首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The Carboniferous succession in the Tindouf Basin of southern Morocco, North Africa, displays Mississippian to Early Pennsylvanian marine beds, followed by Pennsylvanian continental deposits. The marine beds comprise a shallow water cyclic platform sequence, dominated by shales and fine‐grained sandstones with thin but laterally persistent limestone/dolostone beds. Foraminiferal assemblages have been studied in the limestone beds in several sections from the Djebel Ouarkziz range in the northern limb of the Tindouf Syncline; they indicate that the age of the limestones range from late Asbian (late Viséan) to Krasnopolyanian (early Bashkirian). The foraminiferal assemblages are abundant and diverse, and much richer in diversity than those suggested by previous studies in the region, as well as for other areas of the western Palaeotethys. The richest assemblages are recorded in the Serpukhovian but, unusually, they contain several taxa which appear much earlier in Western European basins (in the latest Viséan). In contrast, conodont assemblages are scarce due to the shallow‐water facies, although some important taxa are recorded in the youngest limestones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A detailed study of foraminiferal assemblages recorded in limestones from northern England in the Stainmore Trough and Alston Block permits their assignment to different European substages than in previous studies. Comparisons with foraminiferal assemblages, mostly from Russia, allow the biozonations to be correlated with the Viséan, Serpukhovian and Bashkirian international stages, as well as with the Russian (and Ukrainian) substages for the Serpukhovian (Tarussian, Steshevian, Protvian and Zapaltyubian). The Scar Limestone and Five Yard Limestone Members are assigned to the Tarussian and, thus, represent the lowermost part of the formal Serpukhovian Stage. This new correlation coincides closely with the first occurrence of the conodont Lochriea ziegleri from levels equivalent to the Single Post Limestone that could potentially form the revised base for the Serpukhovian. The Three Yard Limestone Member is correlated with the base of the Steshevian substage which also includes the Four Fathom Limestone Member, Great Limestone Member and Little Limestone. The base of the Protvian is considered to lie within the Crag Limestone, whereas the Rookhope Shell Band contains foraminiferal assemblages more typical of the Zapaltyubian in the Ukraine and Chernyshevkian in the Urals. Assemblages of the Upper Fell Top Limestone and Grindstone/Botany Limestones contain foraminiferal species that have been used for the recognition of the Bashkirian elsewhere. There is no other fossil group which allows the calibration of those foraminiferal assemblages, because ammonoids are virtually absent in the shallow‐water cyclothemic successions and conodonts have not been studied in detail in this region. The Mid‐Carboniferous boundary and the Voznessenian substage might be reasonably located below the Upper Fell Top Limestone. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The upper Viséan–Serpukhovian strata in the type region for the Serpukhovian Stage is an epeiric‐sea succession ca. 90 m in thickness. The predominantly Viséan Oka Group (comprising the Aleksin, Mikhailov, and Venev formations) is dominated by photozoan packstones with fluvial siliciclastic wedges developed from the west. The Lower Serpukhovian Zaborie Group is composed of the Tarusa and Gurovo formations. The latter is a new name for the shale‐dominated unit of Steshevian Substage age in the studied area. The Zaborie Group is composed of limestones and marls in its lower (Tarusa and basal Gurovo) part and black smectitic to grey palygorskitic shales in the main part of the Gurovo Formation. The Gurovo Formation is capped by a thin limestone with oncoids and a palygorskitic–calcretic palaeosol. The Upper Serpukhovian is composed of a thin (3–12 m) Protva Limestone heavily karstified during a mid‐Carboniferous lowstand. The succession shows a number of unusual sedimentary features, such as a lack of high‐energy facies, shallow‐subtidal marine sediments penetrated by Stigmaria, the inferred atidal to microtidal regime, and palustrine beds composed of saponitic marls. The succession contains many subaerial disconformities characterized by profiles ranging from undercoal solution horizons to palaeokarsts. Incised fluvial channels are reported at two stratigraphic levels to the west of the study area. The deepest incisions developed from the Kholm Disconformity (top of the Mikhailov Formation). This disconformity also exhibits the deepest palaeokarst profile and represents the major hiatus