but also an increment of the effective runoff that cross the cultivated areas of the lowlands and the runoff depth that reach the wetlands, increasing the soil erosion risk and compromising the conservation of the lakes. When the new green areas of the CAP are installed in the upper part of the fields of the lowlands and around the lakes, the runoff depth and thus siltation risk clearly decreases but also SMS decreases 1.7 and 1.1 % considering the current land uses and adding revegetation practices in the abandoned fields, respectively. Hence, a management scenario where: (1) abandoned fields are covered with a dense cover of shrubs, (2) the LLEs are preserved, (3) the green areas of the PAC are created, and (4) runoff harvesting practices are applied to partially compensate the water deficit, will help to preserve the humidity of the soil and will be of interest to keep the agricultural land use around the protected lakes of the study area.  相似文献   

6.
Prehistoric farmers in arid and semiarid ecosystems commonly used rock alignments to concentrate water and sediments on their fields. Previous research has emphasized the importance of runoff from organic matter‐rich uplands as a mechanism for soil nutrient replenishment. However, eolian inputs to these dryland ecosystems might also contribute substantially to mineral‐derived nutrient pools. We explored the relative importance of eolian deposition, prehistoric agriculture, and the presence of rock alignments on soil properties in a semiarid grassland in Arizona. Subsurface soils behind natural rock alignments are finer in texture than soils unbound by rock alignments, while subsurface soils behind agricultural rock alignments coarsen relative to unbound soils. Neither rock alignments nor estimated crop yields had detectable effects on mineral‐derived nutrient pools. In contrast, eolian deposition is an important source of soil mass and nutrients to modern soils. While dust deposition likely reduced soil heterogeneity across this landscape, it could have also contributed to the sustainability of prehistoric agriculture.  相似文献   

7.
Prehistoric stone alignments and their associated terraces are common in upland ecozones of the American Southwest. These features are generally considered the archaeological consequences of “runoff agriculture” dedicated to domesticated‐plant production. Furthermore, researchers have theorized that such production decreased soil fertility and ultimately promoted abandonment of the alignments, terraces, and surrounding landscapes. Recent investigations show that cultivated Mollisols indeed have less organic matter and less available P, and elevated pH, as well as several textural changes. In contrast, cultivated Aridisols have elevated CaCO3, available Ca, and cation‐exchange capacity, as well as no textural changes. The developing picture, however, is that small‐scale runoff agriculture has had largely benign effects on soil fertility and that anthropogenic terraces likely were abandoned for reasons unrelated to their productivity. © 2000 John Wiley & Sons, Inc.  相似文献   

8.
Saturated macropore flow is the dominant hydrological process in tropical and subtropical hilly watersheds of northeast India. The process of infiltration into saturated macroporous soils is primarily controlled by size, network, density, connectivity, saturation of surrounding soil matrix, and depthwise distribution of macropores. To understand the effects of local land use, land cover and management practices on soil macroporosity, colour dye infiltration experiments were conducted with ten soil columns (25 × 25 × 50 cm) collected from different watersheds of the region under similar soil and agro-climatic zones. The sampling sites included two undisturbed forested hillslopes, two conventionally cultivated paddy fields, two forest lands abandoned after Jhum cultivation, and two paddy fields, one pineapple plot and one banana plot presently under active cultivation stage of the Jhum cycle. Digital image analyses of the obtained dye patterns showed that the infiltration patterns differed significantly for different sites with varying land use, land cover, and cultivation practices. Undisturbed forest soils showed high degree of soil macroporosity throughout the soil profile, paddy fields revealed sealing of macropores at the topsoil due to hard pan formation, and Jhum cultivated plots showed disconnected subsoil macropores. The important parameters related to soil macropores such as maximum and average size of macropores, number of active macropores, and depthwise distribution of macropores were estimated to characterise the soil macroporosity for the sites. These experimentally derived quantitative data of soil macroporosity can have wide range of applications in the region such as water quality monitoring and groundwater pollution assessment due to preferential leaching of solutes and pesticides, study of soil structural properties and infiltration behaviour of soils, investigation of flash floods in rivers, and hydrological modelling of the watersheds.  相似文献   

