首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A numerical model of idealized sunspots and pores is presented, where axisymmetric cylindrical domains are used with aspect ratios (radius versus depth) up to 4. The model contains a compressible plasma with density and temperature gradients simulating the upper layer of the Sun's convection zone. Non-linear magnetohydrodynamic equations are solved numerically and time-dependent solutions are obtained where the magnetic field is pushed to the centre of the domain by convection cells. This central magnetic flux bundle is maintained by an inner convection cell, situated next to it and with a flow such that there is an inflow at the top of the numerical domain towards the flux bundle. For aspect ratio 4, a large inner cell persists in time, but for lower aspect ratios it becomes highly time dependent. For aspect ratios 2 and 3 this inner convection cell is smaller, tends to be situated towards the top of the domain next to the flux bundle, and appears and disappears with time. When it is gone, the neighbouring cell (with an opposite sense of rotation, i.e. outflow at the top) pulls the magnetic field away from the central axis. As this happens a new inner cell forms with an inflow which pushes the magnetic field towards the centre. This suggests that to maintain their form, both pores and sunspots need a neighbouring convection cell with inflow at the top towards the magnetic flux bundle. This convection cell does not have to be at the top of the convection zone and could be underneath the penumbral structure around sunspots. For an aspect ratio of 1, there is not enough space in the numerical domain for magnetic flux and convection to separate. In this case the solution oscillates between two steady states: two dominant convection cells threaded by magnetic field and one dominant cell that pushes magnetic flux towards the central axis.  相似文献   

2.
A numerical model of axisymmetric convection in the presence of a vertical magnetic flux bundle and rotation about the axis is presented. The model contains a compressible plasma described by the non-linear MHD equations, with density and temperature gradients simulating the upper layer of the Sun's convection zone. The solutions exhibit a central magnetic flux tube in a cylindrical numerical domain, with convection cells forming collar flows around the tube. When the numerical domain is rotated with a constant angular velocity, the plasma forms a Rankine vortex, with the plasma rotating as a rigid body where the magnetic field is strong, as in the flux tube, while experiencing sheared azimuthal flow in the surrounding convection cells, forming a free vortex. As a result, the azimuthal velocity component has its maximum value close to the outer edge of the flux tube. The azimuthal flow inside the magnetic flux tube and the vortex flow is prograde relative to the rotating cylindrical reference frame. A retrograde flow appears at the outer wall. The most significant convection cell outside the flux tube is the location for the maximum value of the azimuthal magnetic field component. The azimuthal flow and magnetic structure are not generated spontaneously, but decay exponentially in the absence of any imposed rotation of the cylindrical domain.  相似文献   

3.
We study the topology of field lines threading buoyant magnetic flux structures. The magnetic structures, visually resembling idealized magnetic flux tubes, are generated self-consistently by numerical simulation of the interaction of magnetic buoyancy and a localized velocity shear in a stably stratified atmosphere. Depending on the parameters, the system exhibits varying degrees of symmetry. By integrating along magnetic field lines and constructing return maps, we show that, depending on the type of underlying behaviour, the stages of the evolution, and therefore the degree of symmetry, the resulting magnetic structures can have field lines with one of three distinct topologies. When the x -translational and y -reflectional symmetries remain intact, magnetic field lines lie on surfaces but individual lines do not cover the surface. When the y symmetry is broken, magnetic field lines lie on surfaces and individual lines do cover the surface. When both x and y symmetries are broken, magnetic field lines wander chaotically over a large volume of the magnetically active region. We discuss how these results impact our simple ideas of a magnetic flux tube as an object with an inside and an outside, and introduce the concept of 'leaky' tubes.  相似文献   

4.
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field.  相似文献   

5.
6.
Recent observations of sunspots have revealed a rich range of behaviour and a complicated magnetic field structure; magnetoconvection is the key physical process underlying these phenomena. Traditional studies of magnetoconvection have considered vertical, or sometimes horizontal, imposed fields. Tilted fields have received less attention, and yet these are crucial to sunspot dynamics, particularly in the penumbra where field lines are inclined at a variety of angles to the vertical. Tilting the field is also interesting from a purely theoretical viewpoint since it breaks many of the symmetries usually associated with convection problems. In this paper we study the linear stability of a layer permeated by an inclined magnetic field and go on to set up model equations in order to study the patterns formed in the weakly non-linear regime. Possible applications of the results to sunspots are discussed.  相似文献   

7.
Three-dimensional non-linear magnetoconvection in a strongly stratified compressible layer exhibits different patterns as the strength of the imposed magnetic field is reduced. There is a transition from a magnetically dominated regime, with small-scale convection in slender hexagonal cells, to a convectively dominated regime, with clusters of broad rising plumes that confine the magnetic flux to narrow lanes where fields are locally intense. Both patterns can coexist for intermediate field strengths, giving rise to flux separation: clumps of vigorously convecting plumes, from which magnetic flux has been excluded, are segregated from regions with strong fields and small-scale convection. A systematic numerical investigation of these different states shows that flux separation can occur over a significant parameter range and that there is also hysteresis. The results are related to the fine structure of magnetic fields in sunspots and in the quiet Sun.  相似文献   

