共查询到20条相似文献,搜索用时 0 毫秒
1.
S.A. Fedotov 《Journal of Geodynamics》1985,3(3-4)
Fumarolic steam plumes and eruption clouds rise like convetive turbulent columns into the atmosphere. Formulae are presented here for estimating the heat power of plumes, the production rate of juvenile pyroclasts ejected during eruptions and the heat output of fumaroles. Their accuracy is tested using the well-studied examples of eruptions of Kamchatkan volcanoes.The Briggs (1969) formula may be used in observing the ascending part of a plume in crosswinds. The best results have been obtained using the CONCAWE formula which permits estimation of the heat power in crosswinds based on the axis height of a horizontal part of a maintained plume. Three connected equations have been suggested for a stable atmosphere and calm weather conditions. The first one, which is applicable for heights ranging from 100 m to 1 km, is the formula proposed by Morton et al. (1956). This equation changes for higher layers of the troposphere (1–10 km) and stratosphere (10–55 km).A classification scale was constructed allowing us to compare volcanic eruptions and fumarolic activity in terms of the intensity of their plumes.The described method is useful for volcano surveillance; it helps in the study of the energetics and mechanics of volcanic and magmatic processes. 相似文献
2.
Simon J. Barker Melissa D. Rotella Colin J. N. Wilson Ian C. Wright Richard J. Wysoczanski 《Bulletin of Volcanology》2012,74(6):1425-1443
Pyroclastic deposits from four caldera volcanoes in the Kermadec arc have been sampled from subaerial sections (Raoul and Macauley) and by dredging from the submerged volcano flanks (Macauley, Healy, and the newly discovered Raoul SW). Suites of 16–32?mm sized clasts have been analyzed for density and shape, and larger clasts have been analyzed for major element compositions. Density spectra for subaerial dry-type eruptions on Raoul Island have narrow unimodal distributions peaking at vesicularities of 80–85%, whereas ingress of external water (wet-type eruption) or extended timescales for degassing generate broader distributions, including denser clasts. Submarine-erupted pyroclasts show two different patterns. Healy and Raoul SW dredge samples and Macauley Island subaerial-emplaced samples are dominated by modes at ~80–85%, implying that submarine explosive volcanism at high eruption rates can generate clasts with similar vesicularities to their subaerial counterparts. A minor proportion of Healy and Raoul SW clasts also show a pink oxidation color, suggesting that hot clasts met air despite 0.5 to >1?km of intervening water. In contrast, Macauley dredged samples have a bimodal density spectrum dominated by clasts formed in a submarine-eruptive style that is not highly explosive. Macauley dredged pyroclasts are also the mixed products of multiple eruptions, as shown by pumice major-element chemistry, and the sea-floor deposits reflect complex volcanic and sedimentation histories. The Kermadec calderas are composite features, and wide dispersal of pumice does not require large single eruptions. When coupled with chemical constraints and textural observations, density spectra are useful for interpreting both eruptive style and the diversity of samples collected from the submarine environment. 相似文献
3.
Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions. 相似文献
4.
Two explosive eruptions occurred on 2 January 1996 at Karymsky Volcanic Center (KVC) in Kamchatka, Russia: the first, dacitic, from the central vent of Karymsky volcano, and the second, several hours later, from Karymskoye lake in the caldera of Akademia Nauk volcano. The main significance of the 1996 volcanic events in KVC was the phreatomagmatic eruption in Karymskoye lake, which was the first eruption in this lake in historical time, and was a basaltic eruption at the acidic volcanic center. The volcanic events were associated with the 1 January Ms 6.7 (Mw 7.1) earthquake that occurred at a distance of about 9–17 km southeast from the volcanoes just before the eruptions. We study the long-term (1972–1995) and short-term (1–2 January 1996) characteristics of crustal deformations and seismicity before the double eruptive event in KVC. The 1972–1995 crustal deformation was homogeneous and characterized by a gradual extension with a steady velocity. The seismic activity in 1972–1995 developed at the depth interval from 0 to 20 km below the Akademia Nauk volcano and spread to the southeast along a regional fault. The seismic activity in January 1996 began with a short sequence of very shallow microearthquakes (M ~0) beneath Karymsky volcano. Then seismic events sharply increased in magnitude (up to mb 4.9) and moved along the regional fault to the southeast, culminating in the Ms 6.7 earthquake. Its aftershocks were located to the southeast and northwest from the main shock, filling the space between the two active volcanoes and the ancient basaltic volcano of Zhupanovsky Vostryaki. The eruption in Karymskoye lake began during the aftershock sequence. We consider that the Ms 6.7 earthquake opened the passageway for basic magma located below Zhupanovsky Vostryaki volcano that fed the eruption in Karymskoye lake. 相似文献
5.
