首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retreat of the Barents Sea Ice Sheet on the western Svalbard margin   总被引:1,自引:0,他引:1  
The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden. is discussed based on sub-bottom seismic records and scdirncnt cores. The sea lloor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjordcn up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from thc glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front rctrcatcd from the outermost shelf around 14. 8 ka A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was intcrruptcd by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscundian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isljorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice liont terminated far out in the main fjord. The remnants of the Harcnts Sea Ice Shcet melted quickly away as a response to the Holocene warming around 10 ka.  相似文献   

2.
《Quaternary Science Reviews》2007,26(15-16):1999-2011
A multi proxy sediment core record on the continental margin off western Svalbard, European Arctic, reflects large climatic and oceanographic oscillations at the Lateglacial–early Holocene transition. Based on studies of planktonic foraminifera, their stable oxygen and carbon isotopic composition and ice rafted debris, we have reconstructed the last 14 cal. ka BP. The period 14–13.5 cal. ka BP was characterized by highly unstable climatic conditions. Short-lived episodes of warming alternated with meltwater pulses and enhanced iceberg rafting. This period correlates to a regional warming of the northern North Atlantic. An overall decrease in meltwater took place during the deglaciation (14–10.8 cal. ka BP). The late Younger Dryas and subsequent transition into the early Holocene is characterized by a reduced flux of planktonic foraminifera and increased iceberg rafting. A major warming took place from 10.8 to 9.7 cal. ka BP, the influence of meltwater ceased and the flux of warm Atlantic Water increased. From 9.7 to 8.8 cal. ka BP, the western Svalbard margin surface waters were significantly warmer than today. This warm period, the thermal maximum, was followed by an abrupt cooling at 8.8. cal. ka BP, caused by an increased influence of Arctic Water from the Arctic Ocean. The results document that the European Arctic was very sensitive to climatic and oceanographic changes at the end of the last glacial and during the Holocene.  相似文献   

3.
In the lower part of sections at Skilvika and Linneelva, western Svalbard, marine silts and sands characterized by infinite radiocarbon ages (<40,000 BP) on shells are found. These sediments are covered by at least one basal till of Late Weichselian age. The till is overlain by marine sediments from the last deglaciation (12,800-10,000 BP) which contain shallow-water, subarctic foraminiferal assemblages, similar to modern near-glacial faunas from western Svalbard. The most common foraminifera in all zones in the sub-till sediments are Cassidulina reniforme, Astrononion gallowayi and/or Elphidium excavatum . The richest zones at both localities are found in the sub-till units and contain more than 20 foraminiferal species, including some boreal-arctic species. These faunal assemblages are similar to the living faunas on the west coast of Svalbard. Faunas from the postglacial climatic optimum are not yet described. We suggest that the foraminiferal assemblages in the sub-till sediment reflect Early or Middle Weichselian interstadial environments, although an Eemian interglacial cannot be excluded.  相似文献   

4.
A coastal cliff facing the ocean at the west coast of Spitsbergen has been studied, and seven formations of Weichselian and Holocene age have been identified. A reconstruction of the palaeoenvironment and glacial history shows that most of the sediments cover isotope stage 5. From the base of the section, the formation 1 and 2 tills show a regional glaciation that reached the continental shelf shortly after the Eemian. Formation 3 consists of glacimarine to marine sediments dated to 105,000–90,000 BP. Amino acid diagenesis indicates that they were deposited during a c . 10,000-year period of continuous isostatic depression, which indicates contemporaneous glacial loading in the Barents Sea. Foraminifera and molluscs show influx of Atlantic water masses along the west coast of Svalbard at the same time. Local glaciers advanced during the latter part of this period, probably due to the penetration of moist air masses, and deposited formation 4. A widespread weathering horizon shows that the glacial retreat was succeeded by subaerial conditions during the Middle Weichselian. Formation 5 is a till deposited during the Late Weichselian glacial maximum in this area. The glaciation was dominated by ice streams from a dome over southern Spitsbergen, and the last deglaciation of the outer coast is dated to 13,000 BP. A correlation of the events with other areas on Svalbard is discussed, and at least two periods of glaciation in the Barents Sea during the Weichselian are suggested.  相似文献   