9.
The decrease of runoff with the increase in area is not a new fact. The scale effect depends on the spatial and temporal variability of different factors, including the surface characteristics and hydrodynamic properties of the soil and the vegetation development. The purpose of our work is to study the relative influence of the sources of variation of runoff from a small Sahelian catchment on several types of soil surfaces features. Plots of different sizes (1, 50 and 150 m2) on cultivated soils and degraded soils (non-cultivated with three different types of crusts) were monitored for two consecutive years. The results show that the runoff coefficients of rainfall events range from 4 to 65% on cultivated soils and 16 to 96% on uncultivated bare and degraded soils. A statistical and dimensionless analysis shows that in degraded environments, the processes generating runoff on plots of 50 and 150 m2 are identical and significantly different from the unit plot (1 m2). The decrease in runoff with increasing scale becomes more pronounced when rainfall duration decreases. In cultivated areas, this result is not observed. Additional measurements are needed to better understand the differences in functioning at various scales of observations.  相似文献   

10.
This study was carried out to determine the effects of different land-use types on the properties of an Alfisol on the Jos Plateau, Nigeria. Areas being used for nature conservation (forest), grazing and maize cultivation were chosen, and the three are contiguous within a nearly level, moderately well-drained site. Within each of the three land-use areas, a plot of 30 x 20 m was chosen. Each plot was divided into 6 grids of 100 m2 size. Within each of these grids, four sampling sites were chosen by throwing up a coin four times. The four surface soil (0–5 cm depth) samples taken at the points where the coin landed, were mixed to form the composite sample, out of which sizeable portion was taken. This means that six soil samples were taken for each land use area (forest, grass, and cultivated). Same procedure was repeated for each of the following soil depths 5–15, 15–30 and 30–50 cm. Laboratory soil analyses were carried out while analysis of variance was used to test the significance of mean difference. The results show that forest clearing for grazing and maize cultivation has lead to significant decreases in most soil fertility variables. Organic matter levels of the grassland and cultivated soils are just about 28% and 13%, respectively, of that of the forest soil in the 0–5 cm depth, while they are 36% and 19%, respectively, in the 5–15 cm depth. Exchangeable cations and effective cation exchange capacity are also significantly higher in the forest soils. The effects are attributable to soil organic matter decomposition and nutrient removal resulting from forest clearance, maize cultivation and grazing. Hence, for sustained agricultural productivity, the soils require adequate inorganic and organic fertilizer additions together with appropriate cultural practices such as agroforestry, crop rotation and mixed cropping involving legumes.  相似文献   

11.
Twenty‐seven 14C dates from alluvial deposits and soils exposed in modern arroyos near Zuni Salt Lake, New Mexico, provide evidence for past episodes of piedmont and valley entrenchment by low‐order ephemeral streams. We recognize two episodes of entrenchment at A.D. 900–1050 and A.D. 1300–1400 that correlate to other arroyo‐cutting events in the region. Episodes of piedmont and valley entrenchment are followed by approximately 200–300 years of aggradation until arroyos are filled and shallow flooding with expansive sedimentation returns, completing an alluvial cycle. Many alluvial cycles appear synchronous across much of the southern Colorado Plateau and are likely linked to changes in climate and flood regime. Flooding on small basin drainages near Zuni Salt Lake is related to the Southwest summer monsoon, a meteorological event that is poorly linked to El Niño. Alluvial cycles on small basin drainages affected indigenous floodwater farming by locally lowering water tables and reducing irrigable area during phases of entrenchment and contributed to the aggregation of Puebloan communities on the southern Colorado Plateau in the A.D. 1300s. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
Wind erosion is a major problem for modern farmers, a key variable affecting nutrient levels in ecosystems, and a potentially major force impacting archaeological site formation; however, it has received scant consideration in geoarchaeological studies of agricultural development compared with more easily quantifiable environmental costs, such as vegetation change or fluvial erosion. In this study, soil nutrient analysis is used in the Kalaupapa field system, Moloka'i Island, Hawai'i, to detect an increase in wind erosion attributable to intensive agriculture following the burning of endemic forest. This practice began on a small scale in the 13th century A.D., expanded around cal A.D. 1450–1550, and continued until the near total abandonment of the fields after European contact in the 18th century. Nutrients that naturally occur in high amounts in coastal windward areas due to the long‐term, cumulative effect of sea spray were especially impacted. However, thanks to the unique landform of the Kalaupapa Peninsula, nutrient depletion in windward areas was offset by downwind enrichment and likely contributed to the long‐term sustainability of the system as a whole. Future research on tropical and arid agriculture should consider the cumulative environmental cost of increased eolian erosion attributable to anthropogenic landscape modification. © 2007 Wiley Periodicals, Inc.  相似文献   

