首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This paper describes a structural equation methodology for obtaining social capital scores for survey subjects from multiple indicators of social support, neighbourhood and trust perceptions, and memberships of organizations. It adjusts for variation that is likely to occur in levels of social capital according to geographic context (e.g. level of area deprivation, geographic region, level of urbanity) and demographic group. Social capital is used as an explanatory factor for psychological distress using data from the 2006 Health Survey for England. A highly significant effect of social capital in reducing the chance of psychiatric caseness is obtained after controlling for other individual and geographic risk factors. Allowing for social capital has considerable effects on the impacts on psychiatric health of other risk factors. In particular, the impact of area deprivation category is much reduced. There is also evidence of significant differentiation in social capital between population categories and geographic contexts.  相似文献   

2.
This paper adopts a Bayesian spatial modeling approach to investigate the distribution of young offender residences in York Region, Southern Ontario, Canada, at the census dissemination area level. Few geographic researches have analyzed offender (as opposed to offense) data at a large map scale (i.e., using a relatively small areal unit of analysis) to minimize aggregation effects. Providing context is the social disorganization theory, which hypothesizes that areas with economic deprivation, high population turnover, and high ethnic heterogeneity exhibit social disorganization and are expected to facilitate higher instances of young offenders. Non-spatial and spatial Poisson models indicate that spatial methods are superior to non-spatial models with respect to model fit and that index of ethnic heterogeneity, residential mobility (1 year moving rate), and percentage of residents receiving government transfer payments are, respectively, the most significant explanatory variables related to young offender location. These findings provide overwhelming support for social disorganization theory as it applies to offender location in York Region, Ontario. Targeting areas where prevalence of young offenders could or could not be explained by social disorganization through decomposing the estimated risk map are helpful for dealing with juvenile offenders in the region. Results prompt discussion into geographically targeted police services and young offender placement pertaining to risk of recidivism. We discuss possible reasons for differences and similarities between the previous findings (that analyzed offense data and/or were conducted at a smaller map scale) and our findings, limitations of our study, and practical outcomes of this research from a law enforcement perspective.  相似文献   

3.
Many different methods are used to disaggregate census data and predict population densities to construct finer scale, gridded population data sets. These methods often involve a range of high resolution geospatial covariate datasets on aspects such as urban areas, infrastructure, land cover and topography; such covariates, however, are not directly indicative of the presence of people. Here we tested the potential of geo‐located tweets from the social media application, Twitter, as a covariate in the production of population maps. The density of geo‐located tweets in 1x1 km grid cells over a 2‐month period across Indonesia, a country with one of the highest Twitter usage rates in the world, was input as a covariate into a previously published random forests‐based census disaggregation method. Comparison of internal measures of accuracy and external assessments between models built with and without the geotweets showed that increases in population mapping accuracy could be obtained using the geotweet densities as a covariate layer. The work highlights the potential for such social media‐derived data in improving our understanding of population distributions and offers promise for more dynamic mapping with such data being continually produced and freely available.  相似文献   

4.
Population has significant application value and scientific significance in resource use, public health, public transportation, disaster assessment, and environmental management. However, traditional census data can not show the population density difference within census units. Furthermore, census data are not uniform across countries, and reconciling these differences when using data from multiple countries require considerable effort. Finally, there are scale differences between census and geospatial data (e.g., land use/cover), making data analysis and needed research difficult. These challenges significantly limit the applications of census data. The advent of gridded population mapping (GPM) technology has overcome these challenges. GPM technology has developed rapidly in recent years. The research data and models are rich and diverse, and many achievements have been made. A systematic review of the current state of GPM research will help relevant researchers and data users. This article begins by summarizing the core elements of GPM research in four aspects: auxiliary data, models, accuracy, and products. It will then go on to four problems prevalent in GPM research that have direct or indirect effects on the accuracy of GPM. Finally, the article prospects GPM research from four different aspects based on the current state of research.  相似文献   

5.
"Using examples from Nigeria, this paper demonstrates how remotely sensed data can be used to acquire some of the basic data requirements for census surveys and to estimate population. The result obtained shows that visual identification of settlements on Landsat MSS and TM is more accurate and economical than equivalent digital classification techniques. Black and white aerial photographs were used to estimate the population of a model town and to establish EAs [enumeration areas]. The population estimation method employed can be used to obtain intercensal population estimates for the rapidly growing central places, while the established EAs for the study area have created a permanent base for future census surveys and census cross-validation, population estimation and other social surveys."  相似文献   