in the Oka–Zaborie succession. The new sea‐level curve presented herein shows two major cycles separated by the Kholm Unconformity at the Mikhailov/Venev boundary. The Lower Serpukhovian transgression moved the base‐level away from falling below the seafloor so that the section becomes conformable above the Forino Disconformity (lower Tarusa). The maximum deepening is interpreted to occur in the lower dark‐shale part of the Gurovo Formation. The base of the Serpukhovian Stage is defined by FADs of the conodont Lochriea ziegleri and the foraminifer Janischewskina delicata in the middle of the sequence VN2. The Aleksinian–Mikhailovian interval is provisionally correlated with the Asbian (Lower–Middle Warnantian) in Western Europe. Based on FODs of Janischewskina typica and first representatives of Climacammina, the Venevian is correlated with the Brigantian in Western Europe. The Tarusian–Protvian interval contains diverse fusulinid and conodont assemblages, but few forms suitable for international correlation. FADs of the zonal conodont species Adetognathus unicornis and Gnathodus bollandensis at several metres above the Protvian base suggest correlation of the entire Zaborie Group and may be the basal Protvian to the Pendleian. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The Burren region in western Ireland contains an almost continuous record of Viséan (Middle Mississippian) carbonate deposition extending from Chadian to Brigantian times, represented by three formations: the Chadian to Holkerian Tubber Formation, the Asbian Burren Formation and the Brigantian Slievenaglasha Formation. The upper Viséan (Holkerian–Brigantian) platform carbonate succession of the Burren can be subdivided into six distinct depositional units outlined below. (1) An Holkerian to lower Asbian unit of skeletal peloidal and bryozoan bedded limestone. (2) Lower Asbian unit of massive light grey Koninckopora‐rich limestone, representing a shallower marine facies. (3) Upper Asbian terraced limestone unit with minor shallowing‐upward cycles of poorly bedded Kamaenella‐rich limestone with shell bands and palaeokarst features. This unit is very similar to other cyclic sequences of late Asbian age in southern Ireland and western Europe, suggesting a glacio‐eustatic origin for this fourth‐order cyclicity. (4) Lower Brigantian unit with cyclic alternations of crinoidal/bryozoan limestone and peloidal limestone with coral thickets. These cycles lack evidence of subaerial exposure. (5) Lower Brigantian bedded cherty dark grey limestone unit, deposited during the maximum transgressive phase of the Brigantian. (6) Lower to upper Brigantian unit mostly comprising cyclic bryozoan/crinoidal cherty limestone. In most areas this youngest unit is truncated and unconformably overlain by Serpukhovian siliciclastic rocks. Deepening enhanced by platform‐wide subsidence strongly influenced later Brigantian cycle development in Ireland, but localized rapid shallowing led to emergence at the end of the Brigantian. A Cf5 Zone (Holkerian) assemblage of microfossils is recorded from the Tubber Formation at Black Head, but in the Ballard Bridge section the top of the formation has Cf6 Zone (Asbian) foraminiferans. A typical upper Asbian Rugose Coral Assemblage G near the top of the Burren Formation is replaced by a lower Brigantian Rugose Coral Assemblage H in the Slievenaglasha Formation. A similar change in the foraminiferans and calcareous algae at this Asbian–Brigantian formation boundary is recognized by the presence of upper Asbian Cf6γ Subzone taxa in the Burren Formation including Cribrostomum lecomptei, Koskinobigenerina sp., Bradyina rotula and Howchinia bradyana, and in the Slievenaglasha Formation abundant Asteroarchaediscus spp., Neoarchaediscus spp. and Fasciella crustosa of the Brigantian Cf6δ Subzone. The uppermost beds of the Slievenaglasha Formation contain a rare and unusual foraminiferal assemblage containing evolved archaediscids close to tenuis stage indicating a late Brigantian age. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Three Upper Viséan to Serpukhovian limestone formations from the Adarouch region (central Morocco), North Africa, have been dated precisely using foraminiferans and calcareous algae. The lower and middle part of the oldest formation, the Tizra Formation (Fm), is assigned to the latest Asbian (upper Cf6γ Subzone), and its upper part to the Early Brigantian (lower Cf6δ Subzone). The topmost beds of this formation are assigned to the Late Brigantian (upper Cf6δ Subzone). The lower part of the succeeding Mouarhaz Fm is also assigned to the Late Brigantian (upper Cf6δ Subzone). The Akerchi Fm is younger than the other formations within the region, ranging from the latest Brigantian (uppermost Cf6δ Subzone) up to the Serpukhovian (E1–E2). The base of the Serpukhovian (Pendleian Substage, E1) is repositioned, to coincide with the appearance of a suite of foraminiferans including Archaediscus at tenuis stage, Endothyranopsis plana, Eostaffella pseudostruvei, Loeblichia ukrainica, Loeblichia aff. minima and Biseriella? sp. 1. The upper Serpukhovian (Arnsbergian Substage, E2) is marked by the first appearance of Eostaffellina ex. gr. paraprotvae and Globoomphalotis aff. pseudosamarica. The biostratigraphical scheme used for the reassessment of the foraminiferal zones and subzones in the Adarouch area closely compares with that for the British succession in northern England (Pennine Region), where the stratotypes of the Upper Viséan (Asbian and Brigantian) and Early Serpukhovian (Pendleian) substages are located. Thus, a succession equivalent to an interval from the Melmerby Scar Limestone to the Great (or Little) Limestone is recognized. These assemblages are also compared to other foraminiferal zones proposed in other regions of Morocco. Several foraminiferans have been identified that are proposed as potential Serpukhovian markers for other basins in Western Europe, and compared to sequences in Russia and the Donets Basin, Ukraine. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The Mobarak Formation in the Valiabad area (northwestern Alborz, Iran) is composed of bioclastic, oolitic and sandy limestone interbedded with black shale, and is disconformably underlain and overlain by the Cambrian Lalun and Permian Dorud formations, respectively. In this study, 104 foraminiferal species belonging to 12 families and 33 genera were determined. Among them, six genera and nine species are reported for the first time in Iran. Analysis of the foraminiferal assemblages has identified eight local biozones, which can be correlated with the MFZ8 to MFZ14 zones of the Viséan stratotypes in Belgium. The Valiabad equivalents of these biozones are essentially characterized by (1) Eoparastaffella ex gr. rotunda‐‘florigena’–Lysella cf. gadukensis; (2) Eoparastaffella simplex–Lapparentidiscus bokanensis; (3) Ammarchaediscus; (4) Uralodiscus–Glomodiscus; (5) Glomodiscus–Archaediscus; (6) Pojarkovella–Mstinia fallax; (7) Mstinia bulloides–Pseudoendothyra; and (8) Howchinia gibba–Howchinia bradyana–Tubispirodiscus attenuatus. Consequently, the Valiabad section appears to be one of the most complete Viséan sections in Iran. Some taxonomic precisions are provided about the principal taxa. Biogeographically, (1) the MFZ8–MFZ11 biozones are extended to all the shelves of the Palaeotethys (from Ireland to South China) and Urals oceans; nevertheless, due to the complete evolution of archaediscoids, they seem more related to the Perigondwanan assemblages from Sinai and Taurus (including the Antalya Nappes); (2) the MFZ12 assemblage appears relatively endemic; and (3) the impoverished assemblages of the biozones MFZ13‐14 have marked affinities with the Kazakhstan Block. It is currently impossible to indicate precisely if these variations are related with a drift of the Alborz region to the north, or to a change of oceanic currents. Moreover, the double affinity highlights the narrowness of the Palaeotethys in Iran during the Viséan. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The microfossil assemblages of subsurface Carboniferous rocks from Faghur-1x were examined and identified. Their biostratigraphical and paleoenvironmental importance were investigated. The assemblage included well-preserved foraminifera like Omphalotis omphalota, Omphalotis sp. 2, Omphalotis sp. 3, Paraarchaediscus stilus, Paraarchaediscus koktjubensis, Archaediscus krestovnikovi, Archaediscus complanatus, Archaediscus inflatus, Archaediscus karreri, Diplosphearina inequalis, Eotubertina sp., Tetrataxis conica, Cribrostomum lecomptei, Palaeotextularia angulata, and Palaeotextularia longiseptata. This foraminiferal association indicates the late Viséan-early Serpukhovian. The other microfossils are gastropods, brachiopods, ostracods, crinoidal ossicles, frond-like fenestrate bryozoan types and stick-like colonies, echinoderms, microproblematica like Draffania biloba and algal Calcisphaera and the dasyclad Koninckopora. This microfossils assemblage points to the deposition in a restricted to open platform in a lagoonal framework environment. The Tehenu Basin is the eastern segment of northern African Sahara basins that provided refuge for the foraminiferal genera through the mass extinction events during the glacial Viséan-Serpukhovian times. However, its foraminiferal associations have lower diversities than the western basins, which indicate that it was more readily affected by the mass extinction event.  相似文献   

8.