A compilation and analysis of the size and frequency of the largest known explosive eruptions on Earth are presented. The largest explosive events are defined to be those eruptions yielding greater than 1015 kg of products (>150 times the mass of the 1991 eruption of Mt. Pinatubo). This includes all known eruptions with a volcanic explosivity index (VEI) of 8. A total of 47 such events, ranging in age from Ordovician to Pleistocene, are identified, of which 42 eruptions are known from the past 36 Ma. A logarithmic magnitude scale of eruption size is applied, based on erupted mass, to these events. On this scale, 46 eruptions >1015 kg are defined to be of magnitude M8. There is one M9 event known so far, the Fish Canyon Tuff, with an erupted mass of >1016 kg and a magnitude of 9.2. Analysis of this dataset indicates that eruptions of size M8 and larger have occurred with a minimum frequency of 1.4 events/Ma in two pulses over the past 36 Ma. On the basis of the activity during the past 13.5 Ma, there is at least a 75% probability of a M8 eruption (>1015 kg) occurring within the next 1 Ma. There is a 1% chance of an eruption of this scale in the next 460–7,200 years. While the effect of any individual M8 or larger eruption is considerable, the time-averaged impact (i.e., erupted mass×frequency) of the very largest eruptions is small, due to their rarity. The long-term, time-averaged erupted mass flux from magnitude 8 and 9 eruptions is ~10–100 times less than for M7 eruptions; the time-averaged mass eruption rate from M7 eruptions is 9,500 kg s–1, whereas for M8 and M9 eruptions it is ~70–1,000 kg s–1. Comparison of the energy release by volcanic eruptions with that due to asteroid impacts suggests that on timescales of <100,000 years, explosive volcanic eruptions are considerably more frequent than impacts of similar energy yield. This has important implications for understanding the risk of extreme events.Editorial responsibility: R. Cioni 相似文献
6.
The evolution of bubble size distributions in volcanic eruptions 总被引:1,自引:0,他引:1
J.D. Blower J.P. Keating H.M. Mader J.C. Phillips 《Journal of Volcanology and Geothermal Research》2003,120(1-2):1-23
We review observations of bubble size distributions (BSDs) generated during explosive volcanic eruptions and laboratory explosions, as inferred from vesicle size distributions found in the end products. Unimodal, polymodal, exponential and power law BSDs are common, even in the absence of coalescence, and both power law and exponential distributions have been generated in the same eruption. To date theoretical models have proposed incompatible mechanisms for producing the various distributions. We here present a unifying mechanism. Data from our laboratory analogue experiments suggest that power law distributions are associated with highly non-equilibrium degassing. A numerical model is developed in which bubbles nucleate repeatedly and grow in the spaces between those of previous generations, where, in a non-equilibrium degassing scenario, the volatile concentration remains high. This process causes the BSD to evolve from unimodal, through exponential, into a power law. The exponent of the power law is a measure of the number of nucleation events, or the duration of the nucleation period compared with the timescale of bubble growth. The mathematical inevitability of the evolution from unimodal (Poissonian) to power law is discussed. The findings may resolve the apparent contradiction between the equilibrium degassing conduit flow models and the non-equilibrium degassing conditions derived from bubble growth models of explosive volcanic eruptions. The process of ongoing nucleation is the mechanism whereby the volcanic system maintains near-equilibrium in the case of rapid depressurisation and slow volatile diffusion. 相似文献
7.
