首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract Standard petrographic, microthermometric and Raman spectroscopic analyses of fluid inclusions from the metamorphosed massive sulphide deposits at Ducktown, Tennessee, indicate that fluids with a wide range of compositions in the C–O–H–N–S–salt system were involved in the syn- to post-metamorphic history of these deposits. Primary fluid inclusions from peak metamorphic clinopyroxene contain low-salinity, H2O–CH4 fluids and calcite, quartz and pyrrhotite daughter crystals. Many of these inclusions exhibit morphologies resembling those produced in laboratory experiments in which confining pressures significantly exceed the internal pressures of the inclusions. Secondary inclusions in metamorphic quartz from veins, pods, and host matrix record a complex uplift history involving a variety of fluids in the C–O–H–N–salt system. Early fluids were generated by local devolatilization reactions while later fluids were derived externally. Isochores calculated for secondary inclusions in addition to the chronology of trapping and morphological features of primary and secondary fluid inclusions suggest an uplift path which was concave toward the temperature axis over the P–T range 6–3 kbar and 550–225° C. Immiscible H2O–CH4–N2–NaCl fluids were trapped under lithostatic to hydrostatic pressure conditions at 3–0.5 kbar and 215 ± 20° C. Entrapment occurred during Alleghanian thrusting, and the fluids may have been derived by tectonically driven expulsion of pore fluids and thermal maturation of organic material in lower-plate sedimentary rocks which are thought to underlie the deposits. Episodic fracturing and concomitant pressure decreases in upper-plate rocks, which host the ore bodies, would have allowed these fluids to move upward and become immiscible. Post-Alleghanian uplift appears to have been temperature-convex. Uplift rates of 0.10–0.05 mm year?1 from middle Ordovician to middle Silurian – late Devonian, and 0.07–0.12 mm year?1 from middle Silurian – late Devonian to late Permian are suggested by our uplift path and available geochronological data.  相似文献   

2.
A newly discovered, extensive sphalerite-bearing breccia (~7.5 wt.% Zn) is hosted in dolomitised Carboniferous limestones overlying Ordovician–Silurian metasedimentary rocks on the Isle of Man. Although base metal sulphide deposits have been mined historically on the island, they are nearly all quartz vein deposits in the metamorphic basement. This study investigates the origin of the unusual sphalerite breccia and its relationship to basement-hosted deposits, through a combination of petrographic, cathodoluminescence, fluid inclusion, stable isotope and hydrogeologic modelling techniques. Breccia mineralisation comprises four stages, marked by episodes of structural deformation and abrupt changes in fluid temperature and chemistry. In stage I, high-temperature (T h > 300°C), high-salinity (20–45 wt.% equiv. NaCl) fluid of likely basement origin deposited a discontinuous quartz vein. This vein was subsequently dismembered during a major brecciation event. Stages II–IV are dominated by open-space filling sphalerite, quartz and dolomite, respectively. Fluid inclusions in these minerals record temperatures of ~105–180°C and salinities of ~15–20 wt.% equiv. NaCl. The δ34S values of sphalerite (6.5–6.9‰ Vienna-Canyon Diablo troilite) are nearly identical to those of ore sulphides from mines in the Lower Palaeozoic metamorphic rocks. The δ18O values for quartz and dolomite indicate two main fluid sources in the breccia’s hydrothermal system, local Carboniferous-hosted brines (~0.5–6.0‰ Vienna standard mean ocean water) and basement-involved fluids (~5.5–11.5‰). Ore sulphide deposition in the breccia is compatible with the introduction and cooling of a hot, basement-derived fluid that interacted with local sedimentary brines.  相似文献   

