首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
川西北龙门山—邛崃山地壳—上地幔的结构构造特征   总被引:2,自引:0,他引:2  
试以地质和地球物理资料讨论川西北龙门山—邛崃山地区地壳—上地幔结构构造特征。区内地壳分上、中、下三层。岩石圈西厚东薄。首次发现存在壳内低速—低阻层,推断由糜棱岩化花岗质层所引起,是区内主滑脱面。其上构造岩席,在断面上呈西厚东薄的“楔形”。提出彭灌杂岩属中地壳组分,由西北向东南逆冲达50余km。在区内西部,纵向上存在相互直交的“立交桥式”构造。在映秀断裂带东南侧,显示爆炸地震纵波三角形异常和大地电磁测深高阻异常,它们似由川中克拉通西北部前寒武纪岩浆杂岩所引起,对川西北高原隆升起了砥柱作用。 根据波速度、电性资料,结合区域地质、重磁和天然地震等特征,可将区内划分出4个构造单元。最后简述该区的构造演化。  相似文献   

2.
格尔木——额济纳旗地学断面综合研究   总被引:17,自引:0,他引:17  
吴功建 《地质学报》1998,72(4):289-300
格尔木-额济纳旗地学断面从南到北穿过昆仑、祁连和北山3个构造带;在断面中划分出北昆仑-柴达木、中南祁连、北祁连、北山南部和北山北部5个构造地层地体;以及昆仑中央、北宗务隆、中祁连北缘、宽滩山及石板井-小黄山5条地体边界断裂带。断面内地壳厚度约50 ̄70km,中南祁连地体地壳厚度最大,显示有山根存在;岩石圈厚度约140 ̄150km。根据地球卫星及地震反射剖面结构表明:青藏高原为一个单独的岩石圈构造单  相似文献   

3.
运用现代构造解析理论和方法,对新疆可可托海—四川简阳人工地震测深剖面与天然地震面波层析成像进行构造解析基础上,综合地质学、深源岩石包体构造岩石学和地球化学以及其他地球物理学标志等多学科综合研究显示,高速块体或幔块构造的几何结构型式是控制该区岩石圈构造格局和岩石圈表层构造变形基本条件之一。本文建立起该地学断面地壳及岩石圈与软流圈速度结构模型和物质组成结构模型,划分出岩石圈3种几何结构模式:克拉通陆根状结构、造山带楔状结构和高原陆根状结构,以及岩石圈二类构造演化类型:克拉通型岩石圈和增厚型岩石圈。在系统论述断面地壳及岩石圈结构构造类型特征基础上,探讨了该断面软流圈结构特征,岩石圈与软流圈相互作用及其地幔动力学模式。  相似文献   

4.
阿克塞—台湾断面显微构造研究   总被引:2,自引:1,他引:2  
显微构造在阿克塞-台湾地学大断面研究中的应用揭示了该区带岩石圈上地幔、下地壳、中地壳和上地壳4个圈层中不同的显微构造特征、微观变形机制和变形的物理化学条件。通过对4个圈层中微观和宏观变形特征、变形机制的对比分析,建立起区带大陆岩石圈变形及动力学模式。  相似文献   

5.
袁炳强  张国伟 《地球学报》2005,26(3):203-208
大陆岩石圈有效弹性厚度(Te)是反映岩石圈综合强度的参数,它反映了岩石圈的整体特征。分析岩石圈有效样性厚度与反映深部地质特征的有关地球物理参数之间的关系,对研究控制Te的因素、各因素之间的关系以及探索大陆构造与大陆动力学等具有重要意义。泉州一黑水地学断面Te与地壳厚度、热岩石圈厚度、均衡重力异常、磁性构造层底面深度、上地幔低速层顶界面深度、上地幔低阻层顶面深度之间的关系研究表明:Te与大地热流关系密切的“热”地球物理参数磁性构造层底面深度、热岩石圈厚度相关性好;与地壳厚度有一定的相关性;上地幔低速层顶界面深度和上地幔低阻层顶面深度与大陆岩石圈Te相关性均较差。  相似文献   

