首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气溶胶对青藏高原气候变化影响的数值模拟分析   总被引:1,自引:0,他引:1  
利用美国大气研究中心(NCAR)提供的2组数值试验结果对比,分析了只考虑温室气体增加(1%CO2试验)和综合考虑大气温室气体与气溶胶持续增加(50yrs试验)条件下,青藏高原地区地表温度、积雪深度及其他气候要素的变化,并在此基础上探讨了大气气溶胶含量变化对高原气候变化的可能影响.分析结果表明:只考虑大气CO2含量每年增加1%的变化时,青藏高原相对邻近地区地表温度显著增加,春、夏、秋及冬季地表温度线性增温率均表现出随着海拔高度升高而增强.例如,在海拔1.5~2 km,3~3.5 km和4.5~5 km范围内对应的冬季增温趋势分别为0.29 ℃/10 a,0.36 ℃/10 a和0.50 ℃/10 a.在温室气体引起的高原增暖过程中地表积雪深度普遍降低,且高海拔地区的积雪减少愈加明显.当综合考虑气溶胶和温室气体含量共同增加时,青藏高原地表增暖相对偏弱,春、夏和秋季增温也随海拔高度上升而加强,但冬季地面增温幅度随海拔上升反而下降,海拔1.5~2 km,3~3.5km和4.5~5 km范围内对应的冬季增温趋势分别为0.02 ℃/10 a,-0.03 ℃/10 a和-0.13 ℃/10 a.对比分析发现,大气气溶胶增加造成青藏高原冬季增温不明显甚至出现变冷趋势,地面积雪也随之增多,这可能歪曲了青藏高原地区气候变暖对海拔高度的依赖性.  相似文献   

2.
西藏高原汛期降水类型的研究   总被引:18,自引:0,他引:18  
周顺武  普布卓玛  假拉 《气象》2000,26(5):39-43
利用西藏高原26个测站26年(1973 ̄1998年)汛期(5 ̄9月)降水量资料,采用主成分分析和旋转主成分分析方法,对高原汛期降水空间分布型进行了分析。结果表明,主成分分解得到的降水空间分布形式较为集中,前3个特征向量场的分布型具有十分明确的物理意义,可表示降水场部方差的63.14%。旋转主成分分解生前6个载荷向量的累积方差贡献达76.67%,可较好反映西藏高原汛期降水6个异常敏感区:东南部、东北  相似文献   

3.
青藏高原区域气候变化及其差异性研究   总被引:31,自引:0,他引:31       下载免费PDF全文
利用1961—2007年青藏高原66个气象台站气温和降水量资料,通过典型气候分区,系统研究了近47年来青藏高原气温、降水量等气候因子时空演变规律,揭示了青藏高原不同区域气候变化的差异性。研究表明:近47年来,青藏高原的气候呈现出显著增暖趋势,年平均气温以0.37℃/10a的速率上升,气候变暖在夜间要较日间明显。冬季较其他季节明显,2月气温由冷向暖的转变最为显著,8月最不显著,且在某些区域有变冷迹象;高原边缘地区气候变暖要明显于高原腹地,青海北部区特别是柴达木盆地是青藏高原气候变化的敏感区。降水量总体表现出增多态势,气候倾向率达9.1mm/10a,但区域性差异较为明显,藏东南川西区是青藏高原降水量增多最显著的地区;12月至次年5月即冬春季整个青藏高原降水量随着气候变暖而增多,7月和9月黄河上游区1987年后干旱化趋势明显。  相似文献   

4.
青藏高原积雪对中国夏季风气候的影响   总被引:32,自引:7,他引:32  
利用SVD等方法对青藏高原积雪与中国区域降水的关系作了诊断分析。并用区域气候模式(RegCM2)对高原积雪的气候效应进行了模拟。结果表明:青藏高原积雪对中国夏季风气候的影响是显著的。积雪的增加会明显减弱亚洲夏季风的强度,使华南的降水减少,江淮流域的降水增多。高原冬季积雪深度的增加,比积雪面积的扩大和春季积雪深度的增加对后期气候的影响更大。  相似文献   