13.
魏冲  董晓华  刘冀  李英海  万浩  喻丹  徐时进  王凯 《水文》2019,39(6):20-26
常用的水土保持措施是退耕还林,但淮河流域是中国重要的农业产区,大规模实行退耕还林并不现实,所以通过调整耕地类型来减少水土流失可能是解决社会经济发展和生态保护矛盾的好方法。为研究不同耕地类型对流域水文要素及产沙的影响,考虑水田和旱地两种耕地类型对淮河息县水文站上游流域构建SWAT模型,构造A(实际耕地利用方式)、B(所有耕地为水田)和C(所有耕地为旱地)三种耕地类型情景,比较不同耕地类型情景下流域水文要素及产沙的变化情况。研究结果表明:所构建的SWAT模型在息县流域径流及泥沙模拟中具有良好的适用性,R2和NSE(Nash Sutcliffe Efficiency)均达到0.75以上;水田和旱地两种不同耕地类型对流域多年年均蒸散发及多年平均径流量影响较小,但对流域产沙量影响较大,在汛期更为明显,模拟期内每平方公里水田每年最多比旱地少产沙491.8t,平均每年少产沙约208.7t。采取水田耕种比旱地耕种更有利于减少息县流域内的水土流失。  相似文献   

14.
This article provides an overview of the development of soil micromorphological studies of ancient agriculture and the current position of research in this field. The stance adopted by the authors is deliberately combative, and it is hoped that the article will stimulate discussion of the current limitations and potentialities of the technique. The findings of this review may be summarized in three proposals: (1) Soil micromorphology cannot be used at present to identify cultivation in ancient soils. Ambiguous or multiple interpretations of soil micromorphological features are unlikely to be resolved, so that the detection of large scale agricultural features in the field (cultivation marks, lynchets) will remain the most secure and direct guides to the presence of a former cultivated soil. Indirect evidence on inferred land use can be provided from pollen and land snail evidence. (2) Micromorphology should retain a key role in the determination of the impact of agriculture on soils, encompassing issues such as erosion, soil structure, fertility, and biological activity. These can be related to agricultural practice: methods of tillage, manuring, soil conservation, and fallowing. (3) Three areas of micromorphological research can be proposed that address the impact of agriculture on soil: (a) the study of well-sealed, buried agricultural soils which have a clearly understood archaeological context; (b) the study of recent soils with known agricultural histories; (c) the establishment of controlled experiments with ancient agricultural techniques. © 1998 John Wiley & Sons, Inc.  相似文献   

15.
Soil conservation measures undertaken to address land degradation can alter the hydrologic cycle by changing partitioning of water fluxes at the land surface. While effects on runoff are well documented, impacts of soil conservation activities on fluxes to groundwater are poorly understood. The goal of this study was to examine fluxes to groundwater in a semi-arid area of China’s Loess Plateau that has been subject to extensive soil conservation activities. Unsaturated zone pore-water pressures and concentrations of chloride show that impacts on deep drainage differ between ecological and structural soil conservation approaches. High matric potentials and low chloride beneath cultivated terrace and gulley sites are consistent with deep drainage occurring at these sites. Estimated recharge rates for dryland cultivated upland sites were approximately 55??0?mm/year (11??8% of mean annual rainfall) based upon chloride mass balance. In contrast, results suggest that mature tree and shrub plantations prevent deep drainage. Stable isotope signatures of unsaturated-zone moisture and groundwater indicate that focused infiltration through gullies and other topographic lows is likely to be the primary recharge mechanism. The results of this study highlight the potential for inadvertent effects of some soil conservation approaches on regional water resources.  相似文献   

