首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超高层建筑的桩基础通常会打入到深度较大的承压含水砂土层中;在承压含水层的上方通常会进行超深基坑的开挖构建超高层建筑的地下室。为了保持超深基坑的基底稳定,需要在承压含水层中进行降水施工。由于深基坑存在大量的桩基础,基桩的存在会影响降水时地下水的渗流路径,继而影响土体的渗透性状。应用室内试验研究基桩对含水层渗流阻挡作用的机制。试验采用PVC管模拟基桩,将颗粒较均匀的砂土作为试验土体,通过室内渗流试验来研究基桩对地下水渗流的影响。试验结果表明,基桩对于地下水渗流有明显的阻挡效应:基桩的数量以及布置形式会对渗透效应产生较大的影响。考虑砂土体积置换率的有效介质理论可以用来分析矩形布置的基桩对渗透系数的影响,但对梅花形布置的基桩应用有效介质理论计算所得的渗透系数会有将近20%的偏差;其原因是梅花形布置的基桩,会使渗流路径增加。基于对渗流路径的分析,提出了考虑有梅花形布置的基桩存在时等效渗透系数计算的修正方法。  相似文献   

2.
Despite advanced development in computational techniques, the issue of how to adequately calibrate and minimize misfit between system properties and corresponding measurements remains a challenging task in groundwater modeling. Two important features of the groundwater regime, hydraulic conductivity (k) and specific yield (S y), that control aquifer dynamic vary spatially within an aquifer system due to geologic heterogeneity. This paper provides the first attempt in using an advanced swarm-intelligence-based optimization algorithm (cuckoo optimization algorithm, COA) coupled with a distributed hydrogeology model (i.e., MODFLOW) to calibrate aquifer hydrodynamic parameters (S y and k) over an arid groundwater system in east Iran. Our optimization approach was posed in a single-objective manner by the trade-off between sum of absolute error and the adherent swarm optimization approach. The COA optimization algorithm further yielded both hydraulic conductivity and specific yield parameters with high performance and the least error. Estimation of depth to water table revealed skillful prediction for a set of cells located at the middle of the aquifer system whereas showed unskillful prediction at the headwater due to frequent water storage changes at the inflow boundary. Groundwater depth reduced from east toward west and southwest parts of the aquifer because of extensive pumping activities that caused a smoothening influence on the shape of the simulated head curve. The results demonstrated a clear need to optimize arid aquifer parameters and to compute groundwater response across an arid region.  相似文献   

3.
Thermal properties of ground heat exchanger (GHE) such as effective thermal conductivity and borehole thermal resistance are commonly measured in the field by thermal response tests (TRTs). TRT has been proved to be a consolidated method to determine thermal properties of traditional borehole heat exchangers (BHEs). However, there is still lack of data for adopting TRT on energy piles with often a large diameter and deficiency in validation of TRT results with geological materials. In this study, ground thermal properties for typical configured GHEs of energy piles are investigated. Three TRTs are conducted and the obtained results are analyzed. Effective thermal conductivity, λeff, of the ground derived by following the traditional linear source model shows large deviation as compared to the thermal conductivity of the geological materials. In order to determine λeff properly, the linear source model is modified and an equivalent radius, req, of energy piles is considered. The λeff estimated by the modified model shows a good agreement with thermal conductivity of the in situ geological materials. In addition, there has been no obvious correlation between borehole thermal resistances and thermal efficiency due to heat transport of energy piles that depends not only by borehole thermal resistance but also by the pile’s diameter and ground conditions. The findings drawn from this study indicate that the modified model is reasonable and useful in determining thermal properties of energy piles.  相似文献   