6.
人口资源是制约山区发展的关键因素,其分布状况在一定程度上反映和决定了山区的资源环境安全状况和社会经济发展水平.在分析川滇黔接壤地区山区人口分布影响因素的基础上结合已有方法,构建了适合山区人口数据空间化的模型.以2007年人口统计数据为基础,以居民点作为人口分布指示因子,利用GIS软件工具,分析了居民点分布与地貌形态、土地利用、道路以及水系间的关系.基于多源空间数据融合的思想,引进了居民点缓冲区的概念,以较客观的赋权方式确定影响因子权重,实现山区人口统计数据的空间化.结果表明,通过融合产生的人口密度与乡镇级人口密度的相关性均在0.80以上,结果可靠,为进一步分析山区人口分布格局提供了重要的基础数据.  相似文献   

7.
This paper describes techniques to compute and map dasymetric population densities and to areally interpolate census data using dasymetrically derived population weights. These techniques are demonstrated with 1980-2000 census data from the 13-county Atlanta metropolitan area. Land-use/land-cover data derived from remotely sensed satellite imagery were used to determine the areal extent of populated areas, which in turn served as the denominator for dasymetric population density computations at the census tract level. The dasymetric method accounts for the spatial distribution of population within administrative areas, yielding more precise population density estimates than the choroplethic method, while graphically representing the geographic distribution of populations. In order to areally interpolate census data from one set of census tract boundaries to another, the percentages of populated areas affected by boundary changes in each affected tract were used as adjustment weights for census data at the census tract level, where census tract boundary shifts made temporal data comparisons difficult. This method of areal interpolation made it possible to represent three years of census data (1980, 1990, and 2000) in one set of common census tracts (1990). Accuracy assessment of the dasymetrically derived adjustment weights indicated a satisfactory level of accuracy. Dasymetrically derived areal interpolation weights can be applied to any type of geographic boundary re-aggregation, such as from census tracts to zip code tabulation areas, from census tracts to local school districts, from zip code areas to telephone exchange prefix areas, and for electoral redistricting.  相似文献   

8.
9.
ABSTRACT

Large-scale gridded population datasets are usually produced for the year of input census data using a top-down approach and projected backward and forward in time using national growth rates. Such temporal projections do not include any subnational variation in population distribution trends and ignore changes in geographical covariates such as urban land cover changes. Improved predictions of population distribution changes over time require the use of a limited number of covariates that are time-invariant or temporally explicit. Here we make use of recently released multi-temporal high-resolution global settlement layers, historical census data and latest developments in population distribution modelling methods to reconstruct population distribution changes over 30 years across the Kenyan Coast. We explore the methodological challenges associated with the production of gridded population distribution time-series in data-scarce countries and show that trade-offs have to be found between spatial and temporal resolutions when selecting the best modelling approach. Strategies used to fill data gaps may vary according to the local context and the objective of the study. This work will hopefully serve as a benchmark for future developments of population distribution time-series that are increasingly required for population-at-risk estimations and spatial modelling in various fields.  相似文献   

10.
A number of areal interpolation methods have been developed to estimate population for overlapping, discontinuous, or fragmented areas. Previous studies examined the relative accuracy of various methods; this research advances those endeavors by comparing the effectiveness of seven different methods using a national random sample of census block groups and blocks. As the results show, the areal interpolation methods produce good population estimates for nested census blocks except in areas of heterogeneous land use or unusual contexts. In addition, estimation conducted in areas with small populations or low population density was vulnerable to high percentage error. Amongst the different methods, road network allocation and statistical regression (with area and roads as predictors) produced the best population estimates for the sample blocks.  相似文献   

11.
Geospatial distribution of population at a scale of individual buildings is needed for analysis of people's interaction with their local socio-economic and physical environments. High resolution aerial images are capable of capturing urban complexities and considered as a potential source for mapping urban features at this fine scale. This paper studies population mapping for individual buildings by using aerial imagery and other geographic data. Building footprints and heights are first determined from aerial images, digital terrain and surface models. City zoning maps allow the classification of the buildings as residential and non-residential. The use of additional ancillary geographic data further filters residential utility buildings out of the residential area and identifies houses and apartments. In the final step, census block population, which is publicly available from the U.S. Census, is disaggregated and mapped to individual residential buildings. This paper proposes a modified building population mapping model that takes into account the effects of different types of residential buildings. Detailed steps are described that lead to the identification of residential buildings from imagery and other GIS data layers. Estimated building populations are evaluated per census block with reference to the known census records. This paper presents and evaluates the results of building population mapping in areas of West Lafayette, Lafayette, and Wea Township, all in the state of Indiana, USA.  相似文献   