3.
Mafic volcanic rocks of the Fortescue Group form the lowermost stratigraphic unit of the 100,000 km2 Hamersley Basin on the southern margin of the Archean Pilbara Craton, Western Australia. A regional burial metamorphic gradient extends across the basin from prehnite–pumpellyite facies in the north to greenschist facies in the south. Phase equilibria modelling of mafic rocks with the computer program thermocalc , in subsets of the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–Fe2O3, successfully reproduces observed metamorphic mineral assemblages, giving conditions of ~210 °C, 2 kbar in the north and 335 °C, 3.2 kbar in the south. Superimposed on this metamorphic gradient, regional‐scale metasomatism in the Fortescue Group progressively produces a suite of prehnite‐bearing and pumpellyite–quartz/epidote–quartz‐dominated assemblages. Further modelling of variably metasomatized samples consistently estimates conditions of 260–280 °C, 2.5–3 kbar across the basin. All modelled samples were likely metasomatized at approximately the same structural level, following regional deformation during the Ophthalmian orogeny. Folding during the Ophthalmian orogeny produced topographic and/or tectonic driving forces for regional‐scale fluid flow, pushing metasomatic fluid northwards across the Hamersley Basin. These new phase equilibria calculations support previous interpretations linking the Ophthalmian orogeny, fluid flow and upgrading of Hamersley iron ore deposits. We propose an extension of this fluid flow to the Fortescue Group, the metasomatism of which may have contributed a source of Fe to the Hamersley iron ore deposits.  相似文献   

4.
Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include(1) the famous Kolar mine and the world class Hutti deposit;(2) small mines at HiraBuddini, Uti, Ajjanahalli, and Guddadarangavanahalli;(3) prospects at Jonnagiri; and(4) old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous(H_2O + CO_2 ± CH_4 + NaCl) ore fluids,which precipitated gold and altered the host rocks in a narrow P-T window of 0.7-2.5 kbar and 215-320℃. While the calculated fluid O-and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs.magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite, pyrite and arsenopyrite point toward operation of fault-valves that caused pressure fluctuation-induced fluid phase separation, which acted as the dominant process of gold precipitation,apart from fluid-rock sulfidation reactions. Therefore, results from geochemistry of hydrothermal minerals and those from fluid inclusion microthermometry corroborate in constraining source of ore fluid,nature of gold transport(by Au-bisulfide complex) and mechanism of gold ore formation in the Dharwar Craton.  相似文献   

5.
This work presents brief geotectonic characteristics of the region, which includes Baikalian, Caledonian, Hercynian, and Alpine structural assemblages. Rocks of all, except Carboniferous, systems compose the sedimentary cover. The presence of plutonic rocks is possible. Occurrences of sedimentary iron ores were established in the Cambrian, Triassic, and Jurassic rocks. The Silurian, Triassic, and Jurassic rocks reveal the highest potential for stratiform base and rare metal (Cu, Pb, Zn, V, Mo) deposits. Allite occurrences were found in the Ordovician, Silurian, and Upper Permian rocks, thus indicating the possible bauxite potential of this region. The Quaternary rocks are likely to be prospective for polymineral placers.  相似文献   

6.
A structural, metamorphic and geochronological study of the Staré Město belt implies the existence of two distinct metamorphic events of similar peak P–T conditions (700–800 °C, 8–10 kbar) during the Cambro‐Ordovician and the Carboniferous tectonometamorphic events. The hypothesis of two distinct periods of metamorphism was suggested on the basis of structural discordance between an undoubtedly Carboniferous granodiorite sill intrusion and earlier Cambro‐Ordovician fabrics of a banded amphibolite complex. The analysis of crystal size distribution (CSD) shows high nucleation density (N0) and low average growth rate (Gt) for Carboniferous mylonitic metagabbros and mylonitic granodiorites. The parameter N0 decreases whereas the quantity Gt increases towards higher temperatures progressively approaching the values obtained from the Cambro‐Ordovician banded amphibolite complex. The spatial distribution of amphibole and plagioclase shows intense mechanical mixing for lower‐temperature mylonitic metagabbros. In high‐temperature mylonites a strong aggregate distribution is developed. Cambro‐Ordovician amphibolites unaffected by Carboniferous deformation show a regular to anticlustered spatial distribution resulting from heterogeneous nucleation of individual phases. This pattern, together with CSD, was subsequently modified by the grain growth and textural equilibration controlled by diffusive mass transfer during Carboniferous metamorphism. The differences between the observed textures of the amphibolites are interpreted to be a consequence of the different durations of the Carboniferous and Cambro‐Ordovician thermal events.  相似文献   

