首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The Miocene Ar Rajmah Group, exposed along the Soluq-Al Abyar road cut in southern Al Jabal Al Akhdar, NE Libya, is very rich in both micro- and macrofossils, especially molluscs and echinoids. Seven shell concentrations were recognized of which four from the Benghazi Formation; pectinidssmall oyster concentration (BSC1), Echinolampas sp.–Clypeaster cf. martini concentration (BSC2), molluscan shell concentration (BSC3), and Echinolampas cf. amplus–Clypeaster acclivis concentration (BSC4). Three shell concentrations occur in the Wadi Al Qattarah Formation; large oyster concentration (QSC1), Crassostrea gryphoidesChlamys zitteli concentration (QSC2), and Cubitostrea digitalina concentration (QSC3). The main factors controlling the formation of the shell concentrations were storm-induced waves and currents, reduced sediment input, settling behavior of benthic macro-invertebrates, and productivity.  相似文献   

2.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

3.
In this paper, a study on the performance of surface irrigation of date palms in a Tunisian arid area (Douz oasis) is presented. The study is conducted in 16 plots with various sizes and soil textures over a 4-year period (2012–2015). In the first step, an assessment of total water requirements of the date palms is carried out. Then, the surface irrigation performance is analyzed using three indicators, i.e., the relative water supply (RWS) indicator, the uniformity index of water distribution (D U ), and the water application efficiency (E a ). Finally, the irrigation management problems are identified. The results indicate that in the arid Tunisian Saharan oases, the soil texture, plot size, and farmers’ practices (especially irrigation duration) have significant effects on surface irrigation performance. The average annual net irrigation requirements of date palms are about 2400 mm. The RWS increases from 1.8 in the smaller plots (0.5 ha) to 3.6 in the largest plots (2.5 ha), implying that the increase in the plot size requires an excessive water supply. D U decreases from 80.7 in the 0.5 ha plots to 65.4 in the 2.5 ha plots; however, no significant difference in the E a is observed. The results show that the soil texture has no influence on the RWS and D U , but the E a is significantly higher in the loamy-sand soils (46.7%) compared to the sandy soils (36.3%). Overall, RWS indicator is higher than 1 (RWS?=?2.6) implying excessive irrigation supply to the system. Although D U is relatively uniform (>?60%), E a is relatively low (<?50%) indicating that the current irrigation management is inefficient. These findings have a paramount importance for improving irrigation water management in the Tunisian Saharan oases.  相似文献   

4.
The aim of this research was to identify plant species with potential to accumulate and stabilize arsenic (As), lead (Pb) and cadmium (Cd) in mine tailings reforested and naturally recolonized locations in a semiarid region of Zacatecas, Mexico. Plant shoots from 44 species and their rhizospheric soils were analyzed for As, Pb and Cd concentration using atomic absorption spectroscopy. Most represented plant families were Asteraceae, Poaceae, Fabaceae and Cactaceae. The highest concentrations in shoots were As, followed by Pb and Cd. Among herbaceous species, Bouteloua gracilis showed the highest bioconcentration factor (BCF) of As, while Plantago lanceolata showed the highest bioconcentration factor of Pb. The shrub species with highest concentration of As in the rhizospheric soil were Opuntia robusta, Melilotus alba, Baccharis neglecta and Arundo donax (near BCF to 1.0). Similar results were observed in trees Casuarina equisetifolia, Prosopis laevigata, Fraxinus uhdei and Eucalyptus globulus. In addition, Tillandsia recurvata showed a suitable indicator of atmospheric deposition to As. In general, the results suggest that these species can be effective for tailings reforestation with the possibility to enclose potentially toxic elements. Specially, C. equisetifolia which is abundant, having the potential for future applications in other contaminated sites with different types of mine tailings or abandoned mines from arid and semiarid zones.  相似文献   

5.
To investigate the groundwater levels changes effects on the transpiration of Salix psammophila (S. psammophila) bush, systemic measurements of meteorological conditions, sap flow of S. psammophila, soil water contents and groundwater levels were conducted in the Hailiutu River catchment, NW of China. Based on the collected field data, Hydrus-1D software package was used to calibrate water movement for root uptake in the saturated–unsaturated zone. The soil hydraulic parameters and root uptake function parameters were calibrated. The simulated results of soil water contents and sap flow fitted well with the observed ones. Based on the calibrated hydraulic parameters, different groundwater levels were imposed at the low boundary to simulate the groundwater levels changes effects on the transpiration. The relationship between ratio of actual transpiration and potential (T/T p) and groundwater water table depth was established. The results shows that the ratio of actual transpiration and potential transpiration decreases with groundwater table depth increase as inverse ‘S’ shape. And the turn point is corresponding to the extinct depth, i.e., no groundwater contribution to S. psammophila transpiration. To further verify this phenomenon is universal, the soil hydraulic parameters were replaced with the other five groups in the calibrated forward model. The results confirmed the similar changes of T a/T p with the groundwater levels changed, i.e. inverse ‘S’ shape. However, the extinction depth is different corresponding to different soil hydraulic parameters. So, the research results indicated the relationship between transpiration and groundwater levels is non-linear function.  相似文献   