In the shallow magma chambers of volcanoes, the CO2 content of most basaltic melts is above the solubility limit. This implies that the chamber contains gas bubbles, which rise through the magma and expand. Thus, the volume of the chamber, its gas volume fraction and the gas flux into the conduit change with time in a systematic manner as a function of the size and number of gas bubbles. Changes in gas flux and gas volume are calculated for a bubble size distribution and related to changes in eruption regimes. Fire fountain activity, only present during the first quarter of the eruption, requires that the bubbles are larger than a certain size, which depends on the gas flux and on the bubble content[1]. As the chamber degasses, it loses its largest gas bubbles and the gas flux decreases, eventually suppressing the fire fountaining activity. Ultimately, an eruption stops when the chamber contains only a few tiny bubbles. More generally, the evolution of basaltic eruptions is governed by a dimensionless number, τ * ≈ τgΔρaO2/(18μhc), where τ = a characteristic time for degassing; a0 = the initial bubble diameter; μ = the magma viscosity; and hc = the thickness of the degassing layer. Two eruptions of the Kilauea volcano, Mauna Ulu (1969–1971) and Puu O'o (1983—present), provide data on erupted gas volume and the inflation rate of the edifice, which help constrain the spatial distribution of bubbles in the magma chamber: bubbles come mainly from the bottom of the reservoir, either by in situ nucleation long before the eruption or within a vesiculated liquid. Although the gas flux at the roof of the chamber takes similar values for both eruptions, the duration of both the fire fountaining activity and the entire eruption was 6 times shorter at Mauna Ulu than during the Puu O'o eruption. The dimensionless analysis explains the difference by a degassing layer 6 times thinner in the former than the latter, due to a 2 year delay in starting the Mauna Ulu eruption compared to the Puu O'o eruption. 相似文献
8.
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard. 相似文献
9.
P. E. Baker 《Bulletin of Volcanology》1980,43(2):303-310
Some 4000 years ago Mt. Misery volcano was in a particularly active state, emitting a sequence of pyroclastic deposit that are widely distributed over the island and show a compositional range from basalt (SiO2 48%) to andesite (SiO2 62%). The type section at Mansion, on the east coast, has been the subject of a study byBaker andHolland (1973). Of special interest in this succession is the intimate association of basic and relatively salic products. It constitutes a detailed record of a short period (a few centuries?) in the volcano’s history, which properly interpreted may tell us something of the processes of magmatic differentiation and replenishment. The compositional patterns may also provide some guide to the course likely to be followed in future eruptions. Some degree of caution is necessary in considering the chemistry of pyroclastic rocks, which between eruption and deposition may have been influenced by aerial fractionation or winnowing processes. There may also be problems of partial redistribution, weathering and also the inclusion of accessory or accidental lithic fragments. Isopach maps show that deposition of the Mansion succession was partly governed by the prevailing ENE wind. The total thickness varied from about 45 m at a distance of 4 km west of the crater compared with about half that thickness an equal distance east of the crater. The more complete sections occur on the eastern, windward side, whereas on the west much of the upper part has been removed, presumably by mudflows and floods. The marked unconformity over the basic cinder zone in western sections makes correlation with eastern sections more difficult. Sharp changes in composition and eruptive pattern tend to be heralded by particularly coarse horizons which usually contain fragments of coarse grained cumulates: these were presumably dislodged by the influx of new magma from depth. The coarsest horizon of all precedes the most basic phase in the middle of the sequence, when basalt flows were also discharged. It is not possible to identify individual basaltic horizons over any distance in the field but correlation does become possible when chemical profiles are integrated with stratigraphic data. It is generally sufficient to correlate by means of one elemente.g. Mg. The basaltic units are both thicker and coarser to the west of Mt. Misery. The most mafic beds have been found at Mansion in the east, probably because of the westward winnowing of the least dense fractions. Units of coarse greenish angular andesitic lapilli which occur near the top of the succession are the most amenable to wider correlation. There are three major units of these lapilli though often only one is exposed. Though indistinguishable in the field chemical analysis reveals that the middle unit is decidedly more basic and this becomes a useful criterion in correlation. It has been demonstrated that there are slight but significant variations in the chemistry of the upper unit over St. Kitts. Samples from the west are relatively enriched in SiO2 (61.5%) compared with those to the east of the crater (59.0%). The pattern of variation can be matched closely to the isopachs, pointing to an influence of the wind on the ultimate composition of the deposits: presumably the less dense fractions were enhanced downwind. As a test of consistency, four samples were analysed from different heights in a single unit of andesitic lapilli but there was no significant difference. The results suggest that when conventional stratigraphic methods fail, chemical profiles may play a useful role. The pattern of variation in these profiles also suggests that basaltic andesites and perhaps some andesites are derived by fractional crystallization of basaltic magma. However, other andesites which break the pattern and appear suddenly in large volume may have a quite independent origin. 相似文献
10.