7.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

8.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

9.
The Ordovician volcanic rocks in the Mayaxueshan area have been pervasively altered or metamorphosed and contain abundant secondary minerals such as albite, chlorite, epidote, prehnite, pumpellyite, actinolite, titanite, quartz, and/or calcite. They were denoted as spilites or spilitic rocks in terms of their petrographic features and mineral assemblages. The metamorphic grades of the volcanic rocks are equivalent to that of the intercalated metaclastic rocks. This indicates that both the spilitic volcanic rocks and metaclastic rocks in the Mayaxueshan area have formed as a result of Caledonian regional metamorphism. We suggest that the previously denoted spilitic rocks or altered volcanic rocks should be re-denoted as metabasalts or metabasaltic rocks. The metamorphic grade of the volcanic rocks increases with their age: prehnite-pumpellyite facies for the upper part of the Middle Ordovician volcanic rocks, prehnite-pumpeilyite to lower greenschist facies for the lower part of the Middle Ordovician vol  相似文献   

10.
The Hujiayu Cu deposit,representative of the "HuBi-type" Cu deposits in the Zhongtiao Mountains district in the southern edge of the North China Craton,is primarily hosted in graphitebearing schists and carbonate rocks.The ore minerals comprise mainly chalcopyrite,with minor sphalerite,siegenite[(Co,Ni)_3S_4],and clausthalite[Pb(S,Se)].The gangue minerals are mainly quartz and dolomite,with minor albite.Four fluid inclusion types were recognized in the chalcopyrite-pyrite-dolomite-quartz veins,including CO_2-rich inclusions(type Ⅰ),low-salinity,liquid-dominated,biphase aqueous inclusions(type Ⅱ),solid-bearing aqueous inclusions(type Ⅲ),and solid-bearing aqueous-carbonic inclusions(type Ⅳ).Type I inclusion can be further divided into two sub-types,i.e.,monophase CO_2 inclusions(type Ⅰa) and biphase CO_2-rich inclusions(with a visible aqueous phase),and type Ⅲ inclusion is divided into a subtype with a halite daughter mineral(type Ⅲa) and a subtype with multiple solids(type Ⅲb).Various fluid inclusion assemblages(FIAs) were identified through petrographic observations,and were classified into four groups.The group-1 FIA,consisting of monophase CO_2 inclusions(type Ⅰa),homogenized into the liquid phase in a large range of temperatures from-1 to 28℃,suggesting post-entrapment modification.The group-2 FIA consists of type Ⅰb,Ⅲb and Ⅳ inclusions,and is interpreted to reflect fluid immiscibility.The group-3 FIA comprises type Ⅱ and Ⅲa inclusions,and the group-4FIA consists of type Ⅱ inclusions with consistent phase ratios.The group-1 and group-2 FIAs are interpreted to be entrapped during mineralization,whereas group-3 and group-4 FIAs probably represent the post-mineralization fluids.The solid CO_2 melting temperatures range from-60.6 to56.6℃ and from-66.0 to-63.4℃ for type Ⅰa and type Ⅳ inclusions,respectively.The homogenization temperatures for type Ⅱ inclusions range from 132 to 170℃ for group-3 FIAs and115 to 219℃ for group-4 FIAs.The halite melting temperatures range from 530 to 562℃ for typeⅢ b and Ⅳ inclusions,whereas those for type Ⅲa inclusions range from 198 to 398℃.Laser Raman and SEM-EDS results show that the gas species in fluid inclusions are mainly CO_2 with minor CH_4,and the solids are dominated by calcite and halite.The calcite in the hosting marble and dolomite in the hydrothermal veins have δ~(13)C_(V-pdb) values of-0.2 to 1.2‰ and-1.2 to-6.3‰,and δ~(18)O_(v-smow) values of 14.0 to 20.8 ‰ and 13.2 to 14.3‰,respectively.The fluid inclusion and carbon-oxygen isotope data suggest that the ore-forming fluids were probably derived from metamorphic fluids,which had reacted with organic matter in sedimentary rocks or graphite and undergone phase separation at 1.4-1.8 kbar and 230-240℃,after peak metamorphism.It is proposed that the Hujiayu Cu deposit consists of two mineralization stages.The early stage mineralization,characterized by disseminated and veinlet copper sulfides,probably took place in an environment similar to sediment-hosted stratiform copper mineralization.Ore minerals formed in this precursor mineralization stage were remobilized and enriched in the late metamorphic hydrothermal stage,leading to the formation of thick quartz-dolomite-sulfides veins.  相似文献   