4.
In 1967, the US Geological Survey (USGS) published the results of 141 pumping tests carried out throughout the Pakistani Punjab to establish representative hydraulic parameters of its large aquifer. Many authors have since concluded that the USGS had over-estimated the horizontal hydraulic conductivity (k r) by 25–100 %, leaving vertical anisotropy and aquifer depth unresolved. No test wells have ever been drilled below 450 m to reach the base of the aquifer, although petroleum explorations mention depths between 1,500 and 4,500 m. After comparison and re-evaluation of all related papers, this study concludes that the USGS interpretation was correct, that its hydraulic values still stand without change, and that the USGS’s applied distance drawdown interpretation is valid to prevent influence of partial penetration on the results. This study also uniquely resolved vertical anisotropy and aquifer thickness by using early- and late-time drawdowns separately and proper scaling of the coordinates, which has often been omitted. With appropriate scaling, all interpretations match the data. The representative hydraulic aquifer values are: k r?=?65 m/d, vertical anisotropy k r/k z?=?25 and aquifer depth 500–1,500 m. The conclusion is that these values can be used, at least as first estimates, for groundwater studies in the Pakistani Punjab.  相似文献   

5.
Various approaches exist to relate saturated hydraulic conductivity (K s) to grain-size data. Most methods use a single grain-size parameter and hence omit the information encompassed by the entire grain-size distribution. This study compares two data-driven modelling methods??multiple linear regression and artificial neural networks??that use the entire grain-size distribution data as input for K s prediction. Besides the predictive capacity of the methods, the uncertainty associated with the model predictions is also evaluated, since such information is important for stochastic groundwater flow and contaminant transport modelling. Artificial neural networks (ANNs) are combined with a generalised likelihood uncertainty estimation (GLUE) approach to predict K s from grain-size data. The resulting GLUE-ANN hydraulic conductivity predictions and associated uncertainty estimates are compared with those obtained from the multiple linear regression models by a leave-one-out cross-validation. The GLUE-ANN ensemble prediction proved to be slightly better than multiple linear regression. The prediction uncertainty, however, was reduced by half an order of magnitude on average, and decreased at most by an order of magnitude. This demonstrates that the proposed method outperforms classical data-driven modelling techniques. Moreover, a comparison with methods from the literature demonstrates the importance of site-specific calibration. The data set used for this purpose originates mainly from unconsolidated sandy sediments of the Neogene aquifer, northern Belgium. The proposed predictive models are developed for 173 grain-size K s-pairs. Finally, an application with the optimised models is presented for a borehole lacking K s data.  相似文献   

6.
The combined influence of dip angle and adsorption heterogeneity on solute transport mechanisms in heterogeneous media can be understood by performing simulations of steady-state flow and transient transport in a heterogeneous aquifer with dipping anisotropy. Reactive and non-reactive contaminant transport in various types of heterogeneous aquifer is studied by simulations. The hydraulic conductivity (K) of the heterogeneous aquifer is generated by HYDRO_GEN with a Gaussian correlation spectrum. By considering the heterogeneity of the adsorption distribution coefficient (K d), a perfect negative correlation between lnK and lnK d is obtained by using the spherical grains model. The generated K and K d are used as input to groundwater flow and transport models to investigate the effects of dipping sedimentary heterogeneity on contaminant plume evolution. Simulation results showed that the magnitude of the dip angle strongly controls the plume evolution in the studied anisotropic and heterogeneous aquifer. The retarded average pore-water velocity (v/R) of the adsorption model significantly controls the horizontal spreading of the plume. The bottom plume is intensively retarded in the zones between the dipping lenses of lower hydraulic conductivity and the no-flow bottom boundary. The implications of these findings are very important for the management of contaminated heterogeneous aquifers.  相似文献   

7.
The geochemical processes and thermodynamic behavior of dissolved and precipitated carbonate minerals controlling the hydrochemistry of an aquifer in the seawater/freshwater mixing zone of a small island are identified. Field and laboratory analyses, geochemical modeling (PHREEQC) and multivariate statistical analysis (MSA) provide a quantitative interpretation for the geochemistry of the carbonate-dominated aquifer. Geochemical analyses and modeling results show that dissolution and re-precipitation of CaCO3 are the prevalent processes governing geochemical reactions in the mixing zone. Furthermore, this was confirmed by coherent statistical output that incorporates Principle Component Analysis (PCA) and k-means Cluster Analysis (k-CA). Generally, the composition of the lowland sandy soil was rather homogeneous and was primarily composed of quartz, aragonite, calcite and Mg-calcite. Thermodynamic model calculations indicate that the carbonate minerals calcite, aragonite and dolomite are supersaturated in the mixing zone. Nevertheless, Powder X-ray Diffraction (PXRD) and Scanning Electron Microscope (SEM) examination verified the occurrence of low-Mg-calcite (LMC) and the absence of dolomite, attributed to thermodynamic/kinetic hindrance, cation disorder and the presence of dolomite crystal growth rate inhibitors (such as SO4). The results suggest that dissolution of aragonite and precipitation of LMC drives the solid phase geochemistry in the small tropical island aquifer.  相似文献   