The Mihalıççık region (Eskişehir) in NW Turkey includes an ophiolitic assemblage with a serpentinite‐matrix mélange. The serpentinites of this mélange host silica‐carbonate metasomatites which were previously named as listvenites. Our mineralogical and geochemical studies revealed that these alteration assemblages represent members of the listvenitic series, mainly the carbonate rocks, silica‐carbonate rocks and birbirites, rather than true listvenites (sensu stricto). Tectonic activity and lithology are principal factors that control the formation of these assemblages. Carbonatization and silicification of the serpentinite host‐rock is generated by CO2, SiO2‐rich H2O hydrothermal fluid which includes As, Ba, Sb and Sr. Low precious metal (Au, Ag) contents of the alteration assemblages indicate lack of these metals in the fluid. Primary assemblages of the alteration are carbonate rocks that are followed by silica‐carbonate rocks and birbirites, respectively. Petrographic studies and chemical analyses suggested an alkaline and moderate to high temperature (350–400°C) fluid with low oxygen and sulphur fugacity for the carbonatization of the serpentinites. The low temperature phases observed in the subsequent silicification indicated that the fluid cooled during progressive alteration. The increasing Fe‐oxide content and sulphur phases also suggested increasing oxygen and sulphur fugacity during this secondary process and silica‐carbonate rock formation. The occurrence of birbirites is considered as a result of reactivation of tectonic features. These rocks are classified in two sub‐groups; the Group 1 birbirites show analogous rare earth element (REE) trends with the serpentinite host‐rock, and the Group 2 birbirites simulate the REE trends of the nearby tectonic granitoid slices. The unorthodox REE trend of Group 2 birbirites is interpreted to have resulted from a mobilization process triggered by the weathering solutions rather than being products of enrichment by the higher temperature hydrothermal activity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
The Viséan (Carboniferous) sedimentary succession of the basinal Kulm facies (Rhenish Mountains) was investigated in detail in order to achieve a high‐resolution stratigraphic subdivision and correlation. Additionally, the ranges of fossil index taxa (ammonoids), fossil marker beds, volcaniclastic horizons and sedimentary features (e.g. colour changes) were integrated in the correlation. As a result, a comprehensive database was compiled, which contains 190 stratigraphic events of the Viséan interval of this area. Several sections are almost completely composed of shales, which are regarded to represent a slow but constant basinal background sedimentation of the Kulm facies. The thickness of lithological homogeneous sections thus indicates an approximately linear record of time and the average thicknesses of biozones and positions of stratigraphic events can easily be calculated from the compiled database. The result is an approximately time‐linear biostratigraphic scale for the Viséan Stage of the Kulm Basin. Given a numerical length of the Viséan Stage of ca. 19 Ma, 190 stratigraphic events give a mean resolution of 100 000 years. This is unique in Palaeozoic stratigraphy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The identification of sediment drifts typically relies on interpretation of reflection seismic data sets. This study sedimentologically analyzed an example of a carbonate delta drift previously identified in seismics in order to provide a catalogue of characteristic features at core and seismic scale for allowing testing the occurrence of this poorly known type of deposit elsewhere. Cores and downhole logs recovered during International Ocean Discovery Program Expedition 359 to the Maldives, in combination with seismic data, were analyzed with this objective. The diagnostic criteria for the sedimentological recognition of a delta drift are: (i) the development of sigmoidal clinoforms that thin out towards proximal and distal settings; (ii) a proximal part characterized by coarse‐grained facies with abundant shallow‐water components and distal areas dominated by fine‐grained facies with rare to absent shallow‐water components; (iii) winnowing of the finer