首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural analysis performed in the southern sector of the Apuan Alps Metamorphic Complex (AAMC) and on the overlaying Tuscan Nappe (TN) pointed out a structural evolution much more complex than that outlined till now. The comparison between the structural evolutions of the two tectonic units could provide new important constraints on the tectonic evolution of the whole belt. The two tectonic units recorded different tectonic evolution during the first stages of compression, while they shared the same deformation history later after the Tuscan Nappe overlapped the AAMC. The coupled tectonic units have been then deformed by two systems of folds, in a compressive tectonic regime. Extensional tectonics affected the units later, at upper crustal levels. To cite this article: R. Carosi et al., C. R. Geoscience 334 (2002) 339–346.  相似文献   

2.
《Geodinamica Acta》2013,26(6):375-387
Information from surface and subsurface geology (boreholes and seismic reflection lines) are used to depict the geometry of the extensional structures (low-angle normal faults and related Tuscan Nappe megaboudins) affecting the Mt. Amiata geothermal area and developed during the early stage of the extensional tectonics which affected the inner Northern Apennines and Tyrrhenian Sea from the Early-Middle Miocene. Normal faulting involved the thickened middle-upper crust after the collisional stage and, in the Mt. Amiata region, took place over relatively short periods (5-7 Ma) characterised by rapid extensional strain rates. Normal faults showing articulated geometry (flat-ramp-flat) characterised by subhorizontal detachments (flats) and synthetic ramps, caused widespread megaboudinage mainly in the sedimentary tectonic units and particularly in the Tuscan Nappe. Evaporites occurring at the base of the Tuscan Nappe, the deepest sedimentary tectonic unit of the Northern Apennines, controlled the geometry of the faults, and rift-raft tectonics may be the style of this first extensional phase. Three Tuscan Nappe extensional horses (megaboudins) have been recognised in the subsurface of the Mt. Amiata area. They are characterised, in map view, by elliptical shapes and show a mean NNW-SSE lengthening. They are delimited at the base and at the top by east-dipping flats, while their western and eastern margins coincide with east-dipping ramps. On the whole, considering their geometrical features, these megaboudins correspond to extensional horses belonging to an asymmetrical east-dipping extensional duplex system.

Rollover anticlines deformed the western ramp of the megaboudins and rotated the uppermost flat as well as all the structures previously developed, which became steeply-dipping to the west.  相似文献   

3.
The Feiran–Solaf metamorphic complex of Sinai, Egypt, is one of the highest grade metamorphic complexes of a series of basement domes that crop out throughout the Arabian-Nubian Shield. In the Eastern Desert of Egypt these basement domes have been interpreted as metamorphic core complexes exhumed in extensional settings. For the Feiran–Solaf complex an interpretation of the exhumation mechanism is difficult to obtain with structural arguments as all of its margins are obliterated by post-tectonic granites. Here, metamorphic methods are used to investigate its tectonic history and show that the complex was characterized by a single metamorphic cycle experiencing peak metamorphism at ∼700–750 °C and 7–8 kbar and subsequent isothermal decompression to ∼4–5 kbar, followed by near isobaric cooling to 450 °C. Correlation of this metamorphic evolution with the deformation history shows that peak metamorphism occurred prior to the compressive deformation phase D 2, while the compressive D 2 and D 3 deformation occurred during the near isothermal decompression phase of the P–T loop. We interpret the concurrence of decompression of the P–T path and compression by structural shortening as evidence for the Najd fault system exhuming the complex in an oblique transpressive regime. However, final exhumation from ∼15 km depth must have occurred due to an unrelated mechanism.  相似文献   