8.
Prediction of time‐dependent groundwater inflow into a shield tunnel is a significant task facing engineers. Published literature shows that there is no available method with which to predict time‐dependent groundwater inflow into a tunnel. This paper presents a prediction approach for time‐dependent groundwater inflow into a tunnel in both anisotropic and isotropic confined aquifers. The proposed solution can predict groundwater inrush from the tunnel cutting face. To obtain the time‐dependent groundwater flow quantity, the concept of a horizontal‐well pumping test based on the theory of a point source is adopted. Multiple factors, eg, drawdown, thickness of aquifer, conductivities, and specific storage, are taken into account. Both groundwater inflow to the cross section of a tunnel face in the yz plane and total tunnel inflow are obtained. Based on the proposed approach, the time‐dependent groundwater inflow to a tunnel can be classified as either a uniform or non‐uniform flow. The proposed approach is applied to analyse groundwater inflow of 2 field cases: (1) Metro line No. 7, Guangzhou City and (2) an underground tunnel in Huizhou, Guangdong Province. Results show that the proposed method can predict the measured values, and drawdown‐related curves are also derived. In addition, the calculated results also reveal that the effect of hydraulic conductivity kz on the total groundwater inflow differs from that of hydraulic conductivities kx and ky and the thickness of the aquifer.  相似文献   

9.
The method of “p–y” curves has been extensively used, in conjunction with simplified numerical methods, for the design and response evaluation of single piles. However, a straightforward application of the method to assess the response of pile groups is questionable when the group effect is disregarded. For this reason, the notion of p-multipliers has been therefore introduced to modify the “py” curves and account for pile group effect. The values proposed for p-multipliers result from pile group tests and are limited to the commonly applied spacing of 3.0 D and layout less than 3 × 3, restricting the applicability of the method to specific cases. With the aim of extending the applicability of the “py” method to pile groups, the authors have already proposed a methodology for estimating the “p Gy G” curves of soil resistance around a pile in a group for clayey soils. A complementary research allowing for the estimation of the “p Gy G” curves for sandy soils is presented in this paper. The well-known curves of soil resistance around the single pile in sandy soils are appropriately transformed to allow for the interaction effect between the piles in a group. Comparative examples validate the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used in a most accurate manner in estimating the distribution of forces and bending moments along the characteristic piles of a group and therefore to design a pile foundation more accurately.  相似文献   

10.
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards’ equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412–440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards’ equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young’s modulus (E) and Poisson’s ratio (ν). For a short oscillation period (T?=?16.4 s), the phase lag increase rate (k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate (k r), however, were negligible. For a longer oscillation period (T?=?908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412–440.  相似文献   

11.
As the demand of exploitation and utilization of geothermal energy increases, more geothermal-related earth structures occur recently. The design of the structures depends upon an accurate prediction of soil thermal conductivity. The existing soil thermal conductivity models were mostly developed by empirical fits to datasets of soil thermal conductivity measurements. Due to the gaps in measured thermal conductivities between any two tested natural soils, the models may not provide accurate prediction for other soils, and the predicted thermal conductivity might not be continuous over the entire range of soil type. In this research, a generalized soil thermal conductivity model was proposed based on a series of laboratory experiments on sand, kaolin clay and sand–kaolin clay mixtures using a newly designed thermo-time domain reflectometry probe. The model was then validated with respect to k dryn (thermal conductivity of dry soils and porosity) and k rS r (normalized thermal conductivity and degree of saturation) relationships by comparing with previous experimental studies. The predicted thermal conductivities were found to be in a good agreement with the experimental data collected from both this study and the other literatures with at least 85% confidence interval. It is concluded that the proposed model accounts for the effects of both environmental factors (i.e., moisture content and dry density) and compositional factors (i.e., quartz content and soil type) on soil thermal conductivity, and it has a great potential in predicting soil thermal conductivity more accurately for geothermal applications.  相似文献   