11.
A prominent set of veins was formed during post-metamorphic deformation of the Caledonian Dalradian metamorphic belt. These veins are concentrated in dilational zones in fold hinges, but apophyses follow schistosity and fold axial surface fractures. The veins are most common in the cores of regional structures, especially the Dalradian Downbend and consist of quartz, calcite, chlorite and metallic sulphides and oxides. Metals, including gold, have been concentrated in the veins. The fluid which formed the veins was low salinity (1–5 wt% NaCl and KCl) CO2-bearing (3–16 wt% CO2) water of metamorphic origin. The fluid varies slightly in composition within and between samples, but is essentially uniform in composition over several hundred km2. Vein formation occurred at about 350±50 °C and 200–300 MPa pressure. Further quartz mineralization occurred in some dilational zones at lower temperatures (160–180 °C). This later mineralization was accompanied by CO2 immiscibility. Dilution and oxidation of the metamorphic fluid occurred due to mixing with meteoric water as the rocks passed through the brittle-ductile transition. A similar metamorphic fluid is thought to have been responsible for gold mineralization in the nearby Tyndrum Fault at a later stage in the Dalradian uplift.  相似文献   

12.
Localized (domainal) low-temperature alteration may indicate variations in the chemistry of alteration fluids and/or discrete fluid flow paths during metamorphism. Occurrences of epidote- and pumpellyite-dominated domains are often used as evidence for large fluxes of Ca-rich fluids. However, comparative studies of two domainal alteration styles from basaltic to andesitic lavas and volcaniclastic rocks at Builth Wells, Wales, UK suggest that such interpretations cannot be applied universally. Here, only one set of domains can be attributed to large fluxes of Ca-rich fluids. In contrast, the second set of domains formed where the host rock supplied the necessary Ca, and fluid/rock ratios were relatively low. These domains are hosted by rocks which show a Caledonian regional metamorphic imprint, characterized by the alteration assemblage albite+chlorite+titanite±prehnite±pumpellyite±calcite±muscovite±quartz (considered to have formed at c. 200°C and ≤2.5 kbar). Type 1 domains lie along fluid channelways, such as veins. Pumpellyite is the dominant secondary mineral, but the alteration assemblage is variable with pumpellyite±prehnite±calcite±titanite±chlorite (±quartz). The domains formed at temperatures of 130–230°C during Ordovician hydrothermal activity, before the peak of regional metamorphism. In contrast, Type 2 domains are not associated with obvious fluid channelways. A central prehnite-dominated zone typically has a rim with the assemblage pumpellyite+calcite±prehnite±chlorite±titanite±K-rich phyllosilicate. These domains probably formed from pelitic xenoliths which contained a volcaniclastic component at temperatures of 130–230°C and at relatively low fluid/rock ratios. However, the timing of domain formation is uncertain. Pyrobitumen, in veins and disseminated throughout the rock, may have influenced the formation of both types of domain by stabilizing pumpellyite in preference to epidote and causing metamorphic calcite formation through the release of CO2 to the alteration fluids. © 1996 John Wiley & Sons, Ltd.  相似文献   