4.
The Leventina Nappe represents one of the lowermost exposed units in the Alpine nappe stack and corresponds to a slice of the European margin that was entrained into the Alpine continental accretionary prism during the Tertiary tectonic event. This study yields details regarding the tectonic and metamorphic history of the Leventina Nappe, through detailed analysis of structures and shear zone patterns, and the examination of the Si-content of white mica along a north-south profile. The Leventina Nappe underwent three phases of ductile deformation. Foliation S1 is mostly sub-parallel to the regionally dominant structural fabric (the S2 foliation). S2 foliation is penetratively developed in the structurally higher portions of the Leventina Nappe toward the Simano Nappe, while it is only weakly developed in the core of the Leventina Nappe. A 50 to 200 m wide mylonite zone, with a D2 top-to-NW sense of shear marks the boundary to the Simano Nappe. Throughout the Leventina Nappe only small-scale D2 shear bands (mm to cm wide) are observed, showing a top-to-NW sense of shear. Deformation phase D3 locally generated a vertical axial plane foliation (S3) associated with the large-scale D3 Leventina antiform.Microtextural evidence and phengite geobarometry were used to constrain the temperature and pressure conditions of equilibration of the Leventina Gneisses. Highest Si (pfu) values are preserved in the core of phengitic micas and reflect pressure and temperature conditions of around 8 kbar at 550 °C and 10 kbar at 650 °C in the northern and southern parts of the Leventina Nappe, respectively. Lower Si (pfu) values from the rims of white micas correspond to a metamorphic pressure of ca. 5 kbar during the exhumation of the unit. These metamorphic conditions are related to the underthrusting of the thinned European margin into the continental accretionary prism during late Eocene time. These new data allow us to propose a kinematic model for the Leventina Nappe during the Tertiary Alpine tectonics.  相似文献   

5.
The Fenes Nappe belongs to the stack of tectonic units cropping out in the southern Apuseni Mts (Romania). It is characterised by a structural history consisting of two folding phases that developed during the time spanning from Early Aptian to Late Maastrichtian. The D1 phase produced west-northwest-verging, isoclinal to very tight folds, associated to a slaty cleavage. The main metamorphic imprint of the Fenes Nappe is linked to this deformation phase; illite and chlorite ‘crystallinity’ values indicate metamorphic conditions of the late diagenesis, close to the diagenetic zone/anchizone boundary. The subsequent D2 phase produced north-northwest-verging, parallel folds, not associated with synkinematic recrystallisation. These phases are interpreted as developed during a structural path, which includes burial at a depth of 8–10 km, followed by exhumation at shallower structural levels. To cite this article: A. Ellero et al., C. R. Geoscience 334 (2002) 347–354.  相似文献   

6.
Analysis of aeromagnetic data in the Grenville Province reveals the presence of two regional‐scale unmapped structural domes (the Morin and Mékinac‐Taureau domes) with an oval‐shaped magnetic pattern bounded by regional‐scale shear zones and a geometry that is similar to that produced in crustal flow models under extension, which predict two upright domes of foliation (double dome) separated by a steep shear zone. The Mékinac‐Taureau dome, a metamorphic core complex, and the Morin dome may have been exhumed by channel flow. Exhumation occurred by a combination of thrust, normal‐sense and wrench shear zones. The preservation of paragneisses in the Morin dome suggests that it underwent a lesser degree of exhumation than did the Mékinac‐Taureau dome. This study shows how the integration of local field information with magnetic data in a regional tectonic setting can reveal and delineate concealed gneiss domes and highlights a role for strike‐slip tectonics in the creation of regional structures involving the exhumation of deep crust.  相似文献   