5.
In order to improve our understanding of microphysical properties of clouds and precipitation over the Tibetan Plateau (TP), six cloud and precipitation processes with different intensities during the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-Ⅲ) from 3 July to 25 July 2014 in Naqu region of the TP are investigated by using the high-resolution mesoscale Weather Research and Forecasting (WRF) model. The results show unique properties of summertime clouds and precipitation processes over the TP. The initiation process of clouds is closely associated with strong solar radiative heating in the daytime, and summertime clouds and precipitation show an obvious diurnal variation. Generally, convective clouds would transform into stratiform clouds with an obvious bright band and often produce strong rainfall in midnight. The maximum cloud top can reach more than 15 km above sea level and the velocity of updraft ranges from 10 to 40 m s-1. The simulations show high amount of supercooled water content primarily located between 0 and -20℃ layer in all the six cases. Ice crystals mainly form above the level of -20℃ and even appear above the level of -40℃ within strong convective clouds. Rainwater mostly appears below the melting layer, indicating that its formation mainly depends on the melting process of precipitable ice particles. Snow and graupel particles have the characteristics of high content and deep vertical distribution, showing that the ice phase process is very active in the development of clouds and precipitation. The conversion and formation of hydrometeors and precipitation over the plateau exhibit obvious characteristics. Surface precipitation is mainly formed by the melting of graupel particles. Although the warm cloud microphysical process has less direct contribution to the formation of surface precipitation, it is important for the formation of supercooled raindrops, which are essential for the formation of graupel embryos through heterogeneous freezing process. The growth of graupel particles mainly relies on the riming process with supercooled cloud water and aggregation of snow particles.  相似文献   

6.
The extreme summer precipitation over East China during 1982-2007 was simulated using the LASG/IAP regional climate model CREM(the Climate version of a Regional Eta-coordinate Model).The results show that the probability density functions(PDFs) of precipitation intensities are reasonably simulated,except that the PDFs of light and moderate rain are underestimated and that the PDFs of heavy rain are overestimated.The extreme precipitation amount(R95p) and the percent contribution of extreme precipitation to the total precipitation(R95pt) are also reasonably reproduced by the CREM.However,the R95p and R95pt over most of East China are generally overestimated,while the R95p along the coastal area of South China(SC) is underestimated.The bias of R95pt is consistent with the bias of precipitation intensity on wet days(SDII).The interannual variation for R95p anomalies(PC1) is well simulated,but that of R95pt anomalies(PC2) is poorly simulated.The skill of the model in simulating PC1(PC2) increases(decreases) from north to south.The bias of water vapor transport associated with the 95th percentile of summer daily precipitation(WVTr95) explains well the bias of the simulated extreme precipitation.  相似文献   

7.
青藏高原的热力和动力作用对亚洲季风区环流的影响   总被引:21,自引:1,他引:21  
利用NCEP/NCAR再分析资料,研究了青藏高原热状况的季节变化、动力和热力作用对周围环流,特别是对亚洲热带季风环流的影响。高原对西风带的机械作用在冬季最强,春季次之。冬季的机械作用形成以高原为主,南侧气旋性、北侧反气旋性的"偶极子"偏差环流,它比传统认识的爬坡、绕流的影响范围大得多,遍及东亚的高、低纬度。随着西风带的北移和高原总加热在4月由负变正,南侧气旋性偏差环流增强并逐渐北移,6月形成气旋盘踞整个高原的夏季型。在高原南侧,高原冬季偶极型、夏季加热的作用导致孟加拉湾地区常年存在印缅槽,使得印度半岛的感热加热始终强于中南半岛,而中南半岛上空的潜热加热大于印度半岛。印缅槽的演变存在明显的半年周期,证明2月初和8月初的较强低压槽分别对应冬季高原最强的动力强迫和夏季高原最强的热力强迫。对低纬经向风场的分析还表明,季风爆发前高原的热力作用尤为重要,是导致江南春雨的形成,亚洲季风最早在孟加拉湾东部爆发,最后在印度半岛爆发的原因。  相似文献   