12.
Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (k s) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of k s, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (t), and the shape of β–t curves for different slope model is quite different for they depend on the value of k s. When k s is very small, β keeps decreasing for all the 18 simulation days. With the increase of k s, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope.  相似文献   

13.
The aim of this paper is to investigate the behavior of laterally loaded pile groups in sands with a rigid head and correlate the response of a pile group it to that of a single pile. For this purpose, a computationally intensive study using 3-D nonlinear numerical analysis was carried out for different pile group arrangements in sandy soils. The responses of the pile groups were compared to that of the single pile and the variation of the displacement amplification factor Ra was then quantified. The influence of the number of piles, the spacing, and the deflection level on the group response is discussed. A relationship for predicting the response of a pile group, based on its configuration and the response of a single pile, has been formulated allowing also for soil shear strength which was found to affect the group response. The relationship provides a reasonable prediction for various group configurations in sandy soils.  相似文献   

14.
Estimating bedrock hydraulic conductivity of regional fractured aquifers is challenging due to a lack of aquifer testing data and the presence of small and large-scale heterogeneity. This study provides a novel approach for estimating the bedrock hydraulic conductivity of a regional-scale fractured bedrock aquifer using discrete fracture network (DFN) modeling. The methodology is tested in the mountainous Okanagan Basin, British Columbia, Canada. Discrete fractures were mapped in outcrops, and larger-scale fracture zones (corresponding to lineaments) were mapped from orthophotos and LANDSAT imagery. Outcrop fracture data were used to generate DFN models for estimating hydraulic conductivity for the fractured matrix (K m). The mountain block hydraulic conductivity (K mb) was estimated using larger-scale DFN models. Lineament properties were estimated by best fit parameters for a simulated pumping test influenced by a fracture zone. Unknown dip angles and directions for lineaments were estimated from the small-scale fracture sets. Simulated K m and K mb values range from 10–8 to 10–7?m/s and are greatest in a N–S direction, coinciding with the main strike direction of Okanagan Valley Fault Zone. K mb values also decrease away from the fault, consistent with the decrease in lineament density. Simulated hydraulic conductivity values compare well with those estimated from pumping tests.  相似文献   

15.
We have measured the surface controlled dissolution rates of natural calcium carbonate minerals (limestone and marble) in H2O–CO2 solutions by using free drift batch experiments under closed system conditions with respect to CO2, at 10°C with an initial partial pressure of carbon dioxide of 5 · 10−2 atm. All experiments revealed reaction rates F, which can be described by the empirical relation: Fn1 = kn1 · (1 − c/ceq)n1 for c < cs, which switches to a higher order n2 for calcium concentrations c ≥ cs described by Fn2 = kn2 · (1 − c/ceq)n2. kn1 and kn2 are rate constants in mmole/(cm2 · s), ceq is the equilibrium concentration with respect to calcite. The values of the constants n1, n2, kn1, kn2 and cs depend on the V/A ratio employed, where V is the volume of the solution and A is the surface area of the reacting mineral. Different calcium carbonate minerals exhibit different values of the kinetic constants. But generally with increasing V/A, there is a steep variation in the values of all kinetic constants, such that the rates are reduced with increasing V/A ratio. Finally with sufficiently large V/A these values become constant. These results are explained by assuming intrinsic inhibitors in the bulk of the mineral. During dissolution these are released from the calcite matrix and are adsorbed irreversibly at the reacting surface, where they act as inhibitors. The thickness d of the mineral layer removed by dissolution is proportional to the V/A ratio. The amount of inhibitors released per surface area is given by d · cint, where cint is their concentration in the bulk of the mineral. At low thicknesses up to ≈3 · 10−4 cm in the investigated materials, the surface concentration of inhibitors increases until saturation is attained for thicknesses above this value.To analyze the surface concentration and the type of the inhibitors we have used Auger spectroscopy, which revealed the presence of aluminosilicate complexes at the surface of limestone, when a thickness of d ≈ 10−3 cm had been removed by dissolution. In unreacted samples similar signals, weaker by one order of magnitude, were observed. Depth profiles of the reacted sample obtained by Ar-ion sputtering showed the concentration of these complexes to decrease to the concentration observed in the unreacted sample within a depth of about 10 nm. No change of the concentration with depth was observed in unreacted samples. These data suggest that complexes of aluminosilicates act as inhibitors, although other impurities cannot be excluded.  相似文献   