5.
Recent geophysical measurements, including multi-channel seismic reflection, on the Svalbard passive margin have revealed that it has undergone a complex geological history which largely reflects the plate tectonic evolution of the Greenland Sea and the Arctic Ocean. The western margin (75–80°N) is of a sheared-rifted type, along which the rifted margin developed subsequent to a change in the pole of plate rotation about 36 m.y. B.P. The north-trending Hornsund Fault on the central shelf and the eastern escarpment of the Knipovich Ridge naturally divide the margin into three structural units. These main marginal structures strike north, paralleling the regional onshore fault trends. This trend also parallels the direction of Early Tertiary plate motion between Svalbard and Greenland. Thus, the western Svalbard margin was initially a zone of shear, and the shear movements have affected the adjacent continental crust. Although, the nature and location of the continent—ocean crustal transition is somewhat uncertain, it is unlikely to lie east of the Hornsund Fault. The northern margin, including the Yermak marginal plateau, is terminated to the west by the Spitsbergen Fracture Zone system. This margin is of a rifted type and the preliminary analysis indicates that the main part of the investigated area is underlain by continental crust.  相似文献   

6.
The western and northern Svalbard continental margins (European Arctic) are environmentally sensitive areas that are dependent on the northward flow of Atlantic Water, the largest heat source of the Arctic Ocean. Two marine sediment records from the Svalbard shelf: Kongsfjorden Trough and Hinlopen Trough, were analysed with regard to the benthic foraminiferal content and lithology to assess the palaeoceanographic evolution during the past two millennia with decadal to multi‐decadal temporal resolution. In both records, an overall gradual decrease of E. excavatum f. clavata during the past two millennia reflects a change towards generally warmer and less glacially influenced conditions, presumably related to enhanced inflow of Atlantic Water (AW). The influence of AW also varied on centennial time scales, as evidenced by faunal and sedimentary shifts occurring almost synchronously at both locations. The period from AD 700 to 1200 was characterized by enhanced inflow of AW, followed by the development of highly productive oceanographic fronts at both localities from AD 1200 to 1500. In contrast, the subsequent interval (AD 1500–1900) shows particularly harsh conditions in the Hinlopen Trough, with significantly reduced foraminiferal flux and sediment input related to perennial sea ice cover. In Kongsfjorden, less severe conditions were observed, indicating that the AW advection continued. The synchronicity of changes in both records demonstrates the effect of the variability in inflow of AW to the Svalbard region during the past 2000 years. Moreover, the records seem to follow climate anomalies, for example the Little Ice Age and Medieval Warm Period, found in the North Atlantic realm.  相似文献   

7.
 Potentially toxic metals tracked by the Arctic Monitoring and Assessment Program were analysed in sediments from the Svalbard western coastal zone. These include As and Hg found as contaminants in other Arctic seas as well as other elements (e.g. Pb, V, Cu, Zn, Cr, Ni). Svalbard shelf sediments contain average values of 12 ppm As, 12 ppm Pb, 56 ppb Hg and 114 ppm V. These values increase in Isfjorden sediments to 15 ppm As, 28 ppm Pb, 99 ppb Hg and 210 ppm V. Cluster analysis yields a major cluster that is likely related to clay minerals (Al, K, Ti, Mg) and sorption onto them of transition (Cu, V, Cr, Sc) and other elements (Pb, Rb). A second significant cluster includes Ca, Sr and plagioclase. The Svalbard western shelf is a natural geochemical environment. The possible incipient contamination of fjord sediments by As, Pb, Hg and V should be evaluated for possible links to anthropogenic sources. If links are found, remediation must be used to stop the input and preserve a pristine Svalbard fjord environment. Received: 21 December 1998 · Accepted: 15 March 1999  相似文献   