6.
Both abiotic and biotic factors govern distributions of estuarine vegetation, and experiments can reveal effects of these drivers under current and future conditions. In upper San Francisco Estuary (SFE), increased salinity could result from sea level rise, levee failure, or water management. We used mesocosms to test salinity effects on, as well as competition between, the native Stuckenia pectinata (sago pondweed) and invasive Egeria densa (Brazilian waterweed), species with overlapping distributions at the freshwater transition in SFE. Grown alone at a salinity of 5, E. densa decreased fivefold in biomass relative to the freshwater treatment and decomposed within 3 weeks at higher salinities. In contrast, S. pectinata biomass accumulated greatly (~4× initial) at salinities of 0 and 5, doubled at 10, and was unchanged at 15. When grown together in freshwater, S. pectinata produced 75 % less biomass than in monoculture and significantly more nodal roots (suggesting increased nutrient foraging). At a salinity of 5, a decline in E. densa performance coincided with a doubling of S. pectinata shoot density. Additional experiments on E. densa showed elevated temperature (26 and 30 °C) suppressed growth especially at higher salinities (≥5). We conclude that salinity strongly influences distributions of both species and that competition from E. densa may impose limits on S. pectinata abundance in the fresher reaches of SFE. With a salinity increase of 5, S. pectinata is likely to maintain its current distribution while spreading up-estuary at the expense of E. densa, especially if increased temperature also reduces E. densa biomass.  相似文献   

7.
The accumulation efficiency of selected trace elements in the leaves of Melandrium album and Robinia pseudoacacia grown on heavy metal contaminated sites in comparison with a non-contaminated one was evaluated. The study was undertaken to calculate air pollution tolerance index and to determine the contents of selected metabolites: glutathione, non-protein thiols, ascorbic acid, chlorophyll and the activity of antioxidant enzymes: guaiacol peroxidase and superoxide dismutase. Such estimations can be useful in better understanding of plants defense strategies and potential to grow in contaminated environments. The results in the most contaminated site revealed higher contents of metals in M. album leaves, especially Zn, Cd and Pb (3.4, 6 and 2.3 times higher, respectively) in comparison with the R. pseudoacacia. Better accumulation capacity found in M. album was shown by metal accumulation index values. The plants could be used as indicators of Zn, Cd (both species) and Pb (M. album) in the soil. Glutathione content (in both species) and peroxidase activity (in M. album), general markers of heavy metals contamination, were increased in contaminated sites. In most cases in contaminated areas R. pseudoacacia had decreased ascorbic acid and chlorophyll levels. Opposite tendency was recorded in M. album leaves, where similar or higher contents of the above-mentioned metabolites were found. In our study, M. album and R. pseudoacacia proved to be sensitive species with the air pollution tolerance index lower than 11 and can be recommended as bioindicators.  相似文献   

8.
To predict the impacts of climate change, a better understanding is needed of the foundation species that build and maintain biogenic ecosystems. Spartina alterniflora Loisel (smooth cordgrass) is the dominant salt marsh-building plant along the US Atlantic coast. It maintains salt marsh elevation relative to sea level by the accumulation of aboveground biomass, which promotes sediment deposition and belowground biomass, which accretes as peat. Peat accumulation is particularly important in elevation maintenance at high latitudes where sediment supply tends to be limited. Latitudinal variation in S. alterniflora growth was quantified in eight salt marshes from Massachusetts to South Carolina. The hypothesis that allocation to aboveground and belowground biomass is phenotypically plastic was tested with transplant experiments among a subset of salt marshes along this gradient. Reciprocal transplants revealed that northern S. alterniflora decreased allocation to belowground biomass when grown in the south. Some northern plants also died when moved south, suggesting that northern S. alterniflora may be stressed by future warming. Southern plants that were moved north showed phenotypic plasticity in biomass allocation, but no mortality. Belowground biomass also decomposed more quickly in southern marshes. Our results suggest that warming will lead northern S. alterniflora to decrease belowground allocation and that belowground biomass will decompose more quickly, thus decreasing peat accumulation. Gradual temperature increases may allow for adaptation and acclimation, but our results suggest that warming will lower the ability of salt marshes to withstand sea-level rise.  相似文献   

