首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first light curve solutions of the binary systems V1370 Tau and QQ Boo are presented. The periodic changes are calculated, and a new ephemeris presented for each of these two binary systems. O-C analysis is performed using the MCMC method in OCFit code. The changing rate of period was measured as dP/dt= 0.2423 days/year for V1370 Tau and dP/dt= -0.1363 days/year for QQ Boo. The light curve solutions suggest that V1370 Tau is a weak-contact eclipsing binary system with a photometric mass ratio q = 0.829, and that the corresponding fillout factor is 11.06%. Furthermore, it is suggested that the QQ Boo binary system is also a weak-contact W UMa eclipsing binary with a photometric mass ratio q = 0.831, and that its fillout factor equals 10.26%. The light curve solutions require cold spots. Utilizing the Wilson-Devinney code the photometric and geometric parameters of the systems are determined. The distance of both V1370 Tau and QQ Boo are calculated according to the estimated absolute parameters as 159.95 ± 23 pc and 309.03 ± 25 pc, respectively, which are in a good agreement with the distance values derived from the Gaia DR2 parallax within one standard deviation. Moreover, the positions of their components on the H-R diagram are represented.  相似文献   

2.
The BVR photometric light curves of the eclipsing binary BD And were obtained in 2008 and 2009. We estimated the mass ratio of the system as 0.97 and the photometric solutions were derived. The results show that BD And is a detached binary system, whose components have a little temperature difference of about 40 K. By analyzing photometric available light minimum times, we also derived an update ephemeris and found for the first time a possible periodic oscillation with an amplitude of 0.011 days and a period of 9.6 years. The results indicate that the periodic oscillation could be caused by a third component physically attached to the eclipsing binary. After removing the light variations due to the eclipses and proximity effects, the light-curve distortions are further explained by the pulsation of the primary component with a dominant period of ∼1 day. In accordance with the position of the primary component on the Hertzsprung–Russell diagram and its pulsation period, the primary component of BD And could be an excellent γ Doradus candidate. It is rarely phenomenon that a component of the eclipsing binary system is a γ Doradus variable.  相似文献   

3.
This paper presents new CCD BVRI light curves of the newly discovered RS CVn eclipsing binary star DV Psc. From the asymmetric light curves outside the eclipse, we find there are two depressions in the phase ranges 0.3–0.45 and 0.6–0.9, respectively. By analyzing the light curves using the Wilson–Devinney program, the four photometric solutions of the system are obtained and the starspot parameters are also derived. It turns out that the case of two spots being on the primary is most successful in reproducing the light curve distortion of DV Psc. Moreover, analysis the longitudes of spots suggests that there are two active longitude belts (one is about 90°, the other is about 270°). At the same time, on 22 November 2008, the first flare-like event was detected on DV Psc at phase 0.35 whose duration was about 13.5 min. These findings reveal that DV Psc has a high degree of magnetic activity.  相似文献   

4.
The first complete charge-coupled device (CCD) light curves in B and V bands of the short-period binary system, RV Psc, are presented. It is found that the light curves of RV Psc are symmetric and belong to the EW type rather than the EA type as described in the 4th edition of the GCVS. Photometric solutions were derived by using the 2003 version of the Wilson–Devinney (W-D) method. It is shown that RV Psc is a marginal contact system (f=5.8%±6.6%) with a mass ratio of q=0.5978±0.0096. The temperature difference between both components is only 17 K. Analysis of the O-C curve suggests that the period of RV Psc shows a long-term continuous decrease at a rate of dP/dt=?5.89×10?8 days/year. The long-time period decrease, the marginal-contact configuration, and the astrophysical parameters of the binary system, all suggest that it is a newly formed marginal contact binary from a case A mass transfer and will evolve into a normal overcontact binary.  相似文献   

5.
We present a new multicolor CCD photometry and light curve analysis of two eclipsing binary systems, 1SWASP J133417.80 + 394314.4 and V2790 Orion. The photometric solutions for both binaries were carried out using the updated version of the Wilson– Devinney code. The results showed that first systems is A- type W UMa with mass ratios q = 0.158 while the second system is W- type with q = 3.2. The systems show over contact configuration with fill-out factors of f = 43% and 14% respectively. We calculated the orbital and absolute physical parameters for both systems and investigated their evolutionary state.  相似文献   

6.
The results obtained from unfiltered photometric CCD observations of AY Psc made during 17, 20 and 12 nights, respectively, in 2003, 2004 and 2005 are presented. A period of 0.21732 ± 0.00001 d was detected in the data. This period is consistent with the previously proposed orbital period of Porb = 0.2173209 d ((Diaz and Steiner, 1990)). Since this period was present in the light curves taken in all three years, with no apparent change in its value or amplitude, it is interpreted as the orbital period of this binary system. In addition, quasi-periodicities of 0.2057 ± 0.0001 d, 0.2063 ± 0.0001 d, 0.2072 ± 0.0001 d for the years 2003, 2004 and 2005, respectively, were also discovered. These periods were interpreted as negative superhump periods and it was seen that they changes from year to year. Therefore AY Psc is then classified as a negative superhump system.  相似文献   