8.
Mean-field theory in its kinematic form with the quasi-linear approximation is widely used for the modelling of the transport of weak magnetic fields in turbulent media. The validity of this approach to real astrophysical flows is discussed. Numerically evaluating the turbulent electromotive force using Lagrangian analysis for a set of simple, prescribed 2D flow patterns with a wide range of parameters, we find that quasi-linear expressions for the turbulent diffusivities and for the pumping velocities are correct within a factor of 2 for a wide variety of flow types with order of unity (or even higher) effective Strouhal numbers. The degree of the non-linear quenching of turbulent transport by a weak magnetic field is also discussed. We argue that, owing to the intermittency and small filling factors of magnetic fields in realistic astrophysical media, diffusivity and pumping effects are not quenched to order of magnitude, while a more moderate quenching of order 10 per cent is still present.  相似文献   

9.
10.
11.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric  α2– Ω  dynamo model is derived to explore the characteristics of the axisymmetric  ( m = 0)  and the first non-axisymmetric  ( m = 1)  modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the  α2–Ω  and the  α–Ω  models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented.  相似文献   

12.
Phase perturbations due to inclined surface magnetic field of active region strength are calculated numerically in quiet Sun and simple sunspot models in order to estimate and compare the direct and indirect (thermal) effects of the fields on helioseismic waves. It is found that the largest direct effects occur in highly inclined field characteristic of penumbrae, and scale roughly linearly with magnetic field strength. The combined effects of sunspot magnetic and thermal anomalies typically yield negative travel-time perturbations in penumbrae. Travel-time shifts in umbrae depend on details of how the thermal and density structure differs from the quiet Sun. The combined shifts are generally not well approximated by the sum of the thermal and magnetic effects applied separately, except at low field strengths of around 1 kG or less, or if the thermal shift is small. A useful rule-of-thumb appears to be that travel-time perturbations in umbrae are predominantly thermal, whereas in penumbrae they are mostly magnetic.  相似文献   

13.
We present recent 3-D MHD numerical simulations of the non-linear dynamical evolution of magnetic flux tubes in an adiabatically stratified convection zone in spherical geometry, using the anelastic spherical harmonic (ASH) code.We seek to understand the mechanism of emergence of strong toroidal fields from the base of the solar convection zone to the solar surface as active regions. We confirm the results obtained in cartesian geometry that flux tubes that are not twisted split into two counter vortices before reaching the top of the convection zone. Moreover, we find that twisted tubes undergo the poleward-slip instability due to an unbalanced magnetic curvature force which gives the tube a poleward motion both in the non-rotating and in the rotating case. This poleward drift is found to be more pronounced on tubes originally located at high latitudes. Finally, rotation is found to decrease the rise velocity of the flux tubes through the convection zone, especially when the tube is introduced at low latitudes. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We study the effects of incorporating magnetic buoyancy in a model of the solar dynamo—which draws inspiration from the Babcock-Leighton idea of surface processes generating the poloidal field. We present our main results here.  相似文献   

15.
For a variety of reasons, based on results from magnetoconvection, self-consistent dynamo calculations and helioseismology, it seems plausible that the bulk of the solar magnetic field is located in the overshoot zone. Furthermore, it has also been suggested that the solar dynamo is operating in this region. The aim of this paper is then to show that it is possible to obtain a mean electromotive force (EMF), and hence an α -effect, in the convectively stable overshoot zone, which is driven by magnetic buoyancy instabilities.
By investigating the stability of a layer of magnetic field embedded between two non-magnetic layers of plasma we are able to show the following: first, that magnetic buoyancy instabilities indeed give rise to a mean EMF and, secondly, that the electromotive force is largest in the region where the magnetic layer is unstable, i.e. where the field strength decreases fastest with height.
Moreover, the influence of the rotation rate and the magnetic field strength on the magnetic buoyancy instability has been investigated in order to determine for which values of these parameters dynamo action might occur.  相似文献   

16.
17.
Three-dimensional numerical simulations of the instability of a layer of magnetic field caused by magnetic buoyancy are carried out over a range of parameter values. The layer breaks up into a number of interlocking magnetic flux tubes that become increasingly three-dimensional, although strongly arched flux tubes are not observed. The introduction of background rotation has the principal effect of suppressing the instability. The α -effect, which measures the twist of the flux tubes induced by the rotation, is found to be positive (in the northern hemisphere) but small in magnitude.  相似文献   

18.
19.
The increasing power of computers makes it possible to model the non-linear interaction between magnetic fields and convection at the surfaces of solar-type stars in ever greater detail. We present the results of idealized numerical experiments on two-dimensional magnetoconvection in a fully compressible perfect gas. We first vary the aspect ratio λ of the computational box and show that the system runs through a sequence of convective patterns, and that it is only for a sufficiently wide box (λ ≥ 6) that the flow becomes insensitive to further increases in λ. Next, setting λ = 6, we decrease the field strength from a value strong enough to halt convection and find transitions to small-scale steady convection, next to spatially modulated oscillations (first periodic, then chaotic) and then to a new regime of flux separation, with regions of strong field (where convection is almost completely suppressed) separated by broad convective plumes. We also explore the effects of altering the boundary conditions and show that this sequence of transitions is robust. Finally, we relate these model calculations to recent high-resolution observations of solar magnetoconvection, in plage regions as well as in light bridges and the umbrae of sunspots.  相似文献   

20.
We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from the small‐scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic potential vanishes, the pseudo‐Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically steady state, the time‐averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号