fraction in proximal facies; (iv) extensive fragmentation of most of the bioclasts with minor intervals of well‐preserved components; (v) bigradational intervals in the proximal part and large channels in proximal to distal settings; and (vi) the lobe to delta shaped outline of the sediment accumulation. The characteristic shallow‐water fossil assemblage of the Mid to Upper Miocene delta drift consists of large benthic foraminifera (Amphistegina, Cycloclypeus, Lepidocyclina, Operculina and Heterostegina), fragmented red algae and bryozoans, equinoid debris, and Halimeda plates. The deeper‐water part of the drift bodies consists of fine‐grained planktonic foraminifera‐rich wackestone. Condensed intervals may occur as result of enhanced bottom‐current activity. In contrast to siliciclastic drift bodies, the carbonate delta drift has an important contribution by in situ shallow‐water carbonate production reminiscent of a shoal. In situ carbonate production is proposed as a major controlling factor which is as important as the pelagic settling or the shaping by density and bottom currents in siliciclastic drifts. In the absence of three‐dimensional data and in two‐dimensional views the carbonate delta drift sediment bodies resemble carbonate ramps, which indicates that there may be the need to re‐evaluate various cases of such systems described from the geological record.  相似文献   

11.
Revision of several important Carboniferous stratigraphic successions in basins in the Saharan Platform allows us to propose distinct biostratigraphical boundaries for the upper Viséan, lower and upper Serpukhovian and lower Bashkirian, with the latter boundary separating upper Mississippian from lower Pennsylvanian strata. The boundaries are not only defined primarily by foraminifers but also incorporate ammonoid and conodont data. This study shows that the positioning of some boundaries differs significantly from previous studies in the region.For the studied interval, it can be recognized that two well-defined tectonic events were widespread in the entire Sahara Platform: a mostly late Viséan event and a latest Serpukhovian–early Bashkirian event. Both tectonic events show a marked tendency to become younger eastward, and they are compared to the intra-Viséan phase of the Variscan Orogeny and the main phase of this orogeny, respectively.  相似文献   

12.
Recent revision of the biostratigraphy allows the recognition of a stratigraphic entity (here termed Freyrian) between the base of the Moliniacian stage and the base of the Viséan and simplifies sedimentological interpretation of late Tournaisian events around Dinant, in Belgium. Petrographic analysis of Freyrian rocks in Waulsortian buildups and peri-Waulsortian facies reveals a pattern of carbonate sedimentation related to the submarine topography developed by the buildups, and to sea-level changes. Graded beds and thin layers of grainstone in the predominantly fine-grained peri-Waulsortian sediments represent influxes derived mainly from nearby buildups during a period of shallowing. Using the sequence of foraminiferan assemblages which colonized the buildups as a stratigraphic scale, the earlier influxes are shown to have occurred only close to the presumed source, whereas later influxes extended further and marked the culmination of the shallowing phase. Deposition during the latter part of the Freyrian appears to have occurred in rather deeper, less disturbed water. The Moliniacian and Viséan boundary stratotypes, both in peri-Waulsortian facies, are critically assessed because almost all the stratigraphically useful foraminiferans occur in the rare grainstones resulting from sediment influxes. Tetrataxis was one of the few foraminiferans to colonize proximal peri-Waulsortian areas and appears to have ranged to a water depth of about 200 m. Downslope diachronism of colonization is interpreted as evidence of a sea-level fall of about 140 m and is used to draw a sea-level curve for this late Tournaisian regression. Using the same depth scale, microbial coating extended to about 300 m and its development appears to have been related to low sedimentation rates rather than photic conditions. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