13.
The Pb + Zn + Ba veins of West Shropshire, England, occupy fractures in Ordovician and Precambrian rocks of the Shelve Inlier. Precipitation of sphaleritic ores was succeeded by galena + baryte mineralization, with chalcopyrite also occurring late in the mineralizing episode. Three generations of sphalerite are recognized, and second being chemically zoned with distinct Fe + Cd-rich growth zones. Associated with these iron-rich bands are smaller (∼ 10 μm) zones rich in indium (>1.0 wt%) and copper, electron electron probe microanalyses suggesting coupled substitution of Cu+ + In+3 in the ZnS. Based on the sequence of growth zones and their chemistry a sphalerite stratigraphy can be recognized within the orefield. Fluid inclusions studies reveal the mineralizing fluids to be highly saline (18–30 wt% CaCl2 equivalent) Na + Ca-richbrines, with mineralizing temperatures in the range 200–120°C. A trend from higher temperature-low salinity to low temperature-high salinity fluids with time is recognized. Sulphide sulphur isotopic ratios are consistent and suggest a ΔS34SH2S of the mineralizing fluid of 10%, while 34Sbaryte values are in the range + 14 to + 19%, indicating separate sulphate and sulphide sulphur sources. The mineralogical, fluid inclusion, and isotopic data suggest the saline fluids rose into an open plumbing system where mineral precipitation was mainly controlled by fluid cooling. The baryte however, formed due to mixing with oan overlying sulphate-bearing reservioir. Theree possible fluid sources are considered, namely: Lower Carboniferous seawater, basinal brines, and metamorphic fluids. However, the information available does not allow the source to be positively identified.  相似文献   

14.
Thermodynamic modelling of metamorphic rocks increases the possibilities of deciphering prograde paths that provide important insights into early orogenic evolution. It is shown that the chloritoid–staurolite transition is not only an indicator of temperature on prograde P–T paths, but also a useful indicator of pressure. The approach is applied to the Moravo‐Silesian eastern external belt of the Bohemian Massif, where metamorphic zones range from biotite to staurolite‐sillimanite. In the staurolite zone, inclusions of chloritoid occur in garnet cores, while staurolite is included at garnet rims and is widespread in the matrix. Chloritoid XFe = 0.91 indicates transition to staurolite at 5 kbar and 550 °C and consequently, an early transient prograde geothermal gradient of 29 °C km?1. The overall elevated thermal evolution is then reflected in the prograde transition of staurolite to sillimanite and in the achievement of peak temperature of 660 °C at a relatively low pressure of 6.5 kbar. To the south and to the west of the studied area, high‐grade metamorphic zones record a prograde path evolution from staurolite to kyanite and development of sillimanite on decompression. Transition of chloritoid to staurolite was reported in two places, with chloritoid XFe = 0.75–0.80, occurring at 8–10 kbar and 560–580 °C, and indicating a transient prograde geothermal gradient of 16–18 °C km?1. These data show variable barric evolutions along strike and across the Moravo‐Silesian domain. Elevated prograde geothermal gradient coincides with areas of Devonian sedimentation and volcanism, and syn‐ to late Carboniferous intrusions. Therefore, we interpret it as a result of heat inherited from Devonian rifting, further fuelled by syntectonic Carboniferous intrusions.  相似文献   

15.
The c. 1.9 Ga old Stollberg sulphide and Mnrich skarn iron ores and sulphide ores in Bergslagen, south-central Sweden are hosted by hydrothermally altered and metamorphosed felsic volcanic and volcaniclastic rocks. The ores are underlain by comformable alteration zones characterized by albite-gedrite-quartz and biotite-muscovite-plagioclase-K-feldspar-quartz +/– garnet assemblages. The present mineralogies are interpreted as medium-grade metamorphic equivalents to the original alteration mineral assemblages. PT-conditions during prograde regional metamorphism are semiquantatively determined to be 510 to 560 °C at approximately 3 kbar. With increasing modal content of gedrite and biotite in the alteration zones, the Mg/Fe ratios and XMg's in octahedral positions of these minerals also increase. In the gedrite-bearing strata, whole-rock Mg/Fe ratios remain constant, whereas in the biotite-rich unit the wholerock Mg/Fe trend is parallel to that of the biotites.The trends in the metamorphic mineral composition are interpreted to be a product of original changes in fluid composition during the evolution of a sub-seafloor hydrothermal system. During the initial stage of alteration, Fe-Mn-rich fluids altered the rocks, and during a later stage, the fluids became more Mg-rich, possibly due to entrainment of fresh seawater, and the alteration zones became relatively more Mg-rich. Sulphide precipitation was contemperaneous with Mg metasomatism, suggesting base metal precipitation was a function of the mixing of cool seawater with hydrothermal fluid. It is proposed that early hydrothermal alteration was associated with the deposition of areally extensive Fe-oxide formation, and that Mg metasomatism defines a second stage of hydrothermal activity during which sulphide mineralization overprinted the earlier formed Fe-oxide deposit.  相似文献   