6.
对亚东—格尔木和格尔木—额济纳旗地学大断面的研究揭示出青藏高原岩石圈的基本结构、组成、演化和地球动力学过程,发现了印度板块在南缘向喜马拉雅山下俯冲、阿拉善地块在北缘向高原下楔入的证据,它们构成了使高原隆升的主要驱动力。多学科研究表明,青藏高原是一个由8个地体拼合的大陆。高原内部地壳20~30km深度附近普遍发育低速高导层,它是构造应力去偶层,其上地壳脆性变形,逆冲叠覆,缩短增厚;其下地壳结构横向变化大,韧性变形。藏南下地壳(50~70 km)速度发生逆转;而藏北下地壳速度增高并呈梯度变化,具有双莫霍面特征。高原莫霍面起伏变化大,南北边缘  相似文献   

7.
20 0 1年, 沿着山西应县到山东商河, 重新布置大地电磁测深剖面进行研究.采用现代先进的大地电磁数据处理技术和快速松弛二维反演方法获得该剖面二维电性结构模型, 从而充分展示了华北地区岩石圈电性结构的特点.从电性特征上讲, 华北岩石圈以太行山前断裂为界划分为东、西两区, 东区为低阻区, 西区为高阻区.在东区, 上地壳电性结构基本与华北裂谷系的隆、坳构造格局相对应, 岩石圈的电导最高达3× 104 S, 远远大于强烈活动的安第斯山岩浆弧区和西藏高原岩石圈的电导.这里, 在构造连接部位的地壳中有不连续的高导体存在, 电导率大约0.1~ 0.8S/m.在西区, 太行山和恒山的岩石圈为高阻块体, 表现出稳定大陆区岩石圈导电性结构的特点.但恒山高阻块体之下发现一组向西缓倾的高导层, 其电导率为0.0 4~0.2 5S/m, 顶面在2 0km深处, 底面深度大约40km.   相似文献   

8.
高锐  李廷栋  吴功建 《地质论评》1998,44(4):389-395
笔者等完成的亚东—格尔木和格尔木—额济纳旗地学大断面揭示出青藏高原岩石圈的基本结构、组成、演化和地球动力学过程,发现了印度板块在南缘向喜马拉雅山下俯冲、阿拉善地块在北缘向高原下楔入的证据,它们构成了使高原隆升的主要驱动力。多学科研究表明,青藏高原是一个由8个地体拼合的大陆。高原内部地壳20~30km深度附近普遍发育低速高导层,它是构造应力去偶层,其上地壳脆性变形,逆冲叠覆,缩短增厚;其下地壳结构横向变化大,韧性变形。藏南下地壳(50~70km)速度发生逆转;而藏北下地壳速度增高并呈梯度变化,具有双莫霍面特征。高原莫霍面起伏变化大,南北边缘山脉山根特征明显,在高原内部缝合带两侧莫霍面多有断错。虽然高原地壳巨厚,但是岩石圈地幔并没有增厚。高原隆升经历了俯冲碰撞(K_2—E_2)、会聚挤压(E_3—N_1)、及均衡凋整(N_2—Q)3个阶段。青藏高原岩石圈现今处于双向挤压的动力学环境,莫霍面的不稳定变化,岩石圈地幔下沉等因素引起的壳幔之间和岩石圈与软流圈之间的相互作用,地壳的走滑与拉伸作用,是维持高原现今高度和范围的主要动力学因素。  相似文献   

9.
大陆浅源地震震源空间分布可以看作是一种地球物理特征,大量震源的空间位置数据可用来刻划大陆地壳结构。通过研究南北地震带南段震源的空间分布特征,发现研究区震源深度分布在横向上的疏密变化与地质构造特征相对应。剖面震源分布等密度图显示,中、下地壳不同深度广泛分布着多震层。多震层的分布与地壳低速、低阻层具有相关性,多震层一般位于低速、低阻层的上方。中地壳层次的低速、低阻层很可能是壳内滑脱层,是韧性下地壳与脆性上地壳发生拆离解耦的构造层次;下地壳低速、低阻层是部分熔融、含流体的韧性流变层;壳内多震层的构造属性应是上地壳硬的脆性层,容易发生突然破裂,产生地震。低速、低阻层是大陆板块内部上地壳脆性层构造过程的主控因素,包括对大陆内部浅源地震的控制;因此,在低速、低阻层之上往往形成多震层,越是活动性强的低速、低阻层,其上多震层震源密度越高。南北地震带南段不同层圈和块体之间的差异运动控制了其地壳层次的构造活动,包括大量地震的发生,其中,下地壳流层与上地壳脆性层的差异运动在中地壳层次发生剪切拆离是最重要的因素。  相似文献   