A number of carbonate buildups in north Co. Dublin, long assigned to the late Viséan (Asbian), are shown on the basis of coral, foraminiferal and algal evidence to be early to mid-Viséan (late Chadian to Holkerian) in age. They are equivalent in age to beds ranging from the upper part of the Lane Formation to the top of the Holmpatrick Formation. The buildups are poorly exposed and relatively small, probably only a few tens of metres across at most. Buildup sediments are massive to crudely bedded and dominated by peloidal, clotted and dense uniform micrites displaying lime mudstone and bioclastic wackestone textures. Dasycladacean algae are common in the buildups and cryptalgal fabrics are locally important. Cavities in the buildups are generally small (< 5 cm) and lined with inclusion-rich radiaxial calcite cements. Micritization of bioclasts and cements is ubiquitous. Enclosing off-buildup limestones are skeletal and intraclastic grainstones possessing sedimentary structures indicative of deposition in moderate to high energy environments. Fossil and petrographic evidence from the buildups also indicate a shallow water origin for the north Co. Dublin buildups. Compared with the slightly older Tournaisian (Courceyan to early Chadian) Waulsortian buildups which developed extensively in the Dublin Basin, these younger platform buildups are smaller and more isolated and possess a diverse suite of algal components and cryptalgal fabrics. Nevertheless, components in the north Co. Dublin buildups most closely resemble the shallowest phase D Waulsortian buildups, particularly in the presence of abundant peloids and micritized cements. The north Co. Dublin buildups developed on a carbonate platform (the Milverton Platform), adjacent to the Dublin Basin, whereas the Waulsortian developed in a deeper ramp setting. Following the demise of the Waulsortian in early Chadian time carbonate buildups established themselves on the shallow platforms. It is suggested that the microbial communities responsible for these buildups may have ‘evolved’ from older phase D Waulsortian communities and that he north Co. Dublin platform buildups represent the shallow water end of a spectrum of Viséan buildups.  相似文献   

14.
The Verkhnyaya Kardailovka section is one of the best candidates for the GSSP (Global Stratotype Section and Point) at the base of the Stage (Mississippian). For boundary definition, the first appearance of the conodont Lochriea ziegleri Nemirovskaya, Perret et Meischner, 1994 in the lineage Lochriea nodosa (Bischoff, 1957)?L. ziegleri is used. L. ziegleri appears in the Venevian Substage somewhat below the base of the Serpukhovian in the Moscow Basin. The position of the FAD of L. ziegleri within the Hypergoniatites?Ferganoceras Genozone is confirmed and lies between 19.53 and 19.63 m above the section’s base. Before 2010, deep-water stylonodular limestone containing the boundary in unnamed formation C at Kardailovka was well exposed but only 3 m of Viséan strata cropped out immediately below. Recent trenching exposed another 10 m of underlying Viséan carbonates in formation C and older Viséan siliciclastics and volcanics in unnamed formation B. The contact between formation B and underlying crinoidal limestones in unnamed formation A representing the middle Viséan Zhukovian (Tulian) regional Substage was excavated. The boundary succession, situated in the Magnitogorsk tectonic zone above the Devonian Magnitogorsk arc and Mississippian magmatic and sedimentary rift succession, was deposited west of the Kazakhstanian continent during closure of the Ural Ocean. In the lower part of the section, Viséan tuffaceous siliciclastics and volcanics of formation B record rapid deepening after deposition of neritic middle Viséan crinoid lime grainstone of formation A and subsequent subaerial exposure. The overlying condensed upper Viséan to Serpukhovian succession in formation C comprises deep-water limestone deposited in a sediment-starved basin recording minor turbidite influx and carbonate-mound development. The δ13Ccarb plot shows a positive shift of 1‰ V-PDB (from +2 to +3‰) between 17.0 and 17.75 m (3.05 and 1.97 m below FAD L. ziegleri). The δ18Oapatite graph displays a prominent upward shift from 19.9 to 21.1‰ V-SMOW (at 19.15 to 19.51 m) in the nodosa Zone below FAD of Lochriea ziegleri.  相似文献   

15.
