首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic geoelectrical investigations were carried out in a typical drought affected region of Andhra Pradesh, India, for evolving drought remedial strategies. Depth to basement maps, geoelectrical sections, and soil thickness maps were constructed. The interpreted results clearly identify locations of potential acquifer zones for soil conservation and areas artificial recharge.  相似文献   

2.
Five intersecting resistivity sections have been measured in glaciofluvial deposits hosting an aquifer of regional importance situated along a heavy traffic highway in Sweden. The winter salt spreading has caused a regular salinity increase through the years. For imaging the transport of saltwater in the aquifer, the sections were measured exactly in the same location before and after winter, and interpreted using a time-lapse inverse procedure. Some auger drilling and RCPT data were available for correlation. After winter, the resistivity had generally decreased under the water table and increased above it. The decrease in resistivity in the saturated zone is interpreted as a plume of more saline groundwater created by de-icing salt from the road. The increase in the upper layer can be explained by changes in temperature and soil moisture. The study shows that time-lapse resistivity investigations has potential for imaging hydraulic pathways in complex hydrogeological environments.  相似文献   

3.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

4.
The proposed site for a new solid waste disposal facility was identified by a municipal government in a north Florida area characterized by Miocene Hawthorn Group sedimentary sequences and active karst development. An evaluation of the sinkhole potential and subsurface stability was conducted with a total of 300 electrical resistivity Wenner array sounding traverses with electrode spacings extending to 30 m. Data were interpreted to identify vertical sequences of the Hawthorn Group confining layer, and the underlying Ocala Limestone. Electrical evidence identified an intermediate, discontinuous limestone layer present in limited areas, but absent in much of the area investigated. No evidence was detected to identify breeches within the confining layer over the Floridan Aquifer within the Ocala Limestone. The data were combined with lithologic logs from deep boreholes to prepare a series of continuous and interconnecting fence diagrams to portray the geologic configuration throughout the proposed site. The results demonstrate the value of electrical resistivity measurements to augment borehole data in economical investigations of sinkhole potential in karstic terrains.  相似文献   

5.
The Guangxi area is famous for its high degree of karstification due to a long period of groundwater erosion and the development of fracture networks. Karst collapse appeared during the mining process and caused many environmental problems. Applying electrical resistivity imaging (ERI) is the most cost-effective method to study the characteristic of the subsurface karst environment. In this area, more than 24 km of ERI profiles around a mining area is carried out to present the development of karst which will be used to evaluate the effects on the ground water and the surrounding environment. The area represents a classical limestone rock which is of high quality and is used for cement production. In this study, the ERI is used to determine the geometry of the karst range at depth. The results are in good agreement with drilling experiments. The ERI survey provided near-surface resistivity information, which is very useful for establishing the geometry and the position of potential karst.  相似文献   

6.
Subsurface structures associated with hard rocks are very important for groundwater. Wadi Fatima runs through the volcanic and metamorphic rocks of the Arabian Shield which are characterized by higher magnetization than the overlaying alluvium sediments. Magnetic and direct current (DC) resistivity methods have been used for groundwater exploration in the northern part of Wadi Fatima. The magnetic survey was used mainly to map the subsurface structures, using analytic signal algorithm, of the study area. The DC resistivity method was applied to describe the lithologic domain as a function of depth, depending on their electrical property contrasts where it provided a good indication for water bearing formations. The magnetic and DC resistivity interpretations were confirmed by drilling which have provided a clear idea about the hydrogeological regime of the study area. The selected drilled well is successfully productive and it produces 30 m3/h.  相似文献   