12.
Outdoor light at night (LAN) would be a public concern potentially associated with adverse health outcomes mainly in developed countries, but it might also be an environmental health issue in developing countries. However, there have been few studies reporting the spatial and temporal aspects of LAN level changes incorporated with population exposure in such nations. Therefore, we analyzed the spatiotemporal patterns of outdoor LAN exposure changes across the Republic of Korea (ROK), a developing country in Asia, between 1995 and 2010. In addition, we incorporated the population and its demographic characteristics of light exposure in this research. We utilized Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) observations as a spatial proxy of LAN and the ROK census data. This research observed 57.6% (≈57,800 km2) of land areas in the country to experience increases in outdoor artificial illumination at nights. The highest levels of LAN were found to affect about 58% of the total ROK population with major impacts on young and middle-aged people in recent years. Taking this research into account, it would require taking appropriate measures in controlling and abating outdoor artificial lights at night for both developing and developed countries. We anticipate that those efforts could prevent adverse health outcomes, for example, female breast cancer, potentially associated with LAN exposure.  相似文献   

13.
In this study, we explored the spatial and temporal patterns of land cover and land use (LCLU) and population change dynamics in the St. Louis Metropolitan Statistical Area. The goal of this paper was to quantify the drivers of LCLU using long-term Landsat data from 1972 to 2010. First, we produced LCLU maps by using Landsat images from 1972, 1982, 1990, 2000, and 2010. Next, tract level population data of 1970, 1980, 1990, 2000, and 2010 were converted to 1-km square grid cells. Then, the LCLU maps were integrated with basic grid cell data to represent the proportion of each land cover category within a grid cell area. Finally, the proportional land cover maps and population census data were combined to investigate the relationship between land cover and population change based on grid cells using Pearson's correlation coefficient, ordinary least square (OLS), and local level geographically weighted regression (GWR). Land cover changes in terms of the percentage of area affected and rates of change were compared with population census data with a focus on the analysis of the spatial-temporal dynamics of urban growth patterns. The correlation coefficients of land cover categories and population changes were calculated for two decadal intervals between 1970 and 2010. Our results showed a causal relationship between LCLU changes and population dynamics over the last 40 years. Urban sprawl was positively correlated with population change. However, the relationship was not linear over space and time. Spatial heterogeneity and variations in the relationship demonstrate that urban sprawl was positively correlated with population changes in suburban area and negatively correlated in urban core and inner suburban area of the St. Louis Metropolitan Statistical Area. These results suggest that the imagery reflects processes of urban growth, inner-city decline, population migration, and social spatial inequality. The implications provide guidance for sustainable urban planning and development. We also demonstrate that grid cells allow robust synthesis of remote sensing and socioeconomic data to advance our knowledge of urban growth dynamics from both spatial and temporal scales and its association with population change.  相似文献   

14.
Mismatching sets of boundaries present a persistent problem in spatial analysis for many different applications. Dasymetric mapping techniques can be employed to estimate population characteristics of small areas that do not correspond to census enumeration boundaries. Several types of ancillary data have been used in dasymetric mapping but performance is often limited by their relatively coarse resolution and moderate correspondence to actual population counts. The current research examines the performance of using high resolution ancillary data in the form of individual address point datasets which represent the locations of all addressable units within a jurisdiction. The performance of address points was compared with several other techniques, including areal weighting, land cover, imperviousness, road density and nighttime lights. Datasets from 16 counties in Ohio were used in the analysis, reflecting a range of different population densities. For each technique the ancillary data sources were employed to estimate census block group population counts using census tracts as source zones, and the results were compared with the known block group population counts. Results indicate that address points perform significantly better compared with other types of ancillary data. The overall error for all block groups (n = 683) using address points is 4.9% compared with 10.8% for imperviousness, 11.6% for land cover, 13.3% for road density, 18.6% for nighttime lights and 21.2% for areal weighting. Using only residential address points rather than all types of locations further reduces this error to 4.2%. Analysis of the spatial patterns in the relative performance of the various techniques revealed that address points perform particularly well in low density rural areas, which typically present challenges for traditional dasymetric mapping techniques using land cover datasets. These results provide very strong support for the use of address points for small area population estimates. Current developments in the growing availability of address point datasets and the implications for spatial demographic analyses are discussed.  相似文献   