Analysis of a 275 m‐thick section in the Milford Borehole, GSI‐91‐25, from County Carlow, Ireland, has revealed an unusual sequence of shallow subtidal, peritidal and sabkha facies in rocks of mid?‐late Chadian to late Holkerian (Viséan, Lower Carboniferous) age. Sedimentation occurred on an inner ramp setting, adjacent to the Leinster Massif. The lower part of the sequence (late Chadian age) above the basal subtidal bioclastic unit is dominated by oolite sand facies associations. These include a lower regressive dolomitized, oolitic peloidal mobile shoal, and an upper, probably transgressive, backshoal oolite sand. A 68 m‐thick, well‐developed peritidal sequence is present between the oolitic intervals. These rocks consist of alternating stromatolitic fenestral mudstone, dolomite and organic shale, with evaporite pseudomorphs and subaerial exposure horizons containing pedogenic features. In the succeeding Arundian–Holkerian strata, transgressive–regressive carbonate units are recognized. These comprise high‐energy, backshoal subtidal cycles of argillaceous skeletal packstones, bioclastic grainstones with minor oolites and algal wackestones to grainstones and infrequent algal stromatolite horizons. The study recognizes for the first time the peritidal and sabkha deposits in Chadian rocks adjacent to the Leinster Massif in the eastern Irish Midlands. These strata appear to be coeval with similar evaporite‐bearing rocks in County Wexford that are developed on the southern margin of this landmass, and similar depositional facies exist further to the east in the South Wales Platform, south of St. George's Land, and in Belgium, south of the Brabant Massif. The presence of evaporites in the peritidal facies suggests that dense brines may have formed adjacent to the Leinster Massif. These fluids may have been involved in regional dolomitization of Chadian and possibly underlying Courceyan strata. They may also have been a source of high salinity fluids associated with nearby base‐metal sulphide deposits. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In the Dolomites of northernmost Italy the carbonate‐platform growth came to a standstill late in the Early Carnian (Late Triassic). The response to this shutdown of shallow‐water carbonate production in the interplatform basins is largely unknown because erosion has removed most of the soft basinal sediments, giving rise to today's scenic landscape of the Dolomites. Mapping in the central part of the Dolomites and newly available core material has recently revealed a well‐preserved succession of basinal rocks within the Heiligkreuz Hospiz Basin (ital. Ospizio di Santa Croce Basin). In this paper, the regional depositional nature of arrested carbonate platform production is reconstructed by tracing its sedimentological record across the slope and into the basin. The uppermost St. Cassian Formation, the time‐equivalent basinal rocks to the prograding carbonate platforms, is overlain by the Heiligkreuz Formation, whose basal succession was deposited in a restricted and oxygen‐depleted environment immediately post‐dating the platform demise. The succession consists mainly of mudrocks, marlstones, and peloidal packstones, with abundant low‐diversity ostracod and pelecypod fauna and early diagenetic dolomite. C and O isotope values of the basal Heiligkreuz Formation, post‐dating platform demise, average + 2·4 and ? 2·4‰, respectively, and largely overlap the isotopic composition of St. Cassian carbonates. A shift toward slightly lower δ13C values in the Heiligkreuz Formation may reflect incorporation of isotopically depleted C released during bacterial sulphate reduction in the Heiligkreuz sediments. Sedimentological, palaeobiological and geochemical indices suggest that near‐normal marine conditions persisted long after the shutdown of shallow water carbonate‐platform growth, although there are clear indications of severely reduced oxygen levels in the restricted Heiligkreuz Hospiz interplatform basin. The Early Carnian platform demise induced a distinct switch in the locus of carbonate production from the shallow‐water platform and slope to the basin floor and a decrease in the availability of dissolved oxygen in the basinal waters. It is inferred that anoxia extended at least temporarily to the top of the carbonate slope, as indicated by the onlap of normal‐marine mounds by dark marlstones of the basal Heiligkreuz Formation.  相似文献   

17.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   

18.