8.
本文使用青藏高原气象科学实验测站观测资料、欧洲中心FGGE-Ⅲb资料、GMS1地球同步卫星云图资料、河流水文资料以及其他一些有关的资料,详细分析了1979年7月青藏高原地区,尤其是高原西部地区的水汽状况、水汽输入的通道,讨论了夏季青藏高原地区高湿状况的维持机制. 通过研究,发现在1979年盛夏青藏高原西部也是一个高水汽区域,有利于大量的湿对流系统活动,但西部比东南部的水汽含量要略低些;潜热加热是夏季高原西部重要的热源之一;除了过去已知的在高原东南和仲巴、定日一带的两条水汽通道外,水汽还可从高原西侧边界进入高原西部.在讨论夏季高原地区高湿状况的维持机制时发现,相对于高原东部,只需要较少的水汽输入就足以维持高原西部大气的高湿状态;高原西部的降水、蒸发和向土壤中渗透是接近于平衡的,水分循环主要是局地的内循环.  相似文献   

9.
Weather and Climate Effects of the Tibetan Plateau   总被引:4,自引:1,他引:4  
Progress in observation experiments and studies concerning the effects of the Tibetan Plateau (TP) on weather and climate during the last 5 years are reviewed. The mesoscale topography over the TP plays an important role in generating and enhancing mesoscale disturbances. These disturbances increase the surface sensible heat (SH) flux over the TP and propagate eastward to enhance convection and precipitation in the valley of Yangtze River. Some new evidence from both observations and numerical simulations shows that the southwesterly flow, which lies on the southeastern flank of the TP, is highly correlated with the SH of the southeastern TP in seasonal and interannual variability. The mechanical and thermal forcing of the TP is an important climatic cause of the spring persistent rains over southeastern China. Moreover, the thermodynamic processes over the TP can influence the atmospheric circulation and climate over North America and Europe by stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and can affect the atmospheric circulation over the southern Indian Ocean. Estimating the trend in the atmospheric heat source over the TP shows that, in contrast to the strong surface and troposphere warming, the SH over the TP has undergone a significant decreasing trend since the mid-1980s. Despite the fact that in situ latent heating presents a weak increasing trend, the springtime atmospheric heat source over the TP is losing its strength. This gives rise to reduced precipitation along the southern and eastern slopes of the TP and to increased rainfall over northeastern India and the Bay of Bengal.  相似文献   

10.
利用区域气候模式RegCM3,模拟分析了青藏高原地区植被退化对自身及周边地区气候产生的影响。结果表明:植被退化后,在退化区域冬夏季地表温度明显升高,最大增值2℃,而外围则温度降低,量值为-0.5℃~-1℃。夏季气温的变化趋势与地表温度类似,但量值较小,冬季退化区气温增加范围较大。夏季退化区湿度和降水增大,增加值分别达到0.6g/kg和35mm/month;退化区外围降水减少,外围西部及北部地区湿度减小,中心值为-0.4 g/kg。在冬季,湿度稍有减小,主要分布在西藏地区和青海、四川的交界处。  相似文献   

11.
The current progresses in the study of impacts of the Tibetan Plateau on Asian summer climate in the last decade are reviewed. By analyzing evolution of the transitional zone between westerly to the north and easterly to the south (WEB), it is shown that due to the strong heating over the Tibetan Plateau in spring, the overturning in the prevailing wind direction from easterly in winter to westerly in summer occurs firstly over the eastern Bay of Bengal (BOB), accompanied with vigorous convective precipitation to its east. The area between eastern BOB and western Indo-China Peninsula thus becomes the area with the earliest onset of Asian monsoon, which may be referred as BOB monsoon in short. It is shown that the summertime circulations triggered by the thermal forcing of the Iranian Plateau and the Tibetan Plateau are embedded in phase with the continental-scale circulation forced by the diabatic heating over the Eurasian Continent. As a result, the East Asian summer monsoon is intensified and the drought climate over the western and central Asian areas is enhanced. Together with perturbations triggered by the Tibetan Plateau, the above scenarios and the associated heating have important influences on the climate patterns over Asia. Furthermore, the characteristics of the Tibetan mode of the summertime South Asian high are compared with those of Iranian mode. Results demonstrate that corresponding to each of the bimodality of the South Asian high, the rainfall anomaly distributions over Asia exhibit different patterns.  相似文献   