10.
《地学前缘》2017,(3):13-26
文章主要利用中—新生代热史、地壳分层结构以及流变学参数,模拟计算渤海湾盆地中—新生代岩石圈热结构和热-流变结构演化特征。结果表明,盆地由三叠纪—侏罗纪时期的"冷幔热壳"型岩石圈热结构转变为白垩纪至今的"热幔冷壳"型岩石圈热结构。从济阳坳陷岩石圈热-流变结构演化特征来看,中生代早期上地壳上部、中地壳上部及上地幔顶部表现为厚的脆性层;早白垩世初期中地壳上部及上地幔顶部的脆性层完全转变为韧性层;晚白垩世开始,中地壳上部出现薄层的脆性层;古近纪早期中地壳上部脆性层变薄变浅;现今则除了发育上地壳上部、中地壳上部脆性层外,上地幔顶部开始在浅部发育薄的脆性层。中—新生代岩石圈总强度演化表明在早白垩世晚期和古近纪早期经历了两期减弱,中生代早期岩石圈总强度远大于中侏罗世之后的岩石圈总强度。岩石圈热-流变结构和强度演化与华北克拉通破坏过程中岩石圈厚度的变化具有良好的对应关系,从侧面反映太平洋板块俯冲和回撤导致华北克拉通东部破坏的地球动力学过程。因此,岩石圈热-流变结构可以为盆地形成、大陆边缘和造山带等的动力学演化过程研究提供科学依据。  相似文献   

11.
The declinations of the primary magnetization of sedimentary rocks in the northern part of the New Zealand plate-boundary zone, after thermal or alternating field cleaning, have been used to determine tectonic rotations about vertical axes of rigid crustal blocks. The pattern of rotations during the last 4 Ma, combined with structural style and continuity, defines seven structural domains each ca 100 × 100–200 km across, which contain crustal blocks up to 100 km across and 20 km thick. Large crustal blocks (tens of km across) in two of these domains have rotated clockwise more than 20° relative to one of the margins of the plate-boundary zone in the last 4 Ma. Their behaviour appears to be controlled by the nature of the plate boundaries, such as the presence of an underlying subducted slab and the strength of the crust at the back of the overlying crustal wedge. Small crustal blocks (< 10 km across) may have rotated clockwise through angles greater than 20° during the last 4 Ma, floating on an underlying zone of more distributed deformation. The tectonic rotations of the large crustal blocks, and the nature of the deformation at their boundaries, combined with an interpolation of the relative plate positions, can be used to reconstruct the plate-boundary zone at ca 4 Ma.  相似文献   

12.
华北裂陷盆地不同块体地壳结构及演化研究   总被引:22,自引:0,他引:22  
通过对华北裂陷盆地内不同块体的深地震测深资料处理 ,得到与构造演化过程相关的、不同性质块体的地壳结构特征。盆地隆起区块体地壳一般呈均匀成层 ,速度随深度逐层增加 ,保留了古大陆地壳块体的稳定结构特征 ;盆地坳陷区块体地壳松散巨厚的表层沉积、通常低速占主导的壳内构造、强反射的下地壳和高低速相间的薄互层壳 幔过渡带 ,反映了上地幔物质上隆、侵入、地壳增温、张裂等塑、脆性变形改造的新生地壳构造。讨论了这两类截然不同块体地壳构造的地球动力学演化及形成。裂陷区内中强地震的孕发和深源矿产、油气生贮存等都与这两类块体地壳结构、构造密切相关。  相似文献   

13.
青藏高原东部的隆升机制一直都是地学界的研究热点,研究学者们提出和发展了多种岩石圈变形模型,而存在多种模型的主要原因之一是对青藏高原东部地壳及岩石圈结构认识不足。本文主要针对SinoProbe-02项目横跨龙门山断裂带、全长400多公里的宽角、折射地震数据及重力数据进行联合反演和综合解释。研究结果表明,龙门山及邻近地区地壳结构可明确划分为上地壳、中地壳和下地壳。上地壳上层为沉积层,龙门山断裂带以西大部分区域被三叠纪复理岩覆盖,而在龙日坝断裂与岷江断裂之间出现了密度为2.7g/cm3的高速异常体;向东靠近龙门山地区,沉积层厚度逐渐减薄。中地壳速度变化不均一,而且变形强烈;若尔盖盆地和龙门山断裂带下方出现明显低速带;中地壳在龙门山西侧厚度加厚,在岷江断裂下方和四川盆地靠近龙门山断裂带地区附近厚度达到最大。莫霍面整体深度从东往西增厚,最厚可达56 km。本次研究得到的地壳结构和密度分布分析结果表明现有的地壳厚度和物质组成不足以支撑龙门山及邻近地区目前所达到的隆升高度,因此四川盆地刚性基底西缘因挤压作用产生的弯曲应力也是该地区抬升的重要条件之一。  相似文献   