In this paper, U‐Pb zircon, monazite and rutile data for crystalline rocks deposited as clasts in the Upper Viséan conglomerates at the eastern margin of the Bohemian Massif are reported. U‐Pb data of spherical zircon from three different granulite clasts yielded a mean age of 339.0 ± 0.7 Ma (±2σ), while oval and spherical grains of another granulite pebble define a slightly younger date of 337.1 ± 1.1 Ma. These ages are interpreted as dating granulite facies metamorphism. Thermochronology and the derived pressure–temperature (P–T) path of the granulite pebbles reflect two‐stage exhumation of the granulites. Near‐to‐isothermal decompression from at least 44 km to mid‐crustal depths of around 22 km was followed by a near‐isobaric cooling stage based on reaction textures and geothermobarometry. Minimum average exhumation rate corresponds to 2.8–4.3 mm year?1. The extensive medium‐pressure/high‐temperature overprint on granulite assemblages is dated by U‐Pb in monazite at c. 333 Ma. This thermal event probably has a close link to generation and emplacement of voluminous Moldanubian granites, including the cordierite granite present in clasts. This granite was emplaced at mid‐crustal levels at 331 ± 3 Ma (U‐Pb monazite), whereas the U‐Pb zircon ages record only a previous magmatic event at c. 378 Ma. Eclogites and garnet peridotites normally associated with high‐pressure granulites are absent in the clasts but exotic subvolcanic and volcanic members of the ultrapotassic igneous rock series (durbachites) of the Bohemian Massif have been found in the clasts. It is therefore assumed that the clasts deposited in the Upper Viséan conglomerates sampled a structurally higher tectonic unit than the one that corresponds to the present denudation level of the Moldanubicum of the Bohemian Massif. The strong medium‐temperature overprint on granulites dated at c. 333 Ma is attributed to the relatively small size of the entirely eroded bodies compared with the presently exposed granulites.  相似文献   

19.
The biostratigraphy and sedimentological evolution of the Tournaisian–Viséan (T–V) transitional strata in South China (Guangxi) have been investigated. The sediments were deposited on a carbonate platform and in slope and basinal environments. In the T–V transitional strata, six foraminiferal associations have been distinguished which allow correlation between the shallow and deep water deposits. A careful examination of the evolutionary stages of the foraminifer Eoparastaffella provides a more accurate criterion for the definition of the T–V boundary, but does not significantly modify the historical one. The distinction of two morphotypes is based on the elevation of the last whorl and the peripheral outline. Tournaisian specimens of Eoparastaffella have a well rounded periphery (morphotype 1) contrasting with the subangular periphery of younger Viséan specimens (morphotype 2). A coefficient can be deduced from simple biometric measurements for more precisely defining the T–V boundary. The sequence stratigraphy of the T–V strata in South China has been reconstructed by combining biostratigraphical and sedimentological data. It allowed the correlation of the T–V transitional strata between the platform area and the slope and basinal locations. Late Tournaisian strata were deposited during a highstand systems tract. Near the end of the Tournaisian, a major drop in relative sea-level led to the development of an unconformity in the platform area. Lowstand deposits formed during latest Tournaisian time in the basin where a detailed biostratigraphic framework has been devised. Sediments deposited during the ensuing transgressive systems tract overlie the late Tournaisian highstand sediments in the platform area and the latest Tournaisian lowstand deposits in the basin. A major drop in relative sea-level near the end of the Tournaisian has been recognized worldwide. Therefore, the possibility of using the sequence stratigraphy of the T–V strata in South China for worldwide correlations should be investigated. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Marine and non-marine facies of the Permian–Triassic boundary stratigraphic set (PTBST) are well developed in South China. Palynological assemblages enable subdivision and correlation of the Permian–Triassic boundary (PTB) rocks. Three palynological assemblages are recognized across the PTBST in two terrestrial PTB sections in western Guizhou and eastern Yunnan, South China. Assemblage 1 (Xuanwei Formation) is a Late Permian palynological assemblage dominated by ferns and pteridosperms, with minor gymnosperms. Most taxa are typical long-ranging Paleozoic forms, but the appearance of Lueckisporites confirms a Late Permian age for this assemblage. Assemblage 2 (PTBST) is marked by an abrupt decrease in palynomorph abundance and diversity, and thriving fungal/algal(?) spores. Assemblage 2 is still dominated by ferns and pteridosperms, with a few gymnosperms, but is characterized by a mixed palynoflora containing both Late Permian and Early Triassic elements. Most taxa are typical Late Permian ones also found in Assemblage 1, however, some taxa of Early Triassic aspect, e.g. Lundbladispora and Taeniaesporites, appeared for the first time. In Assemblage 3 (top Xuanwei Formation and Kayitou Formation), the proportion of gymnosperm pollen increases rapidly, exceeding that of ferns and pteridosperms, but the abundance of palynomorphs is still low. Typical Early Triassic taxa (such as Lundbladispora, Aratrisporites and Taeniaesporites) are present in greater abundance and confirms an Early Triassic age for this assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号