《Journal of Atmospheric and Solar》2000,62(16):1479-1487
The SOHO observations with LASCO and EIT present an ideal opportunity to study the relationship between prominence eruptions and coronal mass ejections (CME). High-cadence measurements of prominence eruptions demonstrate that the prominence eruption is not generally the cause of the associated CME, but that it is more probable that the destabilisation of the CME in fact releases the constraints on the prominence, causing it to erupt. We report here selected observations of associated CMEs and prominence eruptions covering the period of SOHO operations from mid-January 1996 to October 1999. In addition to the causality, we find that in general the projected speed of the prominence eruption matches fairly closely the projected speed of the associated CME, but it is always lower. Furthermore, the prominence eruption is generally simply one facet of the coronal transient activity, of which there are often several other discrete parts. The prominence eruption is also generally offset in heliolatitude from the centre of the CME. 相似文献
11.
Local fluid flow (LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band. LFF is easily influenced by the structure and boundary conditions of the porous media, which leads to different behaviors of the peak frequency of attenuation. The associated transition frequency can provide detailed information about the trend of LFF; therefore, research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation (i.e., inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media. In this study, we firstly obtain the transition frequency of fluid flux based on Biot’s theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell (RUC). We then analyze changes of these two frequencies in porous media with different porous properties. Finally, we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs. This setup can facilitate the understanding of the effect from the undrained boundary condition. Results demonstrate that these two frequencies have the same trend at low water saturation, but amplitude variations differ between the frequencies as the amount of saturation increases. However, for cases of high water saturation, both the trend and the amplitude variation of these two frequencies fit well with each other. 相似文献
12.
Periodic variations in magma discharge rate and ground deformation have been commonly observed during lava dome eruptions. We performed a stability analysis of a conduit flow model by Barmin et al. [Barmin, A., Melnik, O., Sparks, R.S.J., 2002. Periodic behavior in lava dome eruptions. Earth and Planetary Science Letters 199 (1-2), 173–184], in which the periodic variations in magma flow rate and chamber pressure are reproduced as a result of the temporal and spatial changes of the magma viscosity controlled by the kinetics of crystallization. The model is reduced to a dynamical system where the time derivatives of the magma flow rate (dQ/dt) and the chamber pressure (dP/dt) are functions of Q and P evaluated at a shifted time t − t?. Here, the time delay t? represents the time for the viscosity of fluid particle to increase in a conduit. The dynamical system with time delay is approximated by a simple two-dimensional dynamical system of Q and P where t? is given as a parameter. The results of our linear stability analyses for these dynamical systems indicate that the transition from steady to periodic flow depends on nonlinearities in the steady state relation between Q and P. The steady state relation shows a sigmoidal curve in Q − P phase plane; its slope has negative values at intermediate flow rates. The steady state solutions become unstable, and hence P and Q oscillate periodically, when the negative slope of the steady state relation ([dP/dQ]S) exceeds a critical value; that is [dP/dQ]S < − t?γ/(2Vch), where Vch is the chamber volume and γ is an elastic constant which is related to the rigidity of chamber wall. We also found that the period and the pattern of oscillation of the conduit flow primarily depend on a quantity defined by LVch/r4, where L is the conduit length and r is the conduit radius. 相似文献
13.
