首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using results from structural analysis of a sample of nearly 1000 local galaxies from the Sloan Digital Sky Survey, we estimate how the mass in central black holes is distributed amongst elliptical galaxies, classical bulges and pseudo-bulges, and investigate the relation between their stellar masses and central stellar velocity dispersion σ. Assuming a single relation between elliptical galaxy/bulge mass, M Bulge, and central black hole mass, M BH, we find that  55+8−4  per cent of the mass in black holes in the local universe is in the centres of elliptical galaxies,  41+4−2  per cent in classical bulges and  4+0.9−0.4  per cent in pseudo-bulges. We find that ellipticals, classical bulges and pseudo-bulges follow different relations between their stellar masses and σ, and the most significant offset occurs for pseudo-bulges in barred galaxies. This structural dissimilarity leads to discrepant black hole masses if single   M BH– M Bulge  and   M BH–σ  relations are used. Adopting relations from the literature, we find that the   M BH–σ  relation yields an estimate of the total mass density in black holes that is roughly 55 per cent larger than if the   M BH– M Bulge  relation is used.  相似文献   

2.
3.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

4.
5.
6.
7.
8.
9.
10.
E+A galaxies are characterized as galaxies with strong Balmer absorption lines but without any [O  ii ] or Hα emission lines. The existence of strong Balmer absorption lines indicates that E+A galaxies have experienced starburst within the past one gigayear. However, the lack of [O  ii ] and Hα emission lines indicates that E+A galaxies do not have any on-going star formation. Therefore, E+A galaxies are interpreted as post-starburst galaxies. For many years, however, it has been a mystery why E+A galaxies started starburst and why they quenched star formation abruptly. Using one of the largest samples of 266 E+A galaxies carefully selected from the Sloan Digital Sky Survey Data Release 2, we have investigated the environment of E+A galaxies from 50 kpc to 8 Mpc scale, i.e. from a typical distance to satellite galaxies to the scale of large-scale structures. We found that E+A galaxies have an excess of local galaxy density only at a scale of <100 kpc (with a 2σ significance), but not at the cluster scale (∼1.5 Mpc) nor at the scale of large-scale structure (∼8 Mpc). These results indicate that E+A galaxies are not created by the physical mechanisms associated with galaxy clusters or the large-scale structure, but are likely to be created by dynamical interaction with closely accompanying galaxies at a <100 kpc scale. The claim is also supported by the morphology of E+A galaxies. We have found that almost all E+A galaxies have a bright compact core, and that ∼30 per cent of E+A galaxies have dynamically disturbed signatures or tidal tails, which quite strongly suggest the morphological appearance of merger/interaction remnants.  相似文献   

11.
12.
The star formation histories of galaxies in the Sloan Digital Sky Survey   总被引:1,自引:0,他引:1  
We present the results of a moped analysis of  ∼3 × 105  galaxy spectra from the Sloan Digital Sky Survey Data Release 3 (SDSS DR3), with a number of improvements in data, modelling and analysis compared with our previous analysis of DR1. The improvements include: modelling the galaxies with theoretical models at a higher spectral resolution of 3 Å, better calibrated data, an extended list of excluded emission lines and a wider range of dust models. We present new estimates of the cosmic star formation rate (SFR), the evolution of stellar mass density and the stellar mass function from the fossil record. In contrast to our earlier work the results show no conclusive peak in the SFR out to a redshift around 2 but continue to show conclusive evidence for 'downsizing' in the SDSS fossil record. The star formation history is now in good agreement with more traditional instantaneous measures. The galaxy stellar mass function is determined over five decades of mass, and an updated estimate of the current stellar mass density is presented. We also investigate the systematic effects of changes in the stellar population modelling, the spectral resolution, dust modelling, sky lines, spectral resolution and the change of data set. We find that the main changes in the results are due to the improvements in the calibration of the SDSS data, changes in the initial mass function and the theoretical models used.  相似文献   

13.
14.
We investigate the correlation between the supermassive black holes (SMBHs) mass ( M bh) and the stellar velocity dispersion  (σ*)  in two types of host galaxies: the early-type bulges (disc galaxies with classical bulges or elliptical galaxies) and pseudo-bulges. In the form  log ( M bh/M) =α+β log (σ*/200 km s−1)  , the best-fitting results for the 39 early-type bulges are the slope  β= 4.06 ± 0.28  and the normalization  α= 8.28 ± 0.05  ; the best-fitting results for the nine pseudo-bulges are  β= 4.5 ± 1.3  and  α= 7.50 ± 0.18  . Both relations have intrinsic scatter in  log  M bh  of ≲0.27 dex. The   M bh–σ*  relation for pseudo-bulges is different from the relation in the early-type bulges over the 3σ significance level. The contrasting relations indicate the formation and growth histories of SMBHs depend on their host type. The discrepancy between the slope of the   M bh–σ*  relations using different definition of velocity dispersion vanishes in our sample, a uniform slope will constrain the coevolution theories of the SMBHs and their host galaxies more effectively. We also find the slope for the 'core' elliptical galaxies at the high-mass range of the relation appears steeper  (β≃ 5–6)  , which may be the imprint of their origin of dissipationless mergers.  相似文献   

15.
16.
17.
18.
19.
Active galactic nuclei (AGNs) in low surface brightness galaxies (LSBGs) have received little attention in previous studies. We present a detailed spectral analysis of 194 LSBGs from the Impey et al. (1996) APM LSBG sample which has been observed spec-troscopically by the Sloan Digital Sky Survey Data Release 5 (SDSS DR5). Our elaborate spectral analysis enables us to carry out, for the first time, reliable spectral classification of nuclear processes in LSBGs based on the standard emission line diagnostic diagrams in a rigorous way. Star-forming galaxies are common, as found in about 52% of LSBGs. We find that, contrary to some previous claims, the fraction of galaxies that contain AGNs is significantly lower than that found in nearby normal galaxies of high surface brightness. This is qualitatively in line with the finding of Impey et al. This result holds true even within each morphological type from Sa to Sc. LSBGs that have larger central stellar ve-locity dispersions or larger physical sizes tend to have a higher chance of harboring an AGN. For three AGNs with broad emission lines, the black hole masses estimated from the emission lines are broadly consistent with the well known M-σ* relation established for normal galaxies and AGNs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号