16.
The Gemericum is a segment of the Variscan orogen subsequently deformed by the Alpine–Carpathian orogeny. The unit contains abundant siderite–sulphide and quartz–antimony veins together with stratabound siderite replacement deposits in limestones and stratiform sulphide mineralization in volcano-sedimentary sequences. The siderite–sulphide veins and siderite replacement deposits of the Gemericum represent one of the largest accumulations of siderite in the world, with about 160 million tonnes of mineable FeCO3. More than 1200 steeply dipping hydrothermal veins are arranged in a regional tectonic and compositional pattern, reflecting the distribution of regional metamorphic zones. Siderite–sulphide veins are typically contained in low-grade (chlorite zone) sedimentary, volcano-sedimentary or volcanic Lower and Upper Paleozoic rocks. Quartz–antimony veins are hosted by higher-grade units (biotite zone). Siderite–sulphide veins are dominated by early siderite followed by a complex set of stages, including quartz–sulphide (chalcopyrite, tetrahedrite), barite, tourmaline–quartz, and sulphide-remobilization stages. The temporal evolution of these stages is difficult to study because of the widespread and repeated tectonic processes, within-vein replacement and recrystallization. Siderite–sulphide veins show considerable vertical (up to 1200 m) and lateral (up to 15 km) extent, and a thickness typically reaching several metres. Carbonate-replacement siderite deposits of the Gemericum are hosted by a Silurian limestone belt and are similar to stratabound siderite deposits of the Eastern Alps (e.g., Erzberg, Austria).Based on a review of geological, petrological and geochronological data for the Gemericum, and extensive stable and radiogenic isotope data and fluid inclusion data on hydrothermal minerals, the siderite–sulphide veins and siderite replacement deposits are classified as metamorphogenic in a broad sense. The deposits were formed during several stages of regional crustal-scale fluid flow. Isotope (S, C, Sr, Pb) fingerprinting identifies the metamorphosed rock complexes of the Gemericum as a source of most components of hydrothermal fluids. Fluid inclusion and stable isotope data evidence the participation of several contrasting fluid types, and the existence of contrasting PT conditions during vein evolution. A high-δ18O, medium- to high-salinity, H2O-type fluid is the most important component during siderite deposition, whereas H2O–CO2-type fluid inclusion containing dense liquid CO2 and corresponding to minimal pressures between 1 and 3 kbar were found in a younger tourmaline–quartz stage. Younger quartz–ankerite(±siderite)–sulphide stages are characterized by high-salinity (17 to 35 wt.% NaCl equivalent) and low-temperature (Th=90 to 180 °C) H2O-type fluids.The vein deposits are interpreted as a result of multistage hydrothermal circulation, with Variscan and Alpine mineralization phases. Based on available indirect data, the most important mineralization phase was related to regional fluid flow during the uplift of a Variscan metamorphic core complex, producing siderite–sulphide (±barite) mineralization, while tourmaline–quartz stage and sulphide remobilization stages are related to Alpine processes. Two phases of vein evolution are evident from two groups of 87Sr/86Sr isotope ratios of Sr-rich, Rb-poor hydrothermal minerals: 0.71042–0.71541 in older barite and 0.7190–0.7220 in late-stage celestine and strontianite.  相似文献   