7.
《Geodinamica Acta》2013,26(5):327-351
A geological study carried out in the southern part of the Larderello geothermal area (Northern Apennines) provides new information on the development mechanism and timing of the earlier extensional structures that formed during the Miocene post-collisional tectonics which affected the orogen. Staircase low-angle normal faults (LANFs) affected a multilayered thickened upper crust after the collisional stage, producing the lateral segmentation of the Tuscan Nappe, the deeper non-metamorphic tectonic unit of the Northern Apennines in the Tuscan area. The tectonic history recorded in two Tuscan Nappe discontinuous bodies revealed that the LANFs took place during the Middle–Late Miocene, displacing collisional structures developed from the Late Oligocene. These Tuscan Nappe bodies are delimited by detachment faults located at the base, within the Tuscan evaporites, and at the top within the Ligurian Units. Their western and eastern margins coincide with east-dipping ramps. These structures and the Tuscan Nappe bodies were later dissected by Pliocene–Quaternary high-angle normal faults. The reconstructed deformation history implies that the Tuscan Nappe bodies are extensional horses developed through an earlier asymmetrical east-dipping extensional duplex system, involved in block faulting during the later, Pliocene-Quaternary, stage of extension.  相似文献   

8.
The Anglona and SW Gallura regions represent key places to investigate the tectonic evolution of medium‐ and high‐grade metamorphic rocks cropping out in northern Sardinia (Italy). From south to north we distinguish two different metamorphic complexes recording similar deformation histories but different metamorphic evolution: the Medium Grade Metamorphic Complex (MGMC) and the High Grade Metamorphic Complex (HGMC). After the initial collisional stage (D1 deformation phase), both complexes were affected by three contractional deformational phases (D2, D3 and D4) followed by later extensional tectonics. The D2 deformation phase was the most significant event producing an important deformation partitioning that produced localized shearing and folding domains at the boundary between the two metamorphic complexes. We highlight the presence of two previously undocumented systems of shear belts with different kinematics but analogous orientation in the axial zone of Sardinia. They became active at the boundary between the MGMC and HGMC from the beginning of D2. They formed a transpressive regime responsible for the exhumation of the medium‐ and high‐grade metamorphic rocks, and overall represent a change from orthogonal to orogen‐parallel tectonic transport. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
中生代早期造山作用使松潘-甘孜地区地壳厚度加厚到约50~60km,因而随即经历了大规模区域性地壳伸展和减薄作用,然而迄今为止,对伸展和减薄事件的形成和发育机制还缺少深入了解。通过对龙门山前陆逆冲带腹陆地区,特别是其中发育的变质核杂岩及伸展变质穹隆体的详细构造解析,发现震旦系—古生界中普遍发育各种形式的顺层韧性流变构造,如韧性剪切带、透入性顺层面理及矿物拉伸线理、糜棱岩化及绿片岩相—低角闪岩相变质作用,并在龙门山北、中和南段造成大规模和不同程度的地层构造缺失或减薄;韧性流变构造流变方向在龙门山北段指向南或SSE,中、南段则指向SE;对志留系茂县群变质作用温压条件进行估算,其温度变化范围为265~405℃,压力变化范围为0.31~0.48GPa,代表了中地壳韧性流壳层(middle crustal ductile channel flow)的形成条件;前人用39Ar/40Ar和SHRIMP锆石U-Pb等方法对这一套区域动力变质岩石变质年龄的时代限定为190~150Ma,与中生代早期造山后板内伸展减薄事件相匹配。因此表明造山作用加厚地壳在中地壳层次以大规模韧性流变变形和变质作用对地壳厚度进行了调整,相对于上地壳层次变形和变质作用而言,中地壳韧性流壳层是松潘-甘孜造山带伸展和减薄的主要原因。在区域上如果消除新生代松潘-甘孜高原加厚和相对上扬子地块逆时针旋转的影响,中生代韧性流壳层流变方向总体为SSE或向南,因此代表南秦岭造山作用后的板内演化阶段,并且是造成松潘-甘孜造山带伸展垮塌的主要原因。  相似文献   