9.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

10.
Soil erosion is a major environmental problem in arid and semi-arid areas. Although bioengineering is important in preventing soil erosion, plant architecture and mechanical properties in these areas are rarely studied. In this study, in order to evaluate the potential of native plants to reduce soil erosion in semi-arid regions, their above-ground (e.g., stem density, radius of the stem, etc.) and below-ground (e.g., root area ratio, root tensile strength, etc.) characteristics were measured in the field and laboratory. Five indicators, namely, stem density (SD), sediment obstruction potential (SOP), plant stiffness (MEI), relative soil detachment (RSD), and root cohesion (Cr), were taken into account. Each indicator was scored according to a five-point scale (0?=?low, 4?=?high), and then, the score of each indicator was represented on an ameba diagram. Finally, for understanding traits of plants and evaluating their potential to control rill and gully erosion, the area occupied by the ameba diagram was studied. The results indicated that the shrub Ziziphus spina-christi (MEI?=?108.35 N, RSD?=?0.398, Cr?=?8.34 kPa, SOP?=?0.097, and SD?=?0.00270) is a very suitable native plant species for controlling both the gully and rill erosion. In addition, Scariola orientalis is effective for sediment obstruction, but its low scores on the MEI and RSD indicators imply that it is not able to control gully development. Furthermore, Noaea mucronata, Platychaete glaucescens, Astragalus gummifer, Alhagi persarum, Lycium shawii, and Prosopis farcta have a distinct potential to reduce the rate of gully erosion. These results have wide applicability for adopting soil conservation measures to other semi-arid environments.  相似文献   

11.
Soil particle-size distribution (PSD) is an important index for soil classification because it has large influences on soil hydrological characteristics, salinity, fertility, erodibility, nutrient content, swelling/shrinking, and degradation. We present a case study of the fractal characteristics of soil PSD and its relationship with soil properties of gravel-mulched fields in an arid area of northwestern China using single-fractal calculation. Particle size was unimodally distributed within the narrow range of 20–100 μm, with silt as the most common component. Horizontally, silt content was the highest, followed by sand and clay contents. Vertically, clay content increased with depth, while there were no obvious change rules for both silt and sand contents. The volume fractal dimension (D) of PSD ranged from 2.4307 to 2.5260, increased with the content of fine particles but decreased with the content of coarse particles. D was correlated positively with soil-water content and salt content and negatively with bulk density. The saturated soil-water content was strongly correlated negatively with silt content (p < 0.01) and positively with sand content (p < 0.01). The results indicate that D can be a potential indicator of the physical and chemical properties of soil and can also provide a theoretical basis and technical guidance for the effective use and management of the region.  相似文献   

12.
Chesapeake Bay tidal wetlands are experiencing a broad-scale, aggressive invasion by the non-native, clonal grass Phragmites australis. The grass is often managed with herbicides in efforts to restore native plant communities and wildlife habitat. Management efforts, however, can act as a disturbance, resulting in increased light availability, potentially fostering reinvasion from soil seedbanks. If native vegetation establishes quickly from seedbanks, the site should have greater resiliency against invasion, while disturbed sites where native plants do not rapidly establish may be rapidly colonized by P. australis. We surveyed the soil seedbank of three vegetation cover types in five Chesapeake Bay subestuaries: areas where P. australis had been removed, where P. australis was left intact, and with native, reference vegetation. We determined the total germination, the proportion of the seedbank that was attributable to invasive species, the richness, the functional diversity, and the overall composition of the seedbanks in each of the cover types (i.e., plots). After 2 years of herbicide treatment in the P. australis removal plots, vegetation cover type impacted the total germination or the proportion of invasive species in the seedbank. In contrast, we also found that seedbank functional composition in tidal brackish wetlands was not influenced by vegetation cover type in most cases. Instead, plots within a subestuary had similar seedbank functional composition across the years and were composed of diverse functional groups. Based on these findings, we conclude that plant community recovery following P. australis removal is not seed-limited, and any lack of native vegetation recruitment is likely the result of yet-to-be-determined abiotic factors. These diverse seedbanks could lead to resilient wetland communities that could resist invasions. However, due to the prevalence of undesirable species in the seedbank, passive revegetation following invasive plant removal may speed up their re-establishment. The need for active revegetation will need to be assessed on a case-by-case basis to ensure restoration goals are achieved.  相似文献   