14.
杨晓松  马瑾 《地学前缘》2003,10(Z1):240-247
块体构造理论的发展不断地深化着人们对现今大陆岩石圈运动 ,尤其是大陆强震的孕育和发生规律的认识。块体底部边界的构造性质是块体运动的核心问题之一 ,同时也是块体构造理论研究中的薄弱环节。确定块体底部边界的岩石物理性质是利用地球物理方法探测和识别块体底部边界的前提。文中依据现代实验岩石学、实验岩石物理学、地球物理学、地质学等的研究成果 ,对块体底部边界之成因属性和岩石物理性质进行了分析。将大陆块体划分为两种基本类型———地壳型块体和岩石圈型块体。地壳型块体是由大陆上部地壳所构成的“薄板” ,壳内软弱带的顶面为其底部边界和潜在的解耦带。岩石圈型块体在岩石圈尺度上是力学耦合的 ,以上地幔软流圈的顶面为其底部边界。壳内软弱带具有垂直方向低速和各向异性的基本特征 ,联合多种地震测深方法有望确定块体的底界。在现今构造活动区内 ,地壳型块体的潜在解耦带可能由壳内部分熔融带承担。青藏高原南部—川滇地区 2 0 35km的深度上广泛存在低速带。地热、岩石学、实验岩石学和模拟均显示该地区的低速带具有部分熔融的成因属性。块体沿着该壳内低速层与下伏地壳发生某种程度解耦。  相似文献   

15.
We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings reside in three east–west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass, and Secret Pass latitudes). One short cross-line was also taken to assess an east–west structure to the north of the northern profile. Model resistivity cross-sections were derived from the MT data using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity–thickness product) from east to west. These increases are attributed to graphitization caused by Elko–Sevier era compressional shear deformation and possibly by intrusive heating. The resistive crystalline central massifs adjoin the host stratigraphy across crustal-scale, steeply dipping fault zones. The zones provide pathways to the lower crust for heterogeneous, upper crustal induced, electric current flow. Resistive core complex crust appears steeply bounded under the middle of the neighboring grabens and not to deepen at a shallow angle to arbitrary distances to the west. The numerous crustal breaks imaged with MT may contribute to the low effective elastic thickness (Te) estimated regionally for the Great Basin and exemplify the mid-crustal, steeply dipping slip zones in which major earthquakes nucleate. An east–west oriented conductor in the crystalline upper crust spans the East Humboldt Range and northern Ruby Mountains. The conductor may be related to nearby graphitic metasediments, with possible alteration by middle Tertiary magmatism. Lower crustal resistivity everywhere under the profiles is low and appears quasi one-dimensional. It is consistent with a low rock porosity (<1 vol.%) containing hypersaline brines and possible water-undersaturated crustal melts, residual to the mostly Miocene regional extension. The resistivity expression of the southern Carlin Trend (CT) in the Pinon Range is not a simple lineament but rather a family of structures attributed to Eocene intrusion, stratal deformation, and alteration/graphitization. Substantial reactivation or overprinting by core complex uplift or Basin–Range extensional events seems likely. We concur with others that the Carlin Trend may result in part from overlap of the large Eocene Northeast Nevada Volcanic Field with Precambrian–Paleozoic deep-water clastic source rocks thickening abruptly to the west of the Pinon Range, and projecting to the north–northwest.  相似文献   