10.
Tectonic processes that have been proposed to explain the transport to the surface of regional metamorphic belts can be broadly divided into two types. (i) Corner-flow within a convergent margin bounded by two essentially rigid plates associated with extension at shallow levels. This type of model assumes deformation is distributed throughout the margin and that any discontinuities are of secondary importance. (ii) Expulsion or extrusion of coherent metamorphic nappes. In this second idea, tectonic discontinuities are fundamental in the transport to the surface of metamorphic rocks. The wealth of geological data available from a variety of studies in the Sanbagawa metamorphic belt, southwest Japan makes it well-suited for studying the relative importance of continuous vs. discontinuous deformation in the process of exhumation. In the Sanbagawa belt a sudden decrease in metamorphic pressure going down section of several kilobars suggests the presence of a major tectonic contact separating two major regional nappes: an overlying higher-pressure Besshi nappe and an underlying lower-pressure Oboke nappe. Major tectonic discontinuities have also been proposed within the Besshi nappe, however, indicators of metamorphic temperature, the results of radiometric age dating, and microstructural studies all suggest that post-metamorphic discontinuities are minor and that this nappe formed and remained as an essentially coherent unit. Lithological associations and petrological studies suggest the following positions for the two nappes. The Besshi nappe formed deep within the former accretionary wedge, adjacent to the overlying mantle wedge, and with a dip of roughly 30 °C. In contrast, the Oboke nappe formed at moderate depths within the accretionary wedge, was distant from the mantle wedge, and was roughly horizontal. Penetrative deformation that post-dates the peak of metamorphism has affected nearly all of the Sanbagawa belt and has played an important role in its exhumation. However, the presence of a broad coherent Besshi nappe overlying the lower-pressure Oboke nappe suggests that some process such as buoyancy-driven extrusion was also important in the exhumation process and in forming the structure of the Sanbagawa metamorphic belt.  相似文献   

11.
A branch of the South European Variscan chain is noticeably exposed in Sardinia. The early stage of collision between the Northern Gondwana margin and the Armorica Terrane Assemblage (ATA) generated syn-metamorphic folding and thrusting. The evidences of such deformation are well preserved in the nappe zone, a structural domain characterized by stacking of different tectonic units under metamorphism of Barrovian greenschist facies. A late, post-nappe, shortening, under retrograde metamorphic conditions, gave rise to wide, upright, N120–N160 trending antiforms that control the trend of the chain. The structural analysis of the Ozieri Metamorphic Complex (OMC) shows evidence of an important phase of late-Variscan extensional tectonics. Deformation results in, the formation of oppositely dipping, normal shear zones, which developed at upper and middle structural level along the limbs of major regional antiforms causing fabric reactivation, crustal thinning, and exhumation of the OMC core. Within the OMC, the activity of the shear zones was coeval with HT-LP metamorphism as suggests the occurrence of syn-kinematic cordierite + andalusite ± sillimanite + biotite. Whereas syntectonic dykes and a tonalite body in the deeper part of the OMC indicate that early emplacement of melt along shear zones and/or in the antiform hinges possibly supplied the heat for the anomalous thermal gradient and triggered the exhumation of a core complex-like structure.  相似文献   

12.
大别地块超高压变质省的构造变形研究   总被引:9,自引:0,他引:9  
索书田 《地学前缘》1999,6(4):255-262
构造解析的基本目的是建立构造事件造成的地质体几何学、运动学、动力学和流变学。大陆碰撞造山带内含柯石英及微粒金刚石等矿物组合的超高压(UHP) 变质岩的形成和折返,是极为复杂的地球动力学过程。与世界上已知大多数超高压变质带相似,中国大别地块内超高压变质省现今观察到的主体构造形式,主要是在碰撞或超高压变质峰期后伸展体制下形成的。通过对大别超高压变质省内伸展组构及挤压( 碰撞) 组构的鉴别、分析,结合有关超高压变质带构造学研究领域的简略综述指出,在揭示超高压变质带的形成及折返动力学过程中,构造解析的思维和工作方法是行之有效的  相似文献   