13.
The aim of this research was to evaluate the potential of six legumes: Medicago sativa L., Glycine max, Arachis hypogea, Lablab purpureus, Pheseolus vulgaris and Cajanus cajan to restore within a short period of time soil contaminated with 3% crude oil. The legumes in five replications were grown in crude oil-contaminated and crude oil-uncontaminated soil in a completely randomized design. Plants were assessed for seedling emergence, plant height and leaf number. GC–MS was used to analyze the residual crude oil from the rhizosphere of the legumes. Plant growth parameters were reduced significantly (P < 0.05) for legumes in contaminated soil compared to their controls. In the 4th week after planting (WAP), shoot height increased across the species up to the 8th WAP. However, in the 12 WAP no significant increase in the shoot of all species was observed. Two WAP legumes planted in contaminated soil had significantly (P < 0.05) higher leaf number than these planted in uncontaminated soil with the exception of M. sativa. In the 4th WAP, only A. hypogea and P. vulgaris had increased leaf number, while in the 6th WAP, only L. purpureus had increased leaf number and survived up to the 12th WAP while most of the legumes species died. Chromatographic profiles indicated 100% degradation of the oil fractions in C. cajan and L. purpureus after 90 days. For other legumes however, greater losses of crude oil fractions C1–C10 and C10–C20 were indicated in rhizosphere soil of P. vulgaris and G. max, respectively. The most effective removal (93.66%) of C21–C30 components was observed in G. max-planted soil even though vegetation was not established. The legumes especially C. cajan, L. purpureus and A. hypogea are promising candidates for phytoremediation of petroleum hydrocarbon-impacted soil.  相似文献   

14.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

15.
A two-stage system for octachlorinated dibenzo-p-dioxin (OCDD)-contaminated soil remediation was developed. Soil washing using emulsified oil (EO) was applied in the first stage for OCDD extraction followed by the second stage of bioremediation using P. mendocina NSYSU for remaining OCDD biodegradation. The major tasks included (1) determination of optimal soil washing conditions for OCDD extraction by EO, (2) evaluation of feasibility of OCDD biodegradation by P. mendocina NSYSU under aerobic cometabolic conditions using EO as the primary substrate, and (3) assessment of the effectiveness of OCDD removal using the two-stage system. During the soil washing stage, EO with two different oil-to-water ratios (1:50 and 1:200) and pore volumes were tested with initial soil OCDD concentration of 21,000 µg/kg. Results indicate that EO could effectively improve the solubility and desorption of OCDD in soils. Up to 74% of OCDD removal could be obtained after washing with 60 PVs of EO and dilution factor of 50. After the soil washing process, enriched P. mendocina NSYSU solution was added into the reactor to enhance the aerobic biodegradation of remaining OCDD in soils. P. mendocina NSYSU could use adsorbed EO globules as substrates and caused significant OCDD degradation via the aerobic cometabolic mechanism. Approximately 82% of the remaining OCDD could be removed after 50 days of operation, and P. mendocina NSYSU played important roles in OCDD biodegradation. Up to 87% of OCDD was removed through the EO washing and biodegradation process. The two-stage system is a potential technology to remediate dioxin-contaminated soils.  相似文献   

16.
The revised representatives of ammonite genera Malbosiceras and Pomeliceras from the Berriasian of the Crimean Mountains are classed with seven species, four of the first genus [M. malbosi (Pictet), M. chaperi (Pictet), M. broussei (Mazenot), M. pictetiforme Tavera] and three of the second one [P. aff. boisseti Nikolov, P. breveti (Pomel), P. (?) funduklense Lysenko et Arkadiev sp. nov.]. The identified species are described. The genus Mazenoticeras is considered as synonym of Malbosiceras. The above species prove that all the Berriasian zones (jacobi, occitanica and boissieri) are characteristic of corresponding deposits in the Crimean Mountains.  相似文献   

17.
Pile foundations are often subject to lateral loading due to various forces on a variety of structures like high rise buildings, transmission towers, power stations, offshore structures and highway and railway structures. The present investigation is to study the effect of slopes on p-y curves (where p is the static soil reaction and y is the pile deflection) due to static lateral loading in soft clay (Consistency index Ic = 0.42). A series of laboratory model tests were carried out on the instrumented model pile on sloping ground (slopes of 1V:1H, 1V:1.5H, 1V:2H, 1V:3H and 1V:5H) and with varying embedment length to diameter ratio (L/D) of 20, 25 and 30. From the experimental results, the bending moment curves along the pile shaft are double differentiated to obtain the soil resistance (p) and double integrated to obtain the deflection (y) using curve fitting method. New p-y curves for piles located on crest of soft clay with different sloping ground surface under static lateral loading are developed. Moreover, the effect of sloping angles on proposed p-y curves was studied.  相似文献   