16.
The study region forms the western part of the Madurai block (southern block) and shares several lithological characteristics of the Proterozoic exhumed South Indian Granulite Terrain (SGT). The crustal structure of the area has been derived from gravity data, constrained partly by aeromagnetic data. The Bouguer anomaly map of the region prepared based on detailed gravity observations shows a number of features (i) the Periyar lineament separates two distinctly different gravity fields, one, a high gravity gradient tending to be positive towards the coast in south west and significant gravity lows ranging from − 85 to as low as − 150 mGal in the NE covering a large part of the Periyar plateau (ii) within the broad gravity low, three localised circular anomalies of considerable amplitude occur in the region of Munnar granite. A magnetic low region in the central part coincides with the area of retrogressed charnockites and the major lineaments suggestive of a genetic link and considerable downward extent. The crustal models indicate that the upper layer containing exhumed lower crustal rocks (2.76 gm/cc) is almost homogeneous, most part of the gravity field resulting from variations in intracrustal layers of decharnockitised hornblendic gneisses and granite bodies. Below it, a denser layer (2.85 gm/cc) of unknown composition exists with Moho depth ranging from 36 to 41 km. The structure below the region is compared with that of two other segments of the SGT from which it differs markedly. The Wynad plateau forming the western part of the Northern Block of the SGT is characterised by a heterogeneity due to the presence of contrasting crustal blocks on either side of the Bavali shear zone, possibly a westward extension of the Moyar shear zone and presence of high density material in the mid-to-lower crustal portions. The crust below the Kuppam–Palani transect has a distinctive four-layer structure with a mid-crustal low density layer. The differences in crustal structure are consistent with the different tectonic settings of the three regions discussed in the paper. It is suggested that the crustal structure below the Kuppam–Palani transect corridor is not representative of the SGT as a whole, an aspect of great relevance to intra-continental comparisons and trans-continental reconstructions of continent configurations of the Gondwanaland.  相似文献   

17.
The evolution of oceanic crust on the Kolbeinsey Ridge, north of Iceland, is discussed on the basis of a crustal transect obtained by seismic experiment from the Kolbeinsey Ridge to the Jan Mayen Basin. The crustal model indicates a relatively uniform structure; no significant lateral velocity variations are observed, especially in the lower crust. The uniform velocity structure suggests that the postulated extinct axis does not exist over the oceanic crust formed at the Kolbeinsey Ridge, but supports a model of continuous spreading along the ridge after oceanic spreading started west of the Jan Mayen Basin. The oceanic crust formed at Kolbeinsey Ridge is 1–2.5 km thicker than normal oceanic crust due to hotter-than-normal mantle from the Iceland Mantle Plume. The observed generally uniform thickness throughout the transect might also indicate that the temperatures of the astheno-spheric mantle ascending along the Kolbeinsey Ridge have not changed significantly since the age of magnetic anomaly 6B.  相似文献   

18.
Magnetotelluric studies over the igneous arc of the Indo Burman range in the Sagaing province of Myanmar have delineated the high resistivity Indian plate subducting westwards beneath the Burmese block to depths of 30 km and beyond. The thick moderately resistive (20–100 Ω m) layer overlying the subducting Indian plate may be due to the low resistivity sediments. The entire region is covered with prominent sedimentary layer with a conductance varying between 20 and 3000 S showing a general increase from the east to west, suggesting that their thickness increases toward the west. The large unsystematic variations in the conductance are indicative of the widely varying depositional environments and also possible vertical block movements during the course of their deposition. A west dipping low resistivity zone to the east of Burmese block seems to demarcate its eastern limit, suggesting the possibility of a hitherto unknown deep seated fault, which is also supported by the several earthquake foci located over this zone. The nature of the crustal movements over this fault is not immediately apparent. Possibility exists that the Sagaing fault is an en echelon fault and the present feature observed here is a part of this en echelon fault. The possibility of channel flows of the weakened rocks in the deep crust observed in the vicinity of the eastern Himalayan syntaxis may also cause such low resistivity zones.  相似文献   

19.
大规模伸展构造是华北克拉通东部岩石圈减薄的重要表现形式。部分低角度韧性剪切带是地壳伸展变形后所展现的构造形式。本文研究了王格庄韧性剪切带的岩石学、几何学、运动学等特征显示:韧性剪切带走向近南北向,剪切带断层面倾向多变(倾向西、西南、西北方向)。大部分区域面理低角度倾向西,矿物拉伸线理近东西向,不对称旋转碎斑及S-C组构指示顶端指向西的剪切特征。结合研究区西侧与伸展构造相匹配的半地堑伸展盆地证据:本研究认为伸展构造的形成可能与西太平洋板块的后撤相关,即大规模伸展构造作用引发了华北克拉通东部的地壳减薄作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号