13.
张长厚  柴育成 《地质论评》1998,44(3):225-232
尽管许多地质学家提出了不同的超高压变质岩石形成与折返模式,但高压、超高压变质岩折返与剥露机制仍是大陆造山带动力学研究中的热点和焦点问题。本文明确提出并研究了分布于苏北-胶南变质岩区西北和北部边缘的地壳规模的拆离伸展型韧性剪切带。通过韧性剪切带几何学、运动学、变形环境分析和形成时代的讨论,认为与高压、超高压变质带展布方向斜交的斜向伸展构造作用,是苏北-鲁东南高压、超高压变质带从中地壳抬升至地表的主导  相似文献   

14.
《Geodinamica Acta》2013,26(5):309-329
The metamorphic basement of the Asinara island represents a key area of the Sardinia Variscan segment, because it displays an almost complete cross-section through the inner part of the Sardinia Variscan belt, where different tectono-metamorphic complexes have been juxtaposed along narrow belts of high-strain concentration. Detailed field mapping coupled with preliminary studies on the structural and metamorphic features of this small island, allow to draw a better picture of the structural frame issued from the Variscan collision in the inner zone of the belt. Three deformation phases related to crustal thickening in a compressive and transpressive, partitioned tectonic regime, followed by a later phase of extensional deformation have been recognised. In spite of a general HT/LP metamorphic overprint, linked to the post-collisional deformation phases, a relic Barrovian zoneography is still detectable. The Barrovian assemblages are preto syn-kinematic with respect to the D2 deformation phase, and pre-date the third, contractional tectonic event.

The HT/LP assemblage indicates a static growth of weakly deformed by the last deformation events. The complex geometry of the fabric associated to the D2 and D3 deformation events suggests an heterogenous deformation history with a monoclinic geometry characterized by switching of the stretching lineation orientation and a contrasting sense of displacement, probably controlled by a northward partitioned pure shear.  相似文献   

15.
Understanding the exhumation process of deep-seated material within subduction zones is important in comprehending the tectonic evolution of active margins. The deformation and slip history of superficial nappe pile emplaced upon high-P/T type metamorphic rocks can reveal the intimate relationship between deformation and transitions in paleo-stress that most likely arose from changes in the direction of plate convergence and exhumation of the metamorphic terrane. The Kinshozan–Atokura nappe pile emplaced upon the high-P/T type Sanbagawa (= Sambagawa) metamorphic rocks is the remnant of a pre-existing terrane located between paired metamorphic terranes along the Median Tectonic Line (MTL) of central Japan. Intra- and inter-nappe structures record the state of paleo-stress during metamorphism and exhumation of the Sanbagawa terrane. The following tectonic evolution of the nappes is inferred from a combined structural analysis of the basal fault of the nappes and their internal structures. The relative slip direction along the hanging wall rotated clockwise by 180°, from S to N, in association with a series of major tectonic changes from MTL-normal contraction to MTL-parallel strike-slip and finally MTL-normal extension. This clockwise rotation of the slip direction can be attributed to changes in the plate-induced regional stress state and associated exhumation of the deep-seated Sanbagawa terrane from the Late Cretaceous (Coniacian) to the Middle Miocene.  相似文献   

16.
《Geodinamica Acta》2013,26(1-2):99-118
The Alpine Corsica (Corsica Island, France) is characterized by a stack of continent- and ocean-derived tectonic units, known as Schistes Lustrés complex. This complex is affected by deformation and metamorphic imprint achieved during Late Cretaceous – Early Tertiary subduction- related processes connected with the closure of the Ligure-Piemontese oceanic basin and subsequent continental collision. In the Schistes Lustrés complex, the Lento oceanic unit is characterized by four deformation phases, from D1 to D4 phase. The D1 phase, characterized by blueschist metamorphism, is regarded as related to coherent underplating in a subduction zone at a depth of about 25-30 km. The subsequent deformation phases can be referred to exhumation history, as suggested by the continuous decrease of metamorphic conditions. The transition from accretion to exhumation is represented by the D2 phase, achieved during the development of a duplex structure of accreted units. The D3 phase is in turn achieved by a further horizontal shortening, whereas the D4 phase is developed during an extensional event representing the final exhumation of the Lento unit.