8.
The continental rise, slope, and shelf in the Beaufort Sea off northern Alaska were surveyed with 5600 km of common-depth-point (CDP) seismic data by the U.S. Geological Survey in 1977. The lower continental rise consists of a wedge of at least 4.5 km of low-velocity, generally flat-lying, parallel-bedded sediments. Slump-related diapiric folds, probably cored by shale, occur on the upper rise and lower slope. The observed minimum depth to oceanic basement in the Canada Basin requires an age for this basin of at least 120 m.y., assuming it to be floored by oceanic crust with a subsidence history similar to that of the Atlantic and Pacific oceans.  相似文献   

9.
西宁盆地北西缘地下热水分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
笔者重点对西宁盆地北西缘南门峡-台子地区地下热水的赋存条件、热储构造概念模型进行了讨论。基于实际资料,得出地处老爷山凸起与双树凹陷间斜坡带,具有“凹中凸”地质结构的南门峡-台子地热异常热储为新元古界克素尔组大理岩和白垩系民和组砂砾岩,地热地质条件好。提出了该区的热储概念模型是“层控热储-侧向径流补给-大地热流供热-深大断裂导热-低热导率岩层聚热”,且具一定的地热资源开发利用前景。  相似文献   

10.
《Geodinamica Acta》2000,13(1):19-27
Thermal profiles in Morocco present a negative gradient in the first 60 to 150 m depth. The importance of this subsurface disturbance seems to represent a change of soil surface temperature rather than a lithological contrast or a circulation of fluid. This world-wide phenomenon is expressed in Morocco by a warming of approximately 1.5 to 3 °C over last 100 to 300 years. Particularly intensive deforestation in northeastern Morocco adds to climatic variations to give a more marked surface temperature anomaly.  相似文献   

11.
The Barents Sea is located in the northwestern corner of the Eurasian continent, where the crustal terrain was assembled in the Caledonian orogeny during Late Ordovician and Silurian times. The western Barents Sea margin developed primarily as a transform margin during the early Tertiary. In the northwestern part south of Svalbard, multichannel reflection seismic lines have poor resolution below the Permian sequence, and the early post-orogenic development is not well known here. In 1998, an ocean bottom seismometer (OBS) survey was collected southwest to southeast of the Svalbard archipelago. One profile was shot across the continental transform margin south of Svalbard, which is presented here. P-wave modeling of the OBS profile indicates a Caledonian suture in the continental basement south of Svalbard, also proposed previously based on a deep seismic reflection line coincident with the OBS profile. The suture zone is associated with a small crustal root and westward dipping mantle reflectivity, and it marks a boundary between two different crystalline basement terrains. The western terrain has low (6.2–6.45 km s−1) P-wave velocities, while the eastern has higher (6.3–6.9 km s−1) velocities. Gravity modeling agrees with this, as an increased density is needed in the eastern block. The S-wave data predict a quartz-rich lithology compatible with felsic gneiss to granite within and west of the suture zone, and an intermediate lithological composition to the east. A geological model assuming westward dipping Caledonian subduction and collision can explain the missing lower crust in the western block by subduction erosion of the lower crust, as well as the observed structuring. Due to the transform margin setting, the tectonic thinning of the continental block during opening of the Norwegian-Greenland Sea is restricted to the outer 35 km of the continental block, and the continent–ocean boundary (COB) can be located to within 5 km in our data. Distinct from the outer high commonly observed on transform margins, the upper part of the continental crust at the margin is dominated by two large, rotated down-faulted blocks with throws of 2–3 km on each fault, apparently formed during the transform margin development. Analysis of the gravity field shows that these faults probably merge to one single fault to the south of our profile, and that the downfaulting dominates the whole margin segment from Spitsbergen to Bjørnøya. South of Bjørnøya, the faulting leaves the continental margin to terminate as a graben 75 km south of the island. Adjacent to the continental margin, there is no clear oceanic layer 2 seismic signature. However, the top basement velocity of 6.55 km s−1 is significantly lower than the high (7 km s−1) velocity reported earlier from expanding spread profiles (ESPs), and we interpret the velocity structure of the oceanic crust to be a result of a development induced by the 7–8-km-thick sedimentary overburden.  相似文献   