12.
青藏高原下垫面对中国夏季环流影响的研究   总被引:14,自引:4,他引:14  
发展了一个CCM3-RegCM2单向嵌套模式,用以研究青藏高原中西部地区下垫面特征对我国夏季环流和降水的影响。结果表明:若青藏高原中西部植被破坏,变为沙漠,则该地区地面返照率增加,热容量减少,气温升高。从而导致高原北侧的温度梯度增大,西风槽则被削弱;西风急流被推至更西更北的地区,使得北方冷空气难以到达我国长江、黄河流域;由于高原上空气温增高,导致该地区上空的反气旋环流增强,使原来位于槽前西南气流的长江中下游地区处在平直西风气流当中,不利于降水的产生。与此同时,副热带高压西伸北抬,使得长江、黄河中下游地区处在副热同压控制之下,造成我国大部分地区夏季降水减少。  相似文献   

13.
用一个全球耦合的海洋──大气──陆地系统模式(IAP/ LASG GOALS)研究因 CO2增加引起的全球增暖,重点是讨论东亚地区气候变化。完成了两个试验,一个是CO2含量保持不变的对照试验,一个是CO2浓度按每年10%增加的扰动试验。结果表明,在对照试验中没有出现气候漂移,在CO2含量加倍时全球平均地面气温将增加1.65℃。GOALS模式能较好模拟观测的东亚温度和降水的空间分体和年循环,但模拟的年平均温度略偏低、年降水稍偏大。在CO2含量加倍时,东亚地区温度和降水将分别增加2.1℃和5%,最大增温出现在中纬度大陆上,最大的降水增加出现在25°N附近。  相似文献   

14.
青藏高原春夏季对流层温度异常特征   总被引:1,自引:0,他引:1  
利用NCEP/NCAR再分析资料,在揭示青藏高原对流层中上层(500~200hPa)温度变化特征的基础上,通过比较与同纬度地区对流层中上层温度的差异,从温度纬向偏差角度定义了一个高原热力指数(TDI),并分析了该指数在春夏季的多时间尺度变化特征。结果表明:1由春到夏,亚洲对流层中上层的暖中心经历了从西太平洋西进到大陆,并逐渐发展控制整个东亚地区,之后东退的过程。春季扰动温度暖中心由我国华南地区逐渐西移至高原南部,中心强度逐渐增大,夏季扰动中心稳定在青藏高原南部;2TDI的年变化曲线呈现出明显的单峰型特征,表明高原的热力作用从4月开始明显增强,并在7月达到最大,9月后又迅速减弱;3各月TDI的最高值、最低值和平均值均表现出夏季大冬季小的特征,夏季TDI变幅明显小于其他季节;4TDI具有明显的年际变化,但春(夏)季该指数存在一定(明显)的月际差异,且无明显的线性变化趋势。  相似文献   

15.
高原地表过程中冻融过程在东亚夏季风中的作用   总被引:3,自引:0,他引:3  
用茶卡站冻结日数与季风指数的相关简单说明高原冻融过程与东亚夏季风之间存在联系。作为个例,对沱沱河区域1998,1999年从冬到夏过渡季节的冻融过程与感、潜热变化及东亚夏季风建立之间的关系进行了初步分析。结果表明:从冬到夏的过渡季节中,青藏高原的冻融过程与高原加热存在着联系,土壤季节性冻融使得高原地表向大气的感、潜热输送随季节发生变化,青藏高原的加热作用对东亚夏季风的爆发时间和强度有重要影响。因此,高原地表过程中土壤冻融过程在东亚夏季风的爆发过程中扮演着重要角色。  相似文献   