On the whole, the data collected for the Lento unit suggest an history that include an accretion by coherent underplating followed by exhumation, more complex than previous described.  相似文献   

17.
《Geodinamica Acta》2013,26(5):267-282
The interaction of distinct geologic processes involved during late orogenic extensional exhumation history of the metamorphic units in the Eastern Rhodope is refined by new and reviewing 40Ar/39Ar geochronological and structural data. Minerals with different closure temperatures from metamorphic rocks investigated in this study are combined with those from magmatic and ore-forming hydrothermal rocks in two late stage metamorphic domes – the Kesebir-Kardamos and the Biala reka-Kehros domes. The 38-37 Ma muscovite and biotite cooling ages below 350°-300°C characterize basement metamorphic rocks that typified core of the Kesebir-Kardamos dome, constraining their exhumation at shallow crustal levels in the footwall of detachment. These ages are interpreted as reflecting last stage of ductile activity on shear zone below detachment, which continued to operate under low-temperature conditions within the semi-ductile to brittle field. They are close to and overlap with existing cooling ages in southern Bulgaria and northern Greece, indicating supportively that the basement rocks regionally cooled between 42-36 Ma below temperatures 350°-300°C. The spatial distribution of ages shows a southward gradual increase up structural section, suggesting an asymmetrical mode of extension, cooling and exhumation from south to the north at latitude of the Kesebir-Kardamos dome. The slightly younger 36.5-35 Ma crystallization ages of adularia in altered rocks from the ore deposits in the immediate hanging-wall of detachments are attributed to brittle deformation on high-angle normal faults, which further contributed to upper crustal extension, and thus constraining the time when alteration took place and deformation continued at brittle crustal levels. Silicic dykes yielded ages between 32-33 Ma, typically coinciding with the main phase of Palaeogene magmatic activity, which started in Eastern Rhodope region in Late Eocene (Priabonian) times. The 40Ar/39Ar plateau ages from the above distinct rock types span time interval lasting approximately ca. 6 Ma. Consequently, our geochronologic results consistently indicate that extensional tectonics and related exhumation and doming, epithermal mineralizations and volcanic activity are closely spaced in time. These new 40Ar/39Ar age results further contribute to temporal constraints on the timing of tectonic, relative to ore-forming and magmatic events, suggesting in addition that all above mentioned processes interfered during the late orogenic extensional collapse in the Eastern Rhodope region.  相似文献   

18.
Genesis of the so‐called Bentong‐Raub Suture of Malay Peninsula does not fit to the model of subduction‐related collision. It has evolved from transpression tectonics resulting closure and exhumation of the inland basin which underwent extensive back‐arc extension during Triassic. Crust having similar thickness (average ~35 km) below entire Malay Peninsula nagate collision of two separate continental blocks rather supports single continental block that collided with South China continental block during Permo‐Triassic. Westward subduction of intervening sea (Proto South China Sea) below Malay Peninsula resulted in widespread I‐ and S‐Type granitization and volcanism in the back‐arc basins during Triassic. Extensive occurrence of Permo‐Triassic Pahang volcanics of predominantly rhyolitic tuff suggest its derivation from back‐arc extension. Back‐arc extension, basin development and sedimentation of the central belt of the peninsula continued until Cretaceous. A‐Type granite of metaluminous to peraluminous character indicates their emplacement in an intraplate tectonic setting. Malay Peninsula suffered an anticlockwise rotation due to the rifting of Luconia–Dangerous Grounds from the east Asia in the Late Cretaceous–Early Tertiary. Extensive ductile and brittle deformation including crustal segmentation, pull‐apart fracturing and faulting occurred during the closure and exhumation of the basins developed in the peninsula during Late Cretaceous–Early Tertiary. Crustal shortening in the central belt of the peninsula has been accomodated through strike‐slip displacement, shearing and uplift.  相似文献   