12.
Late Weichselian glacier limits for the Forlandsundet area, western Spitsbergen are reconstructed from the stratigraphic distribution of tills and deglacial deposits, variations in the altitude of the marine limit, distribution of pre-Late Weichselian raised beach deposits, and the rare occurrence of moraines and striated bedrock. The Late Weichselian glaciation was primarily a local event with fjord outlet-glaciers expanding no more than 15 km beyond their present position; cirque glaciers were similar to their neoglacial limits. A previously reconstructed ice sheet centered over the Barents Shelf had little direct influence on the glaciation of the Forlandsundet area. Glacier retreat began at or prior to 10.5 ka ago and possibly as early as 13 ka ago with fjords mostly, and perhaps rapidly deglaciated by 10 to 9 ka ago.  相似文献   

13.
银根-额济纳旗盆地简称银额盆地,是中亚造山带南缘的一个中-新生代沉积盆地。最近的野外地质调查,在其西缘发现早侏罗世和第四纪晚期的伸展构造。早侏罗世的伸展构造为一系列走向NNW-SSE 的正断层,是下侏罗统的同沉积断层。这组正断层与银额盆地内NNE-SSW 走向的正断层组合成共轭断裂系统,指示古构造应力场的最大主拉张应力方向为近E-W。它们是中亚造山带(南缘)造山后应力伸展阶段的构造变形。第四纪晚期的伸展构造是由两条倾向相向的正断层组合成的地堑构造,走向进E-W,可能代表了喜马拉雅碰撞造山远程效应脉动式演化过程的一个构造间歇期。  相似文献   

14.
Crustal-scale seismic profiles across Taiwan and the western Philippine Sea   总被引:13,自引:2,他引:13  
We have used combined onshore and offshore wide-angle seismic data sets to model the velocity structure of the Taiwan arc–continent collision along three cross-island transects. Although Taiwan is well known as a collisional orogen, relatively few data have been collected that reveal the deeper structure resulting from this lithospheric-scale process. Our southern transect crosses the Hengchun Peninsula of southernmost Taiwan and demonstrates characteristics of incipient collision. Here, 11-km-thick, transitional crust of the Eurasian plate (EUP) subducts beneath a large, rapidly growing accretionary prism. This prism also overrides the N. Luzon forearc to the east as it grows. Just west of the arc axis there is an abrupt discontinuity in the forearc velocity structure. Because this break is accompanied by intense seismicity, we interpret that the forearc block is being detached from the N. Luzon arc and Philippine Sea plate (PSP) at this point. Our middle transect illustrates the structure of the developing collision. Steep and overturned velocity contours indicate probable large-scale thrust boundaries across the orogen. The leading edge of the coherent PSP appears to extend to beneath the east coast of Taiwan. Deformation of the PSP is largely limited to the remnant N. Luzon arc with no evidence of crustal thickening to the east in the Huatung basin. Our northern transect illustrates slab–continent collision—the continuing collision of the PSP and EUP as the PSP subducts. The collisional contact is below 20 km depths along this transect NE of Hualien. This transect shows elements of the transition from arc–continent collision to Ryukyu arc subduction. Both of our models across the Central Range suggest that the Paleozoic to Mesozoic basement rocks there may have been emplaced as thick, coherent thrust sheets. This suggests a process of partial continental subduction followed by intra-crustal detachment and buoyancy-aided exhumation. Although our models provide previously unknown structural information about the Taiwan orogen, our data do not define the deepest orogenic structure nor the structure of western Taiwan. Additional seismic (active and passive), geologic, and geodynamic modeling work must be done to fully define the structure, the active deformation zones, and the key geodynamic process of the Taiwan arc–continent collision.  相似文献   