16.
To double the capacity of the Orte?CFalconara railway line (central Italy), the Santa Croce tunnel was constructed (1985?C1995), which runs between the Nera Montoro and Narni stations. In the same period, to double the capacity of the Ancona?CBari railway line, the Moro, Cintioni, S. Giovanni and Diavolo tunnels were constructed between the Ortona and Casalbordino stations. The high likelihood of intercepting a significant volume of groundwater in calcareous rocks of the Santa Croce tunnel led to a shift in the layout of the tunnel, which allowed construction of the tunnel by more rapid and less expensive means. Groundwater along the Moro tunnel layout, in a sandy aquifer, has been drained by the excavation of a preliminary tunnel, which allowed a discharge of up to 0.080?m3/s. In the S. Giovanni and Diavolo tunnels, a particular hydrogeological setting was found to exist in the form of lens-shaped bodies of fine grey sand-and-silt aquitards intercalated between the bottom muddy-sandy deposits (very low permeability) and the sandy aquifer; this caused sudden groundwater inflow and tunnel collapse. The S. Giovanni tunnnel, excavation was completed using the HydroShield system, whereas in the Diavolo tunnel, a well-point system was adopted, which avoided any environmental hazards.  相似文献   

17.
Compacted soil–bentonite liners, consisting of a sandy soil mixed with bentonite as backfill, are used extensively as engineered barriers for contaminant containment. This paper studies the valorization of local materials containing calcareous sand, tuff obtained from Laghouat region (in the South Algeria), to associate with bentonite in order to improve their hydraulic characteristics for use as landfill liner material. Firstly, a geotechnical characterization of mixtures chooses from a fixed percentage to 10% bentonite and different percentages of calcareous sand and tuff so that they are complementary to 90% by not 10%. Thereafter, the determination of saturated hydraulic conductivity at falling-head permeability (Kv) and oedometer (Kid, indirect Measure) tests of all compacted mixtures at Optimum Normal Proctor have been carried out using both permeates by tap water and a landfill leachate in order to simulate long-term conditions. The results showed that the saturated hydraulic conductivity of tap water is relatively lower than the one saturated by leachate in the falling-head test, unlike the oedometer test. The B10CS20T70 mixture has satisfied the hydraulic conductivity criterion of bottom barriers (i.e. water permeated: kv20° = 1.97 × 10?9 and kid from 7 × 10?9 to 1.83 × 10?10 < 10?9m/s; leachate permeated: kv20° = 2.91 × 10?9 and kid from 7 × 10?9 at 1.44 × 10?10 < 10?9 m/s). Finally, a comparison between direct measurements of the saturated hydraulic conductivity by triaxial (Kd) test and oedometer test (Kid) in the range of effective stress applied 100–800 kPa led to propose equations of correlations between these two methods. In conclusion, adopted formulation B10CS20T70 perfectly meets the regulatory requirements in force and constitutes an economic product based on available local materials for engineers barriers.  相似文献   