15.
This research evaluates the performance of areal interpolation coupled with dasymetric refinement to estimate different demographic attributes, namely population sub-groups based on race, age structure and urban residence, within consistent census tract boundaries from 1990 to 2010 in Massachusetts. The creation of such consistent estimates facilitates the study of the nuanced micro-scale evolution of different aspects of population, which is impossible using temporally incompatible small-area census geographies from different points in time. Various unexplored ancillary variables, including the Global Human Settlement Layer (GHSL), the National Land-Cover Database (NLCD), parcels, building footprints and the proprietary ZTRAX® dataset are utilized for dasymetric refinement prior to areal interpolation to examine their effectiveness in improving the accuracy of multi-temporal population estimates. Different areal interpolation methods including Areal Weighting (AW), Target Density Weighting (TDW), Expectation Maximization (EM) and its data-extended approach are coupled with different dasymetric refinement scenarios based on these ancillary variables. The resulting consistent small area estimates of white and black subpopulations, people of age 18–65 and urban population show that dasymetrically refined areal interpolation is particularly effective when the analysis spans a longer time period (1990–2010 instead of 2000–2010) and the enumerated population is sufficiently large (e.g., counts of white vs. black). The results also demonstrate that current census-defined urban areas overestimate the spatial distribution of urban population and dasymetrically refined areal interpolation improves estimates of urban population. Refined TDW using building footprints or the ZTRAX® dataset outperforms all other methods. The implementation of areal interpolation enriched by dasymetric refinement represents a promising strategy to create more reliable multi-temporal and consistent estimates of different population subgroups and thus demographic compositions. This methodological foundation has the potential to advance micro-scale modeling of various subpopulations, particularly urban population to inform studies of urbanization and population change over time as well as future population projections.  相似文献   

16.
Population data used in GIS analyses is generally assumed to be homogeneous and planar (i.e. census tracts, townships or prefectures) due to the public unavailability of building population data. However, information on building population is required for micro-spatial analysis for improved disaster management and emergency preparedness, public facility management for urban planning, consumer and retail market analysis, environment and public health programs and other demographic studies. This article discusses a GIS approach using the Areametric and Volumetric methods for estimating building population based on census tracts and building footprint datasets. The estimated results were evaluated using actual building population data by visual, statistical and spatial means, and validated for use in micro-spatial analysis. We have also implemented a standalone GIS tool (known as 'PopShape GIS') for generating new building footprint with population attribute information based on user-defined criteria.  相似文献   

17.
A methodology is proposed for modelling spatially varying predictor effects on a disease or mortality count outcome. The methodology may be extended to multivariate outcomes, so that one may assess the similarity of spatial patterning of regression effects between outcomes. Another extension involves longitudinal data, where a number of modelling structures are possible. The methodology is illustrated by suicide mortality in 32 London Boroughs over the period 1979–1993, in terms of area deprivation and a measure of social fragmentation.  相似文献   

18.
In this paper we propose a continuous spatio-temporal model that describes population change in a region in terms of population growth, migration drift towards regions with better economic or climate conditions, and population diffusion from more populated to less populated areas. Finite-differences are used to approximate the space and time derivatives. The model is estimated by using population data from the US census corresponding to the period 1790–1910. People tend to migrate from east to west, and to relocate towards regions with lower precipitation levels and more abundant coal and iron resources. Also population growth tends to be larger in zones with higher precipitation levels and higher temperatures.  相似文献   

19.
Most urban green space research focuses on the social benefits of parks and recreational areas. However, in areas with high levels of resource deprivation and physical disorder, parks may function as criminal marketplaces. Parks in such areas may cease to provide net benefits to the surrounding community and instead serve as a vector for criminal activity. Parks in eastern Kansas City, Kansas, are examined in terms of the probability of criminal marketplaces and beneficial social contribution. Variables for resource deprivation and social disorder are calculated for the study area and compared to national aggregates to identify which parks may behave as criminal marketplaces. In such cases, parks should exhibit an inverse relationship between distance from a park and number of criminal offenses per acre. Evaluating the incidence of crime near parks using geographic information systems (GIS) buffer analysis, proximity analysis, and spatial statistics demonstrates that parks in areas of extreme resource deprivation do not serve beneficial social roles, and some parks contradict conventional criminal justice and urban economic theory.  相似文献   

20.
Analysis of area mortality variations and estimation of area life tables raise methodological questions relevant to assessing spatial clustering, and socioeconomic inequalities in mortality. Existing small area analyses of US life expectancy variation generally adopt ad hoc amalgamations of counties to alleviate potential instability of mortality rates involved in deriving life tables, and use conventional life table analysis which takes no account of correlated mortality for adjacent areas or ages. The alternative strategy here uses structured random effects methods that recognize correlations between adjacent ages and areas, and allows retention of the original county boundaries. This strategy generalizes to include effects of area category (e.g. poverty status, ethnic mix), allowing estimation of life tables according to area category, and providing additional stabilization of estimated life table functions. This approach is used here to estimate stabilized mortality rates, derive life expectancies in US counties, and assess trends in clustering and in inequality according to county poverty category.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号