A procedure for determining the minimal representative observation period at hydrological gages is proposed as required for
studying the regularities in river runoff formation in rivers in the drainage basin of the Votkinsk Reservoir. Data of hydrological
gages with long observational series were used as an example to show, by the division of these series into intervals and analysis
of the obtained deviations from long-term mean values, that such minimal period can be taken to be 40 years long. 相似文献
14.
R. Aster D. ZandomeneghiS. Mah S. McNamaraD.B. Henderson H. KnoxK. Jones 《Journal of Volcanology and Geothermal Research》2008
Strombolian eruptions from the long-lived lava lake of Erebus volcano, Ross Island, Antarctica, generate repeating Very Long Period (VLP) signals, containing energy between approximately 30 and 5 s, that persist for several minutes and through the post-eruptive refilling of the lava lake. The initial approximately 10 s of this signal is moderately variable, particularly with respect to its initial polarity, while the following VLP coda has been observed to be stable since the earliest VLP observations were made (1996). To estimate forces and force couples consistent with the Erebus VLP signature, we perform moment tensor inversions for point sources using high signal-to-noise data stacks from the six-station, 18-component broadband seismographic network and Green's function forward calculations that incorporate topography. We infer a shallow (approximate depth of less than 400 m below the lava lake surface) source centroid that underlies the center to the northwestern rim of the main crater, east and north of the lava lake. Integrated Mii functions over the predominant (180 s) signal duration of VLP events show that the net scalar moments for these events are on the order of 4 × 1013 N m (corresponding to a moment magnitude mw ≈ 3) for typical sized VLP events. Moment rate tensors which characterize force couple components are dominated (85–97% of variance) by dilatational components. Approximately 25% of the data variance is attributable to single forces that are attributable to oscillatory reaction forces caused by fluid transport, however, the relative contributions of vertical forces and couples with this sparse network is poorly resolved for these shallow sources. The generally high degree of repeatability in the VLP signal across thousands of eruptions over the past decade indicates that the response of the conduit system to gas slug ascent and subsequent gravitational disequilibrium is stable, consistent with the generally unchanging surface manifestation of the convecting lava lake system, and arguing for a thermally and dynamically stable conduit system beneath the lava lake. 相似文献
15.
We investigated characteristics of eruption tremor observed for 24 eruptions at 18 volcanoes based on published reports. In particular, we computed reduced displacements (DR) to normalize the data and examined tremor time histories. We observed: (a) maximum DR is approximately proportional to the square root of the cross sectional area of the vent, however, with lower than expected slope; (b) about one half of the cases show approximately exponential increases in DR at the beginnings of eruptions, on a scale of minutes to hours; (c) one half of the cases show a sustained maximum level of tremor; (d) more than 90% of the cases show approximately exponential decay at the ends of eruptions, also on a scale of minutes to hours; and (e) exponential increases, if they occur, are commonly associated with the first large stage of eruptions. We estimate the radii of the vents using several methods and reconcile the topographic estimates, which are systematically too large, with those obtained from DR itself and theoretical considerations. We compare scaling of tremor DR with that for explosions and find that explosions have large absolute pressures and scale with vent radius squared, whereas tremor consists of pressure fluctuations that have lower amplitudes than the absolute pressure of explosions, and the scaling is different. We explore several methods to determine the appropriate scaling. This characteristic helps us to distinguish the type of eruptions: explosive (Vulcanian or Strombolian) eruptions versus sustained or continuous ash (e.g. Plinian) eruptions. Average eruption discharge, estimated from the total volume of tephra and the total duration of eruption tremor, is well correlated with peak discharge calculated from cross sectional area of the vent and velocity of volcanic ejecta. These results suggest similar scaling between different eruption types and the overall usefulness of monitoring tremor for evaluating volcanic activity. 相似文献
16.
Roberto Scandone Lisetta Giacomelli Francesca Fattori Speranza 《Journal of Volcanology and Geothermal Research》2008,170(3-4):167-180
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches. 相似文献
17.