7.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

8.
Debris-covered snow-covered gorges (DSGs) are common in the mountainous environment of the Japanese Alps in the Western Pacific Region, but are almost absent in subdued landscapes, where snow melting rates are higher. Our study demonstrates that the effect of debris coverage on the shrinkage of snow-covered gorges of the Japanese Alps results in differences in how the gorges respond to climate change, which has been neglected in predictions of future water availability. Snow-covered gorges and glacial meltwater make important contributions to drinking water, irrigation water, and hydropower supply in the Japanese Alps Region. Global warming is expected to increase mountainous river discharge and snowmelt in the short-term, but long-term predictions are uncertain. Therefore, detailed and reliable baseline data about the mountainous environment of the Japanese Alps, and its effects on the cryosphere, are essential for predicting the future hydrosphere of Japan. However, field investigations in this region are difficult, and to date, studies have not collected enough data to fully understand the processes involved. Supraglacial debris influences the terminus dynamics, and can thereby modify the migration of a snow-covered gorge under climate change. Recent studies have found several DSGs that are stagnant (i.e., almost non-flowing) in the mountainous environments of southwest Saskatchewan, Canada. Two surface samples were taken on 24 June 2014 and 27 June 2014 to determine the mean grain size of sediment at the site. It was found that DSGs extended for several kilometres through valleys in this region. Our results indicated that the maximum temperature within 10 cm of the ground surface varied from 10 °C to 15 °C, which may be the crucial baseline factor for the existence of DSGs. Although the increasing rates of meltwater discharge and surface lowering indicate that these snow-covered gorges are currently shrinking, their fronts remain remarkably stable, a phenomenon that has also been observed in other regions. The significance of debris cover and its impact on regional differences in the mountainous environment of the Japanese Alps has not been established in the mountainous valley-belt of the region. In this study, we report the baseline characteristics of DSG during the beginning of the snowmelt period in the extreme mountainous environment region of the Japanese Alps.  相似文献   

9.
Orthogonal set of 2D geoelectrical resistivity field data, consisting of six parallel and five perpendicular profiles, were collected in an investigation site using the conventional Wenner array. Seven Schlumberger soundings were also conducted on the site to provide ID layering information and supplement the orthogonal 2D profiles. The observed 2D apparent resistivity data were first processed individually and then collated into 3D data set which was processed using a 3D inversion code. The 3D model resistivity images obtained from the inversion are presented as horizontal depth slices. Some distortions observed in the 2D images from the inversion of the 2D profiles are not observed in the 2D images extracted from the 3D inversion. The survey was conducted with the aim of investigating the degree of weathering and fracturing in the weathered profile, and thereby ascertaining the suitability of the site for engineering constructions as well as determining its groundwater potential.  相似文献   

10.
Vertical electrical resistivity soundings were conducted in order to delineate groundwater potential aquifers in Peddavanka watershed, which is a catchment of about 398 km2 in Anantapur District, Andhra Pradesh, India. The main lithologic units in the watershed are quartzite, limestone, shale, and alluvium. Ninety-nine vertical electrical soundings were conducted using the Schlumberger configuration, covering the entire watershed. The data were interpreted with the help of master curves and auxiliary point charts. Interpretations of VES were used to generate a top layer apparent resistivity contour map and longitudinal conductance map. Isoresistivity contour maps were prepared and interpreted in terms of resistivity and thickness of various sub-surface layers using computer software (SURFER), and isocontour diagrams depicting the depth to bedrock were prepared. Resistivity results were correlated with the existing lithology. Based on the depth to bedrock, the thickness of the saturated layer and the resistivity of the second layer, a groundwater potential map has been prepared, in which good, moderate, and poor zones are classified. The study reveals that the weathered and fractured portions in shale and limestone that occur in the southernmost and central portions of the watershed area constitute the productive water-bearing zones categorized as good groundwater potential aquifers.  相似文献   

11.
A frequency-domain electromagnetic (FDEM) survey can be used to select locations for the more quantitative and labor-intensive electrical resistivity surveys. The FDEM survey rapidly characterized the groundwater-flow directions and configured the saline plumes caused by evaporation from several groundwater-dominated lakes in the Nebraska Sand Hills, USA. The FDEM instrument was mounted on a fiberglass cart and towed by an all-terrain vehicle, covering about 25 km/day. Around the saline lakes, areas with high electrical conductivity are consistent with the regional and local groundwater flow directions. The efficacy of this geophysical approach is attributed to: the high contrast in electrical conductivity between various groundwater zones; the shallow location of the saline zones; minimal cultural interference; and relative homogeneity of the aquifer materials.  相似文献   