7.
We present the first CCD sets of complete light curves for two W Ursae Majoris Systems, UCAC3 276-106147 and NSVS 7377756. These light curves are here analyzed and modelled using the latest version of the Wilson-Devinney Code. We found that UCAC3 276-106147 is a W-subtype shallow-contact eclipsing binary (fill-out factor 7.5%), with a mass ratio of q = 2.88 (1/q = 0.347), a small temperature difference between the components of about ΔT =200K. NSVS 7377756 is an H-subtype binary system with a high mass ratio of q = 1.09 (1/q = 0.947), a weak degree of contact factor f = 3.8% and a temperature difference between the components of ΔT = 398 K. The light curves of both the systems appear to be unspotted. By using our 4 and 7 times of minimum light and the 30 and 104 ToMs extract from the SWASP observations, respectively for UCAC3 276-106147 and NSVS 7377756, the orbital periods are here revised. The elements obtained from this analysis are used to compute the physical parameters of the systems combining our photometric solution with the 3-D correlation obtained for contact binaries by Gazeas (2009). Based on these estimated parameters the evolutionary state of the components of the systems is investigated and discussed.  相似文献   

8.
The V light curve of eclipsing binary LD355 was analyzed by using the latest version of Wilson Program in order to derive photometric elements of this system. Since no spectroscopic mass ratio is available, the q‐search method was applied to yield the preliminary range of mass ratio in order to search for the final solution. The solution was performed by assuming detached (mode 2) and semi‐detached (mode 5) configurations, since no classification of the system based on the shape of light curve is possible. The solution in mode 5 leads to an acceptable model. The present solution reveals that LD355 has a photometric mass ratio q = 0.178 and is a semi‐detached binary with the secondary component filling the Roche lobe.  相似文献   

9.
We present CCD photometric observations of the W UMa type contact binary EK Comae Berenices using the 2 m telescope of IUCAA Girawali Observatory, India. The star was classified as a W UMa type binary of subtype-W by Samec et al. (1996). The new V band photometric observations of the star reveal that shape of the light curve has changed significantly from the one observed by Samec et al. (1996). A detailed analysis of the light curve obtained from the high-precision CCD photometric observations of the star indicates that EK Comae Berenices is not a W-type but an A-type totally eclipsing W UMa contact binary. The photometric mass ratio is determined to be 0.349 ± 0.005. A temperature difference of ΔT = 141 ± 10 K between the components and an orbital inclination of i[°] = 89.800 ± 0.075 were obtained for the binary system. Absolute values of masses, radii and luminosities are estimated by means of the standard mass-luminosity relation for zero age main-sequence stars. The star shows O’Connell effect, asymmetries in the light curve shape around the primary and secondary maximum. The observed O’Connell effect is explained by the presence of a hot spot on the primary component.  相似文献   

10.
Two-colour photoelectric observations of the new eclipsing binary HD 199497 are presented. Our observations confirm that the system is a W UMa type eclipsing binary. The light curves were analysed with the Wilson-Devinney approach. The system is found to be in contact configuration. The inclination is amazingly small. Although there are no spectroscopic data, the photometric mass ratio of the system is well determined.  相似文献   

11.
We present here the photometric light curve analyses of the eclipsing binary star DN Aur. The CCD photometry, performed at the Behlen observatory using the 0.76 m automated telescope gave 646 individual data points inV andR bandpass filters. From this data we have determined a new epoch and an orbital period of 0.6168891 days. The published spectral classification is F3.The Wilson-Devinney model was used to derive the photometric solutions. DN Aur is a W UMa type contact binary system. The mass ratio, (q=m 2/m 10.210, where star 2 is eclipsed at the primary minimum) suggests that the system has A-type configuration. The computed light curve has a third light of about 22 percent and a total eclipse in the secondary minimum. A solution with a cool spot on the secondary component is also found. We recommend spectroscopic study of DN Aur even though the light curve analysis show it to be a single line spectroscopic system. Generally contact systems of spectral type F3 have periods ranging from 0.25 to 0.5 days. The longer period of DN Aur suggests that it is an evolved contact system with case A mass transfer.  相似文献   

12.
The new multi-color BVRI photometric light curves of the short-period eclipsing binary GSC 3576-0170 were obtained on two consecutive nights (October 5 and 6, 2009). With the 2003 version of Wilson–Devinney program, the precise photometric solutions are derived for the first time. The result shows that GSC 3576-0170 is a semi-detached binary system with a large temperature difference of approximately 1490 K. The light-curve distortions are further explained by a hot spot on the secondary component through mass transfer via a stream hitting the facing surface of the secondary component. By analyzing all available light minimum times, we also derived an update ephemeris and found for the first time a possible periodic oscillation with an amplitude of 0.0038 days and a period of 4.3 years. The periodic oscillation could be explained either by the light-time effect due to a presumed third component or by magnetic activity cycle of the system.  相似文献   