The hydrologic effect of replacing pasture or other short crops with trees is reasonably well understood on a mean annual basis. The impact on flow regime, as described by the annual flow duration curve (FDC) is less certain. A method to assess the impact of plantation establishment on FDCs was developed. The starting point for the analyses was the assumption that rainfall and vegetation age are the principal drivers of evapotranspiration. A key objective was to remove the variability in the rainfall signal, leaving changes in streamflow solely attributable to the evapotranspiration of the plantation. A method was developed to (1) fit a model to the observed annual time series of FDC percentiles; i.e. 10th percentile for each year of record with annual rainfall and plantation age as parameters, (2) replace the annual rainfall variation with the long term mean to obtain climate adjusted FDCs, and (3) quantify changes in FDC percentiles as plantations age. Data from 10 catchments from Australia, South Africa and New Zealand were used. The model was able to represent flow variation for the majority of percentiles at eight of the 10 catchments, particularly for the 10–50th percentiles. The adjusted FDCs revealed variable patterns in flow reductions with two types of responses (groups) being identified. Group 1 catchments show a substantial increase in the number of zero flow days, with low flows being more affected than high flows. Group 2 catchments show a more uniform reduction in flows across all percentiles. The differences may be partly explained by storage characteristics. The modelled flow reductions were in accord with published results of paired catchment experiments. An additional analysis was performed to characterise the impact of afforestation on the number of zero flow days (Nzero) for the catchments in group 1. This model performed particularly well, and when adjusted for climate, indicated a significant increase in Nzero. The zero flow day method could be used to determine change in the occurrence of any given flow in response to afforestation. The methods used in this study proved satisfactory in removing the rainfall variability, and have added useful insight into the hydrologic impacts of plantation establishment. This approach provides a methodology for understanding catchment response to afforestation, where paired catchment data is not available. 相似文献
18.
Bulletin of Volcanology - 相似文献
19.
Original geological and structural data, which derive from the analysis of the rheomorphic Green Tuff ignimbrite unit of Pantelleria, have offered the opportunity to define its modes of emplacement and the location of the eruptive sources in terms of distribution and geometry. The Green Tuff displays a wide range of rheomorphic structures consisting of preserved penetrative foliations, lineations and folds which, developed at distinct times, have been assigned to three major (D1–D3) deformation events accompanying and following the ignimbrite unit emplacement. The first D1 event produced distinct sets of structures developed along ductile shear zones generated during the emplacement of pyroclastic density currents along current-deposit boundaries. Palaeoflow directions of this event are completely independent from topography and are directly related to high-energy currents generated from the eruption. D2 event is characterized by folding due to down-slope post-emplacement flows related to gravity sliding processes whereas the D3 event was dominated by semi-brittle to brittle structures developed after the complete emplacement of the flow units and their subsequent cooling and compaction. The statistical analysis of these structural data has led to the hypothesis that the Green Tuff eruption developed from fissural sources that are largely superimposed on the NNE-trending dip-slip normal fault zones of the island (the Zinedi and the Montagna Grande faults). Our model also implies that the Green Tuff ignimbrite deposit can be the result of several events within a single eruptive cycle. The orientation of the fissural eruptive systems is evidence that the feeding structures for this large-size explosive event were strongly controlled by the E-W to ESE-WNW directed extension structures that affect the island of Pantelleria and, as a whole, the entire region of the Sicily Channel. 相似文献
20.
Characterizing the probability distribution of streamflows in catchments lacking in discharge measurements represents an attractive prospect with consequences for practical and scientific applications, in particular water resources management. In this paper, a physically-based analytic model of streamflow dynamics is combined with a set of water balance models and a geomorphological recession flow model in order to estimate streamflow probability distributions based on catchment-scale climatic and morphologic features. The models used are described and the novel parameterization approach is elaborated on. Starting from rainfall data, potential evapotranspiration and digital terrain maps, the method proved capable of capturing the statistics of observed streamflows reasonably well in 11 test catchments distributed throughout the United States, east of the rocky mountains. The method developed offers a unique approach for estimating probability distribution of streamflows where only climatic and geomorphologic features are known. 相似文献