18.
Textural variational pattern of economic and accessible Quaternary aquifer repositories and its conductivity in the south-eastern Nigeria have been assessed through the integration of vertical electrical sounding and laboratory measurements. The results have shown the lithological attributes, pore-water and amount of residual clay minerals in the assumed clean sand; mechanism of charge fixation at the fluid - surface interface; intricate geometry of pores and pore channels; formation’s ability to transmit pore-water and cation exchange capacity.The connections of electrical and hydraulic properties and their distributions have been established. The average interface conductivity contributed by residual clay minerals in assumed clean sands of the aquifer repositories in the study area have been estimated as 30µS/m. Intrinsic average porosity and formation factor have been respectively deduced as 12% and 14.75. Comparing the simulated aquifer formation factor obtained from the observed porosity data with the observed aquifer formation factor, indicates the that study area has 0.5 ≤ a ≤ 0.8 pore geometry factor and 1.5 ≤ m ≤ 2.0 cementation factor as the best fitting values. The interrelations between aquifer parameters have been established through different plots and the aquifer have been empirically proved to be associated with residual clay minerals as the interface conductivity Cq is not equal to zero. The wide ranges of parameters estimated are an indication of variations in grain size. The estimated intrinsic average porosity, formation factor and the average BQv are viable in characterizing the aquifer flow dynamics and contaminant modelling in the associated aquifer sands For low pore geometry factors a (0.2) and low cementation factor m (0.5) the formation factor remains fairly constant. However, marked variability is noticed at higher a (1.0) and m (2.5). Despite the observed variability in formation factors at the indicated porosities, the spatial or geometrical spread of the formation factor remains unchanged in the aquifer units. The Tables for geoelectric and petrophysical parameters and the associated mathematical models generated in this study can be used for groundwater contaminant modelling and simulation of pore space parameters with reasonable accuracy.  相似文献   

19.
Evaporite karst has intensively developed recently along the Dead Sea (DS) coastal area in Israel and Jordan. It takes place in very saline groundwater dissolving buried salt layers, causing collapse of the surface. In this paper, groundwater salinity throughout the DS coastal area is investigated using the Transient Electromagnetic (TEM) method. Twenty-eight TEM soundings along the DS coastal area were carried out close to observation boreholes to calibrate resistivity–salinity relationships. Groundwater electrical conductivity was measured in these boreholes, and its salinity was analyzed at the laboratory by the Geological Survey of Israel (GSI). Quantitative relationships between bulk resistivity (ρx), water resistivity (ρw) and chloride concentration (Ccl) were derived in the resistivity range less than 1.0 Ω·m that enabled to evaluate the salinity of the aquifer in in situ conditions. Average values of the effective porosity of sandy sediments, φe = 0.32, and of silty ones, φe = 0.44, were used to generate the corresponding Archie equations. The study has shown that a DS aquifer with bulk resistivity in the range of 0.55–1.0 Ω·m contains in pores brine with 50–110 gchloride/l of (22–50% of that in saturated conditions, respectively), i.e. it keeps the potential to dissolve up to 114–174 g/l of salt.  相似文献   

20.
《Applied Geochemistry》2005,20(1):41-54
The Pisa plain contains a multilayered confined aquifer made up of Pleistocene sands and gravels. The groundwater from the wells tapping these horizons are generally of poor quality: they exhibit significant TDS, relatively high Cl content and considerable hardness. During geothermal prospecting of the Pisa plain, about 80 wells ranging in depth from 20 to 250 m were sampled, and both chemical (major ions) and isotope analyses were conducted. The data collected show that TDS is strongly influenced by HCO3 and Cl, and that a 3-component mixing process affects the groundwater’s chemical composition. The end members of this mixing process have been identified as: (a) diluted HCO3 meteoric water, which enters the plain mainly from the eastern and northern sides of the study area; (b) Cl-rich water, which largely characterizes the shallow sandy horizons of the multilayered aquifer system and has been attributed to the presence of seawater, as also suggested by δ18O data; and (c) SO4-rich groundwater, which is linked to the hot groundwater circulation within Mesozoic carbonate formations and, at first sight, seemed to affect only the gravelly aquifer. A SO4-rich water also contributes to the sandy aquifer; it probably enters the plain both laterally, from the margins of the Pisan Mountains and from depth, but promptly undergoes substantial SO4 reduction processes by bacteria. That such processes are at work is suggested both by the low SO4 and high HCO3 concentrations found in the well waters and by their C and S isotope compositions. The collected data have allowed zones with higher quality waters to be identified, which may someday be used for the local water supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号