15.
Superimposed glacial and marine sediment exposed in coastal cliffs on Brøggerhalvøya, west Spitsbergen, contain four emergence cycles (episodes D, C, B, and A) that are related to glacial-isostatic depression and subsequent recovery of the crust. Tills are found in episodes C and B; in each case glaciation began with an advance of local glaciers, followed by regional glaciation. The marine transgression following episode C deglaciation reached 70 to 80 m above sea level. Glacial-marine and sublittoral sands within episode C contain a diverse and abundant microfauna requiring marine conditions more favorable than during the Holocene. We define this interval as the Leinstranda Interglacial. Based on the fauna, sedimentology and geochronology (radiocarbon, amino acid racemization, and uranium-series disequilibrium) we conclude that the Leinstranda Interglacial occurred during isotope substage 5e. Episode B deglaciation occurred late in isotope stage 5 (c. 70 ± 10 ka ago), and was followed by a marine transgression to about 50 m above sea level. The associated foraminifera, mollusca, and vertebrate fauna require seasonally ice-free conditions similar to those of the Holocene, but less ameliorated than during the Leinstranda Interglacial. A significant influx of Atlantic water into the Norwegian Sea, augmented by a local insolation maximum late in isotope stage 5, are required to produce shallow-water conditions similar to those of the Holocene. There is no evidence for major glacial activity during the Middle Weichselian (isotope stages 4 and 3), and we conclude that ice margins were not significantly different from those of the late Weichselian, but the record for this interval is scant. The extent of ice at the Late Weichselian maximum was less than during either of the two preceding episodes (B or C). Late Weichselian deglaciation (episode A) began prior to 13 ka B.P. Oceanic and atmospheric circulation patterns conducive to large-scale glaciation of western Spitsbergen are not well understood, but those patterns that prevailed during isotope stages 4,3, 2, and 1 did not produce a major glacial advance along this coast.  相似文献   

16.
The recent discovery of a subfossil polar bear (Ursus maritimus) jawbone in the Poolepynten coastal cliff sequence, western Svalbard, and its implications for the natural history of the polar bear motivated an effort to better constrain the environmental history and age envelope of the Poolepynten sediment sequence. The focus of the present study is on the lithostratigraphy of the coastal cliffs and on re‐dating the sequence using the Optically Stimulated Luminescence (OSL) dating technique. We report a revised lithostratigraphy and nine new OSL ages. It is concluded that the Poolepynten sequence contains evidence of four regional glaciation events, recorded in the strata as erosional unconformities or glacial deposits followed by shallow‐marine deposition signifying transgressions and subsequent glacio‐isostatic rebound and regression. Our OSL ages refine previous age determinations (14C and IRSL) and support the interpretation that the subfossil polar bear jawbone is probably of last interglacial (Eemian) age.  相似文献   

17.
The results of geological interpretation of large fragments of seismic transects SB-1 (Batolit), SB-2, and SB-3 (Altai-Severnaya Zemlya), which cross the western and southern margins of the Siberian Platform and its fold framework, specify substantially the structure and geological history of the sedimentary cover. The most important data have been obtained for the structure of the Baikit Anteclise, the Angara-Lena Terrace, and the Kas Block of the West Siberian Plate. The geological interpretation of the recorded wavefield specifies substantially the genetic features of these structural elements and their mutual relationships, allowing a reliable reconstruction of the western, and partially the southwestern, margins of the Siberian Platform in the Riphean-Early Paleozoic before and after the Baikalian Orogeny.  相似文献   