16.
青藏高原冬季积雪影响我国夏季降水的模拟研究   总被引:14,自引:9,他引:14  
利用区域气候模式 (NCC_RegCM1.0) 对青藏高原前冬积雪对次年夏季中国降水的影响进行了数值模拟研究, 所得结果与实际观测的积雪和降水的关系较为吻合, 即长江流域、 新疆地区夏季多雨, 华北和华南少雨, 这与我国最近二十年来维持的 “南涝北旱” 雨型较为一致。因此, 可以认为青藏高原冬季多雪, 是引起中国东部夏季降水出现 “南涝北旱” 的一个重要原因。本文揭示了青藏高原冬季积雪影响我国夏季降水的可能物理机制。青藏高原冬季多雪, 会导致青藏高原地面感热热源减弱, 这种热源的减弱在冬季导致冬季风偏强, 可以影响到我国华南、 西南及孟加拉湾地区。同时, 由于高原热源的减弱可持续到夏季, 成为东亚夏季风和南亚夏季风减弱的一个原因。在积雪初期, 地面反射通量的增加起了主要作用; 在积雪融化后, “湿土壤” 在延长高原积雪对天气气候的影响过程中起了重要作用。初期的反射通量增加减少了太阳辐射的吸收、 融雪时的融化吸热, 以及后期的湿土壤与大气的长期相互作用, 作为异常冷源, 减弱了春夏季高原热源, 是高原冬季积雪影响夏季风并进而影响我国夏季降水的主要机理。本文的模拟结果表明, 青藏高原冬季积雪的显著影响时效可以一直持续到6月份。  相似文献   

17.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

18.
青藏高原近期气候变化研究进展   总被引:1,自引:0,他引:1  
本文对近期关于青藏高原地区气候变化的研究进行了回顾。结果表明,在过去的几十年间,青藏高原地区的气候发生了明显的变化。主要表现为:1)温度呈上升趋势;降水和积雪呈增加趋势,多年冻土呈退化状态;温度和降水的变化不仅有季节性的差异,还存在区域性的差异。2)区域气候模式RegCM对青藏高原地区温度和降水有一定的模拟能力,但存在系统性的误差。文中还对在青藏高原气候变化方面的研究不足进行了讨论。  相似文献   

19.
本文采用OSU-AGCM大气环流模式,对青藏高原下垫面热力异常与夏季江淮流域暴雨形成的关系进行了数值试验。模拟结果表明,青藏高原下垫面热力状况的异常对东亚环流形势及云量分布异常的影响是形成1991年夏季江淮流域持续性降水的重要原因之一。青藏高原异常热力强迫还可以引起大范围云量的异常分布和云量异常区类似于二维Rossby波列没大圆路径传播的特征。  相似文献   

20.
王瑞  李伟平  刘新  王兰宁 《高原气象》2009,28(6):1233-1241
利用耦合的全球海气模式(NCAR CCSM3), 对青藏高原春季土壤湿度异常影响我国夏季7月降水的机制进行了数值模拟。结果表明, 高原6~62 cm深度的中层土壤湿度异常与表层土壤湿度异常有很好的一致性, 相对而言, 中层土壤湿度异常的持续性较好。若5月高原中层土壤偏湿, 则春末至夏初高原地面蒸发、 潜热通量增加, 而感热通量、 地面温度降低, 高原表面的加热作用减弱, 使得印度高压西撤偏晚, 环流系统的季节性转换偏晚, 东亚地区形成有利于我国夏季出现第I类雨型的环流分布形势, 使我国东部雨带偏北, 华北地区多雨, 江淮地区降水偏少, 华南地区降水偏多; 反之亦然。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号