12.
13.
岩溶建筑地基强溶蚀带划分   总被引:1,自引:0,他引:1  
强溶蚀带是岩溶地基中岩体溶蚀程度最高的深度范围,反映了场地岩溶发育的主要深度范围和岩溶地基处理难度,合理划分强溶蚀带对岩溶地基设计具有积极的工程实际意义。基于岩溶地基溶蚀程度深度分布特征,提出了强溶蚀带界限高程的确定方法,并结合具体的工程案例论证了强溶蚀带划分方法的先进合理性。结果表明:强溶蚀带不宜直接作为岩溶地基的主要持力层,其分布界限可根据溶蚀率深度分布曲线确定;在保证场地各勘察阶段具有足够的钻孔数量的前提下,同一场地在不同勘察阶段确定的强溶蚀带分布范围基本一致,这表明了其划分方法的合理性;在当前岩溶处置水平下,界限溶蚀率取25%作为强溶蚀带划分标准是合理的。  相似文献   

14.
The integration of surface geological and geomorphological information with borehole point-data and geophysical (e.g., geoelectrical) images of the subsurface yields spatially consistent representations of alluvial aquifers heterogeneity at different scales, from depositional systems to basin fills. Such an approach requires a conceptual framework to match the stratigraphic units with their evidence from ground-based DC resistivity methods to effectively fill the gaps between sparse borehole data and to obtain valid representations of sedimentary heterogeneities. Such an approach is applied to characterize two sites of the Quaternary aquifers of the central Po Plain (Italy), which represent (1) the middle-upper Pleistocene braided to meandering river depositional systems sitting on Southalpine crust and (2) their down-current counterparts, where they are involved by the latest uplift and deformation due to the tectonic activity of the Apennine frontal thrusts. Electrical resistivity was considered as a proxy of the litho-textural properties of hydrofacies and their major hierarchical association at depth and was interpreted in accordance with the depth-decreasing resolution of ground-based resistivity methods. Thus, it was possible to identify the geophysical signature of hydrostratigraphic units through “Electrostratigraphic Units”, i.e., sedimentary volumes identified by resistivity contrasts that spatially preserve the vertical polarity. Hydrostratigraphy and electrostratigraphy were then joined together through a site-specific relationship between electrical resistivity and hydraulic conductivity, which takes into account the prevailing process of current conduction, the litho-textural properties of hydrofacies and the groundwater electrical conductivity. At the scales of aquifer systems and complexes, this approach permitted to establish the conceptual framework to match hydrostratigraphy, electrostratigraphy, average hydrodynamic properties and distribution of heterogeneities.  相似文献   

15.
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.  相似文献   

16.
利用山前冲积平原岩土体间的电性差异,使用高密度电阻率测量系统,采用不同的装置,不同电极距对山前冲积平原地层进行岩土层界面的划分.比较不同装置的勘探效果,以及不同电极距的勘探效果,说明此种情况下使用哪种装置,哪种极距勘探效果更好.使用钻孔资料来证明视电阻率反演结果的正确性,通过反演结果校正钻孔资料可能存在的误差.这种相互验证的综合勘探方法,使最终的解释结果更贴合实际的地层分布.  相似文献   

17.
We explore the possibility to identify a nonconducting object of a known size and geometry buried in sand-clay conducting sediments lying over frozen ground. The anomaly, which is located on the surface of the low-conducting layer, is detected with a multi-electrode dc array. Its 3D electric field is simulated as a boundary-value problem using specially designed software. The new algorithm is tested with synthetic and field data and the results are used to develop the procedure of object identification and location.  相似文献   