13.
In the present work we have presented and analysedB andV light curves and the (B-V)-colour curve of the short period (RS CVn type) binary system UV Psc, and derived absolute information from the available data.x 2 minimization procedures were utilized to a large extent in fitting light and colour curves.The solutions show the binary to be at a distance of about 90 pc with two detached components which are close to the main sequence (G2 and K0). The inclination of the orbit is close to 90°Photometric irregularities present in the light curve are briefly considered in relation to current ideas on RS CVn systems, and the colour information indicates a locally hotter (rather than cooler) region is responsible for the irregularities.  相似文献   

14.
Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25 and a degree of contact factor f=9.4%(±0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair, results in a massive third body with M 3=1.73M and P 3=87.0 yr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75 yr and its mass is about 0.278M . Both of the cases suggest the presence of an unseen third component in the system.  相似文献   

15.
We present new photometric observations for the eclipsing binary DF CVn, and determined five light minimum times. By using the Wilson–Devinney code, two sets of photometric solutions were deduced from our observations in 2009. The asymmetric light curves obtained on 2009 March 5 were modeled by a dark spot on the more massive component. The results indicate that DF CVn is a W-type weak-contact binary, with a mass ratio of q  0.28 and an overcontact degree of f  20%. From the O ? C curve of minimum times, it is found that there exists a cyclic variation, whose period and semi-amplitude are P3 = 17.2(±0.9) year and A = 0.d0070(±0.d0008), respectively. This kind of cyclic oscillation may possibly result from the light-time effect due to the presence of an unseen third body. This kind of additional body may extract angular momentum from the central system. The low-amplitude changes of the light curves on a short-time scale (e.g., half a month) may be attributed to the dark spot activity, which may result in angular momentum loss via magnetic breaking. With angular momentum loss, the weak-contact binary DF CVn will evolve into a deep-contact configuration.  相似文献   

16.
Following a brief history of measurement of eclipsing binary mass ratios from light curves, we show that photometric mass ratios for overcontact and semi-detached binaries are reliable because the relative stellar radii, R/a, are accurately measured and not, as commonly claimed, because of information in the light variation outside eclipse. We explore the accuracy of photometric mass ratios by solving synthetic data of typical precisions for a semi-detached and an overcontact binary for orbital inclinations from 89 down into the partial eclipse range.  相似文献   

17.
With the 2013 version of W-D code, we derived the photometric solutions for the new discovered extremely short-period eclipsing binary 1SWASP J024148.62+372848.3 based on its complete RIc light curves. The results show that the system is a W-type overcontact system with a filling-out factor of 23% and a mass ratio of q = 1.23, thus it is a new target which belongs to the rare group of overcontact binary with period under the short period limit (0.22 days). The obviously asymmetries found in its light curves could be explained well by the high spots coverage on the two components which have strong magnetic activities due to their late type nature. A third light contributing about 40% of the total light has been detected during the light curve analysis. This additional component may play an important role in the formation of 1SWASP J024148.62+372848.3, just like those in other overcontact binaries below the limit.  相似文献   

18.
First CCD photometry is presented for the eclipsing binary VZ Trianguli, observed at the Sheshan Station of Shanghai Astronomical Observatory in 2008. Using the Wilson–Devinney Code, the photometric solution of VZ Tri was first deduced from the R-band observations. The results show that VZ Tri is an A-subtype late-type contact binary, with a mass ratio of q=0.350(±0.004) and a low contact degree of f=27.9%(±1.0%). Based on all available light minimum times covering over 40 years, it is found that the orbital period shows a long-term decrease at a rate of dP/dt=−1.52(±0.03)×10−7 d yr−1, suggesting that VZ Tri is undergoing mass transfer from the more massive component to the less massive component, accompanied with angular momentum loss. With period decreasing, the inner and outer critical Roche lobes will shrink, and then cause the contact degree to increase. Therefore, the weak-contact binary VZ Tri with decreasing period may evolve into a deep-contact configuration.  相似文献   

19.
In this study we present photometric observations of the eclipsing binary KR Cyg made in 1999 and 2000. The observations of the eclipsing binary KR Cyg have been carried out in B, V and R colours at the Ege University Observatory. A new seasonal light curves are presented. New times of minima and ephemerides are given. Based on a statistical analysis of the times of minima obtained by photoelectric photometry, the orbital period of the system is found to be constant. The photometric mass ratio of the system is well determined. The corresponding light curves were analyzed by the Wilson-Devinney code. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
We present a new set of CCD photometric observations for the short period eclipsing binary 1SWASP J1743 (= V1067 Her). We have determined the available times of light minima and two new linear and quadratic ephemerides have been obtained. The photometric solutions for the system have been performed using Wilson and Devinney Code. The 3D and fill out configuration revealed that V1067 Her is an over contact W UMa binary with relatively low fill-out factor of about 16%.We investigated the period variation for the system. It showed a strong evidence of period changes by using the (O-C) residual diagram method and we have concluded long-term orbital period decrease rate dP/dt= −3.0 × 107 d/yr, corresponding to a time scale 8.6 × 105 yr. Such period decrease in the A-type W UMa systems is usually interpreted to be due to mass transfer from the more to the less massive component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号