18.
Since 1965 large areas of lower Connecticut River tidelands have been converted from high diversity brackish meadow andTypha angustifolia marsh to near monocultures ofPhragmites australis. This study addresses the impact ofPhragmites invasion on fish and crustacean use of oligohaline high marsh. During spring tides from early June through early September 2000, fishes and crustaceans leaving flooded marsh along 3 km of the Lieutenant River, a lower Connecticut River tributary, were captured with Breder traps at 90 sites, equally distributed amongPhragmites, Typha, and treated (herbicide and mowing)Phragmites areas. Pit traps, 18 per vegetation type in 2000 and 30 each inPhragmites andTypha in 2001, caught larvae and juveniles at distances of up to 30 m into the marsh interior. There were no significant differences in fish species compositions or abundances among the vegetation types. Size distributions, size specific biomasses, and diets ofFundulus heteroclitus, the numerically dominant fish, were also similar. The shrimpPalaemonetes pugio was more abundant inPhragmites than in other types of vegetation, whereas the fiddler crabUca minax was least numerous inPhragmites. Mean numbers ofF. heteroclitus andP. pugio caught per site event were positively correlated with increasing site hydroperiod. Significantly moreF. heteroclitus were captured along the upper reach of the river where marsh elevations were lower than farther downstream. MoreF. heteroclitus and fewerP. pugio andU. minax were captured during the day than at night. A relatively small number of larval and juvenileFundulus sp. were captured in pit traps, but consistently fewer inPhragmites than inTypha, suggesting thatTypha and brackish meadow marshes may provide better nursery habitat. Vegetation was sampled along a 30 m transect at each trap site in 2000. Plant species diversity was greatest in treatedPhragmites areas and lowest inPhragmites sites.  相似文献   

19.
This paper presents the numerical simulation of pile installation and the subsequent increase in the pile capacity over time (or setup) after installation that was performed using the finite element software Abaqus. In the first part, pile installation and the following load tests were simulated numerically using the volumetric cavity expansion concept. The anisotropic modified Cam-Clay and Dracker–Prager models were adopted in the FE model to describe the behavior of the clayey and sandy soils, respectively. The proposed FE model proposed was successfully validated through simulating two full-scale instrumented driven pile case studies. In the second part, over 100 different actual properties of individual soil layers distracted from literature were used in the finite element analysis to conduct parametric study and to evaluate the effect of different soil properties on the pile setup behavior. The setup factor A was targeted here to describe the pile setup as a function of time after the end of driving. The selected soil properties in this study to evaluate the setup factor A include: soil plasticity index (PI), undrained shear strength (S u ), vertical coefficient of consolidation (C v ), sensitivity ratio (S r ), and over-consolidation ratio (OCR). The predicted setup factor showed direct proportion with the PI and S r and inverse relation with S u , C v and OCR. These soil properties were selected as independent variables, and nonlinear multivariable regression analysis was performed using Gauss–Newton algorithm to develop appropriate regression models for A. Best models were selected among all based on level of errors of prediction, which were validated with additional nineteen different site information available in the literature. The results indicated that the developed model is able to predict the setup behavior for individual cohesive soil layers, especially for values of setup factor greater than 0.10, which is the most expectable case in nature.  相似文献   

20.
Understanding the changes in permeability of soil, when soil is subjected to high confining pressure and flow pressure, which may alter the textural and geomechanical characteristics of soil, is of great importance to many geo-engineering activities such as, construction of high-rise buildings near the coast or the water bodies, earthen dams, pavement subgrades, reservoir, and shallow repositories. It is now possible to evaluate the changes in permeability of soil samples under varying conditions of confining pressure and flow pressure using flexible wall permeameter (FWP). In the present study, investigation was carried out on a cylindrical sample of granular soil employing FWP under varied conditions of confining pressure (σ3)—50–300 kPa, which can simulate the stress conditions equivalent to depth of about 20 m under the earth’s crust, and a flow pressure (fp)—20–120 kPa, which is mainly present near the small earthen embankment dams, landfill liners, and slurry walls near the soft granular soil with high groundwater table. The obtained results indicate a linear relationship between hydraulic conductivity (k) with effective confining pressure (σeff.), k, decreasing linearly with an incremental change in σeff.. Further, k increases significantly with an increase in fp corresponding to each σeff., and q increases significantly with increase in the fp corresponding to each (σ3). It was also observed that corresponding to the low fp of 20 kPa, the reduction in k is nonlinear with σ3. The percentage reduction in k is observed to be 9, 13, and 27% corresponding to σ3 of 50–100, 100–200, and 200-300 kPa, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号