18.
基于溶洼区浅层岩溶地下水的渗流特性,研究富水岩溶地质结构在地下水渗流作用下引起的自然极化及由此形成的自然电场的分布特征,通过自然电场法与高密度电法联作,利用科研和中国地质调查局地质调查项目中探采结合井位的综合物探结果,探讨以自然电场法为主导、辅以高密度电法等综合物探方法,在西江中下游岩溶石山地区不同水文地质环境中寻找岩溶地下水的成功应用效果与失败的经验教训。研究结果表明,感应类电法(如瞬变电磁法、音频大地电磁测深法、地面核磁共振法、激发极化法、声频大地电场法、甚低频电磁法等)受电网、通信网络等人为电磁场干扰较严重;高密度电法抗人为电磁场干扰的能力较强,信噪比较高,但勘探深度相对较浅,且易受炭泥质灰岩、岩溶矿产等良导电岩矿体的干扰。自然电场法利用岩溶地下水运移引起的富水岩溶地质结构自然极化特征,自然电场异常与动态地下水的补给与运移状态关系较密切,自然电场法与基于探测目的体导电特性的高密度电法联作寻找溶洼区浅层地下水可起到方法互补、相互印证、提高探测分辨率与精度的作用。  相似文献   

19.
To understand the characteristic responses of natural geological samples, viz., black granite, green marble, and graphite sheet, and to have “an a priori” knowledge of their physical property through electrical resistivity imaging, the physical model laboratory setup has been established to conduct scale model studies over targets of finite dimensions and resistivities. The present experiment involves IRIS make SYSCAL Pro-96 measuring system using 48 electrodes with 2-cm interelectrode separation in the laboratory model tank. In the present communication, we have presented the 2D cross section images using Wenner, Wenner–Schlumberger, and dipole–dipole array configurations over the resistive (granite, marble) and conductive (graphite) sheets. In the case of resistive target (black granite sheet, green marble), the combined usage of dipole–dipole and Wenner–Schlumberger arrays provided more accurate measures on target parameters, i.e., the combined usage of both the arrays is preferable in searching high-resistive targets beneath the low-resistive ones over burden. The shape of the resistive target (green marble sheet) is inappropriate when the thickness of the target is greater than one half of the minimum array separation. As the thickness of the target increases, the signatures of the target become feeble, and hence, the shape of the resistive target is not properly reflected in the corresponding tomogram. The response over graphite sheet indicates that the true parameters of the target are not reflected in the cross section, and the existence of the low-resistive (high-conductive) target in the host medium (water) deviates the resistivity of the medium. The target parameters from the cross section using dipole–dipole array are somewhat correlated with true parameters in the case of thin targets at shallow depths. In the case of the sequence of layers of gravel–marble gravel–sand gravel simulated in a small model tank in the physical model laboratory, the thickness of the high-resistive marble layer beneath the low-resistive gravel layer is enhanced conspicuously because of the significant resistivity contrast between gravel and marble.  相似文献   

20.
This research is an attempt to accomplish a 3-D resistivity imaging survey, which was carried out near a water well contaminated with hydrocarbon materials in Karbala governorate. Two-dimensional resistivity imaging measurements were collected along four parallel profiles, using a Wenner array with electrode spacing of 1 m. The RES3DINV program was used to invert the apparent resistivity data. The results displayed a resistivity distribution of the subsurface in a three-dimensional volume. Thus, both the horizontal and vertical extents of the contaminated zone were displayed. This technique revealed a low resistivity zone at depth ranges from 3 to 6 m in the investigation area, but the seepage starts at depth ranges between 2 and 3 m and continues down depth (may be to the groundwater level). This low resistivity zone is the most likely location for a subsurface seepage of contaminated water. It is clear that the sufficient measurement points along 2-D lines in a small area can increase the 3-D imaging resolution, and nearly real 3-D imaging can be achieved, when the size of subsurface anomaly compared with the electrode spacing (a) of the Wenner array is taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号