16.
通过野外调查、采样和分析,运用地统计学方法,选择旱地、稻田、菜园和果园四种地利用方式,分析了渝东南秀山、黔江、酉阳三地土壤有机碳(SOC)的时间和空间分布特征。结果表明:空间上,在耕作层和心土层SOC含量都是菜园最大,旱地最小,且差异显著;而底土层果园最大,稻田最小,差异不显著;不同的土地利用方式对土壤剖面SOC含量的影响一致,自上而下依次降低,均为耕作层SOC含量最高,底土层最低,稻田降幅最大,旱地最小,且差异显著;时间上,与1984年第二次土壤普查相比,除旱地外20多年来渝东南岩溶区0~20cm耕层SOC含量普遍升高,其中菜园的增加幅度最大,稻田最小。但总的来说,研究区岩溶山地土壤有机质含量普遍较低,建议通过人为施肥提高有机质的含量,探索和推广应用免耕、少耕、秸秆还田等耕作措施,增加农田土壤固碳能力。   相似文献   

17.
Geotechnical engineering problems are characterized by many sources of uncertainty. Some of these sources are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for a probabilistic analysis that considers the spatial variability of cross‐correlated soil properties is presented and applied to study the bearing capacity of spatially random soil with different autocorrelation distances in the vertical and horizontal directions. The approach integrates a commercial finite difference method and random field theory into the framework of a probabilistic analysis. Two‐dimensional cross‐correlated non‐Gaussian random fields are generated based on a Karhunen–Loève expansion in a manner consistent with a specified marginal distribution function, an autocorrelation function, and cross‐correlation coefficients. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses was performed to study the effects of uncertainty due to the spatial heterogeneity on the bearing capacity of a rough strip footing. The simulations provide insight into the application of uncertainty treatment to geotechnical problems and show the importance of the spatial variability of soil properties with regard to the outcome of a probabilistic assessment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
岩溶地区不同利用方式土壤土力学特性垂直变化特征   总被引:2,自引:0,他引:2  
孙泉忠  郭菁  王钰  彭璨 《中国岩溶》2013,32(3):287-291
以黔中岩溶地区不同利用方式的土壤为研究对象,采用野外调查和室内试验相结合的方法,研究了土壤黏聚力c、内摩擦角φ及紧实度随不同土壤利用方式、不同土层深度的变化特征。结果表明:土壤黏聚力c总体随土层深度不断增大,在0-35 cm内受不同土壤利用方式的影响比较明显;土壤内摩擦角φ在0-50 cm土层内,呈“S”形变化,受母质影响显著,三种不同土壤利用方式总体变化趋势基本一致;林地、灌草地、坡耕地土壤在垂直剖面上都存在着上松下紧的状况,在0-20 cm内,坡耕地土壤紧实度均小于林地和灌草地,20 cm以下坡耕地和灌草地土壤紧实度基本一致,但均大于林地,三者均保持着不断增大的趋势。研究表明:植被生长对于改善土壤力学性能具有一定的影响。因而通过加强植被保护与管理和调整坡耕地利用方式是改善土壤力学性能,防治土壤侵蚀和控制石漠化的主要手段。   相似文献   

19.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

20.
A study was made to determine the influence of pasture degradation on soil quality indicators that included physical, chemical, biological and micromorphological attributes, along the hillslope positions in Chaharmahal and Bakhtiari province, western Iran. Soil samples from different slope positions were collected from 0 to 30 cm depth for physical and chemical properties and from 0 to 15 cm depth for biological properties at two adjacent sites in the two ecosystems: natural pasture and cultivated land. Soil quality indicators including bulk density, mean weight diameter, soil organic carbon (SOC), particulate organic material (POM) in aggregate fractions, total nitrogen, available potassium, available phosphorus, cation exchange capacity, soil microbial respiration (SMR) and microbial biomass C and N were determined. The results showed that SOC decreased cultivation from 1.09 to 0.77 % following pasture degradation. The POM decreased by about 19.35 % in cultivated soils when compared to natural pasture; also, SMR and microbial biomass C and N decreased significantly following pasture degradation. Furthermore, aggregate stability and pore spaces decreased, and bulk density increased in the cultivated soils. Overall, our results showed that long-term cultivation following pasture degradation led to a decline in soil quality in all selected slope positions at the site studied in the semiarid region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号