18.
Oceanic crust west of North America at the beginning of the Jurassic belonged to the Kula plate. The development of the western margin of North America since the Jurassic reflects interaction with the Kula plate, the Kula-Farallon spreading center and the Farallon plate. The Kula plate ceased to exist in the Paleocene and later developments were caused by interaction of the Farallon plate and, subsequently, collision with the East Pacific Rise.At the beginning of the Jurassic, when spreading between North and South America began, the Kula-Farallon-Pacific triple junction moved to the north relative to North America, and the eastern end of the Kula-Farallon spreading center swept northwards along the continental margin.During the Paleocene, Kula-Pacific spreading ceased and the Kula plate fused to the Pacific plate. Throughout the Mesozoic, subduction of the Kula plate took place along the Alaskan continental margin. When the Kula plate joined the Pacific plate a new subduction zone formed along the line of the present Aleutian chain.Wrangellia and Stikinia, anomalous terrains in Alaska and northwestern Canada respectively, were emplaced by transport on the Kula plate from lower latitudes. Hypotheses which require transport of these plates in the Mesozoic from the “far reaches of the Pacific” ignore the problem of transport across either the Kula-Pacific or Kula-Farallon spreading centers. The interaction of the Kula plate and western North America throughout the Jurassic and the Cretaceous should result in emplacement of these terrains by motion oblique to the continental margin. Tethyan faunas in Stikinia must come from the western end of Tethys between North and South America, not the Indonesian region at the eastern end of Tethys.As the northeastern end of the Kula-Farallon ridge moved northward, the sense of motion changed from right lateral shear between the Kula and North American plates to collision or left lateral shear between the Farallon and North American plates. Left lateral shear along zones analogous to the Mojave-Sonora megashear may have been the means by which anomalous terrains were transported to the southeast into the gap between North and South America forming present day Central America. Such a model overcomes the overlap difficulties suffered in previous attempts to reconstruct the Mesozoic paleogeography of Central America.  相似文献   

19.
The glacial succession in the western part of the Cheshire-Shropshire lowland records the advance, coalescence and subsequent uncoupling of Irish Sea and Welsh ice-sheets during the Late Devensian stage. During advance a discontinuous sheet of basal till was emplaced across the floor of the region by subglacial lodgement. On retreat, compression of the Irish Sea ice sheet against bedrock obstruction generated a zone of supraglacial sedimentation resulting in the creation of the Wrexham-Ellesmere-Wem-Whitchurch moraine system, and the formation of a wide range of sedimentary environments, including ice-marginal sandur troughs, ice-front alluvial fans, proglacial ribbon sandur, and subglacial, ice-contact and proglacial lakes. The geometry of sedimentary units, and their lithologic and geomorphic characteristics, display spatially ordered patterns of sediment-landform assemblage which show that the statigraphic succession is a response to rapidly changing depositional conditions at a retreating supraglacial ice-margin punctuated by minor still-stands and ice-front oscillations.  相似文献   

20.
Fekadu Kebede  Ota Kulh  nek 《Tectonophysics》1989,170(3-4):243-257
Spectral analysis of 196 short-period and long-period vertical- and horizontal-component seismograms from ten earthquakes on the central and western margin of Afar is performed to determine source parameters and discuss their tectonic implications. For the earthquakes in the regions under study, the stress drop varies from 2 to 31 bar while the seismic moment varies from 2 × 1024 to 154 × 1024 dyn cm. In general, low stress-drop values are obtained indicating the presence of softer material (especially for central Afar) at a shallower depth. It is observed that there is an increase in stress drop with the increase in moment-magnitude which in turn is obtained from the calculated average seismic moment. Energy estimates show that the mode of energy release is different in the two regions indicating that different tectonic processes are involved in the two regions. The slip rate obtained for the Serdo area is of the order of 1.6 cm/yr and is in close agreement with the spreading rate already obtained for central Afar. Spreading rates obtained earlier and that of the present study show a low spreading rate for Afar and neighbouring regions as compared to those of the other regions of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号