19.
华北克拉通的形成以及早期板块构造   总被引:21,自引:0,他引:21  
翟明国 《地质学报》2012,86(9):1335-1349
地球上最早的地壳岩石是高钠的花岗质(TTG)岩石,但是否有更老的洋壳存在过、以及陆壳是怎样形成的,涉及到地球动力学几乎所有的问题。其中板块构造是在什么时候开始的,就是个延续了数十年热度不减的前沿科学问题。流行的说法是板块构造始于新元古代,也有一些学者认为在新太古代就已经开始,或者认为自从地球上有了水的记录,就开始有板块构造。在众多的判别板块构造的标志中,蛇绿岩残片和古老的高压变质岩无疑是两个最具影响力的问题。前者可以确定有远古的古老洋壳存在过并成为缝合带中的残片,后者可以指示曾有地表的岩石单元被俯冲到深部,是俯冲、消减与碰撞的岩石学证据。本文在讨论和比较了太古宙绿岩带与蛇绿岩,以及早前寒武纪高温高压(HTHP)麻粒岩/高温—超高温(HT-UHT)麻粒岩与造山带高压变质带之后,认为尚不能作为板块构造的证据。本文还对华北的新太古代末的稳定大陆形成以及古元古代活动带的裂谷-俯冲-碰撞进行了论述。提出华北克拉通在新太古代末的绿岩带-高级区格局可能标志着热体制下有限的横向活动构造,微陆块被火山-沉积岩系焊接,随后发生变质作用和花岗岩化,完成稳定大陆的克拉通化过程。其构造机制可能是适度规模且多发的地幔柱构造控制下小尺度的横向构造运动的机制。华北克拉通的古元古代活动带有与绿岩带-高级区不同的构造样式,表壳岩带状分布,经受了强烈的变形以及中级变质作用,伴随花岗岩的侵入,虽然没有蛇绿岩和高压变质带,但已表现出板块构造的雏形特征。  相似文献   

20.
The Alpine belt in Corsica (France) is characterized by the occurrence of stacked tectonic slices derived from the Corsica/Europe continental margin, which outcrop between two weakly or non‐metamorphic tectonic domains: the ‘autochthonous’ domain of the Hercynian basement to the west and the Balagne Nappe (ophiolitic unit belonging to the ‘Nappes supérieures’) to the east. These slices, including basement rocks (Permian granitoids and their Palaeozoic host rocks), Late Carboniferous–Permian volcano‐sedimentary deposits, coarse‐grained polymict breccias (Volparone Breccia) and Middle Eocene siliciclastic turbidite deposits, were affected by a polyphase deformation history of Alpine age, associated with a well‐developed metamorphic recrystallization. This study provides new quantitative data about the peak of metamorphism and the retrograde P–T path in the Alpine Corsica: the tectonic slices of Volparone Breccia from the Balagne region (previously regarded as unmetamorphosed) were affected by peak metamorphism characterized by the phengite + chlorite + quartz ± albite assemblage. Using the chlorite‐phengite local equilibria method, peak metamorphic P–T conditions coherent with the low‐grade blueschist facies are estimated as 0.60 ± 0.15 GPa and 325 ± 20 °C. Moreover, the retrograde P–T path, characterized by a decrease of pressure and temperature, is evidence of the first stage of the exhumation path from the peak metamorphic conditions to greenschist facies conditions (0.35 ± 0.06 GPa and 315 ± 20 °C). The occurrence of metamorphic peak at high‐pressure/low‐temperature (HP/LT) conditions is evidence of the fact that these tectonic slices, derived from the Corsica/Europe continental margin, were deformed and metamorphosed in the Alpine subduction zone during their underplating at ~20 km of depth into the accretionary wedge and were subsequently juxtaposed against the metamorphic and non‐metamorphic oceanic units during a complex exhumation history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号