17.
High‐P/low‐T metamorphic rocks of the Hammondvale metamorphic suite (HMS) are exposed in an area of 10 km2 on the NW margin of the Caledonian (Avalon) terrane in southern New Brunswick, Canada. The HMS is in faulted contact on the SE with c. 560–550 Ma volcanic and sedimentary rocks and co‐magmatic plutonic units of the Caledonian terrane. The HMS consists of albite‐ and garnet‐porphyroblastic mica schist, with minor marble, calc‐silicate rocks and quartzite. Pressure and temperature estimates from metamorphic assemblages in the mica schist and calc‐silicate rocks using TWQ indicate that peak pressure conditions were 12.4 kbar at 430 °C. Peak temperature conditions were 580 °C at 9.0 kbar. 40Ar/39Ar muscovite ages from three samples range up to 618–615 Ma, a minimum age for high‐P/low‐T metamorphism in this unit. These ages indicate that the HMS is related to the c. 625–600 Ma subduction‐generated volcanic and plutonic units exposed to the SE in the Caledonian terrane. The ages are also similar to those obtained from detrital muscovite in a Neoproterozoic‐Cambrian sedimentary sequence in the Caledonian terrane, suggesting that the HMS was exposed by latest Neoproterozoic time and supplied detritus to the sedimentary units. The HMS is interpreted to represent a fragment of an accretionary complex, similar to the Sanbagawa Belt in Japan. It confirms the presence of a major cryptic suture between the Avalon terrane sensu stricto and the now‐adjacent Brookville terrane.  相似文献   

18.
The Fengjia barite–fluorite deposit in southeast Sichuan is a stratabound ore deposit which occurs mainly in Lower Ordovician carbonate rocks. Here we present results from fluid inclusion and oxygen and hydrogen isotope studies to determine the nature and origin of the hydrothermal fluids that generated the deposit. The temperature of the ore‐forming fluid shows a range of 86 to 302 °C. Our detailed microthermometric data show that the temperature during mineralization of the fluorite and barite in the early ore‐forming stage was higher than that during the formation of the calcite in the late ore‐forming stage. The salinity varied substantially from 0.18% to 21.19% NaCl eqv., whereas the density was around 1.00 g/cm3. The fluid composition was mainly H2O (>91.33%), followed by CO2, CH4 and traces of C2H6, CO, Ar, and H2S. The dominant cation was Na+ and the dominant anion Cl, followed by Ca2+, SO42‐, K+, and Mg2+, indicating a mid–low‐temperature, mid‐low‐salinity, low‐density NaCl–H2O system. Our results demonstrate that the temperature decreased during the ore‐forming process and the fluid system changed from a closed reducing environment to an open oxidizing environment. The hydrogen and oxygen isotope data demonstrate that the hydrothermal fluids in the study area had multiple sources, primarily formation water, as well as meteoric water and metamorphic water. Combined with the geological setting and mineralization features we infer that the stratabound barite–fluorite deposits originated from mid–low‐temperature hydrothermal fluids and formed vein filling in the fault zone.  相似文献   

19.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

20.
The Greenland Caledonides (GC) formed in the overriding Laurentian plate during the closure of the Iapetus Ocean and the subduction of Baltica, and offer a unique opportunity to study metamorphic patterns, regional structures and the kinematic evolution of the overriding plate of a continental collision. We present new metamorphic petrology and coupled zircon geochronology and geochemistry data from the Jættedal complex in southern Liverpool Land to document the thermal evolution of the orogenic core of the southern GC. Pelitic migmatite gneisses from the Jættedal complex document metamorphic conditions of 850–730 °C at pressures of 11–9.5 kbar. Zircon from these samples yields Archean–Mesoproterozoic detrital cores with positive heavy rare earth element (HREE) slopes, and 440–425 Ma rims with flat HREE slopes are interpreted to date the timing of prograde pelite anatexis. Intercalated mafic assemblages record metamorphic conditions of 860–820 °C at 12–10 kbar. Zircon from mafic gneisses contains cores with ages of c. 458 Ma with positive HREE slopes and 413–411 Ma rims with flat HREE slopes that are interpreted to record the timing of original mafic dyke intrusion and subsequent partial melting respectively. When placed in the context of correlative rocks from the southern GC, these results suggest the development of a thermally weakened lower to middle crust in the Caledonian overriding plate that spanned >200 km perpendicular to orogenic strike during the Silurian. The existing data further suggest Silurian syn‐orogenic channel flow and exhumation occurred at the thrust front, while protracted high‐T metamorphism continued in the orogenic core. These patterns highlight variations in the thermal and rheologic structure of the Caledonian overriding plate along orogenic strike, and have implications for the development and exhumation of high‐ and ultrahigh‐pressure terranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号