首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study of the properties of the cosmic radiation of energy - 10 MeV generated by solar flares is reported. Data from four Pioneer spacecraft in interplanetary orbits, and separated by 180° in heliocentric longitude are employed. Attention is restricted to the properties evident at times in excess of 1 day after the occurrence of the parent flare. The anisotropic character of the radiation; the gradients in heliocentric longitude; the decay time constants; and the energy spectra of the radiation are all studied in detail.It is found that the equilibrium anisotropy assumes a direction - 45° E of the satellite-Sun line at very late times. It is suggested that the anisotropy at such times is parallel to E × B. This observation confirms that convection is the determining process in the escape of the solar cosmic rays from the solar system. It indicates that a positive radial gradient of solar cosmic radiation density has builtup at orbit of Earth some 4 days after a flare. This results in an effective convective velocity of approximately 1/2 the solar wind velocity. Direct measurements indicate the presence of strong gradients in heliocentric longitude even at very late times ( 4 days). These gradients are essentially invariant with respect to time, e-folding angles of n - 30° have been observed at - 10 MeV. The presence of these gradients has a major effect on the temporal variation of the cosmic ray flux during the decay phase of the flare effect. Thus, the observed decay time constant is either increased or decreased relative to the convective value depending on the position of the observer relative to the centroid of the cosmic ray population injected by the flare. The effect of the gradient becomes more pronounced at lower energies, and may even exceed the convective removal rate. The observed decay time constant, the characteristics of the anisotropy, and the gradient in longitude are shown to be inter-related as demanded by theory. It is shown that the exponent of the cosmic ray spectrum is dependent on the location of the observer relative to the centroid of the cosmic ray population injected by the parent flare. At a given point in the frame of reference of the cosmic ray population, the spectral exponent is invariant with time.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

2.
Time series of daily numbers of solar Hα flares from 1955 to 1997 are studied by means of wavelet power spectra with regard to predominant periods in the range of ∼ 24 days (synodic). A 24-day period was first reported by Bai (1987) for the occurrence rate of hard X-ray flares during 1980–1985. Considering the northern and southern hemisphere separately, we find that the 24-day period is not an isolated phenomenon but occurs in each of the four solar cycles investigated (No. 19–22). The 24-day period can be established also in the occurrence rate of subflares but occurs more prominently in major flares (importance classes ≥ 1). A comparative analysis of magnetically classified active regions subdivided into magnetically complex (i.e., including a γ and/or δ configuration) and non-complex (α, β) reveals a significant relation between the appearance of the 24-day period in Hα flares and magnetically complex sunspot groups, whereas it cannot be established for non-complex groups. It is suggested that the 24-day period in solar flare occurrence is related to a periodic emergence of new magnetic flux rather than to the surface rotation of sunspots.  相似文献   

3.
Edges in the solar soft X-ray flare continuum have been observed with the NRL Bragg crystal spectrometer aboard OSO-4. The edges near 2.06 Å, 2.8 Å, and 4.46 Å are interpreted to be due to an innershell dielectronic recombination process, details of which are presented. Two other edges, 3.59 Å and 3.31 Å, are interpreted to be due to recombination of the bare sulfur ion and innershell transitions of calcium.  相似文献   

4.
M. J. Martres 《Solar physics》1989,119(2):357-384
This paper consists of two parts. We first discuss recent general results on the study of properties of flare homology, and their relevance to the physical interpretation of the flare phenomenon at large. We devote particular attention to the discovery of homologous flares which occur in rapid succession, within a few minutes of each other in many cases. We name these kind of flares rafales. These flares signal the existence of several episodes of energy release within the same magnetic configuration. We also show the existence of particular sites in the solar atmosphere which have peculiar characteristics in terms of solar rotation, and where recurrent flaring may take place over and over again in different solar rotations. This indicates that the disturbance causing the emergence of activity is deep seated, below the solar photosphere. Finally, in the second part, we discuss an extensive set of observations of two homologous flares of a rafale, stressing the dynamic aspects of the observations, particularly the presence of peaks in the vertical component of the velocity field. These results are shown to be in agreement with studies of filament activations and the surging arches which are observed before the flash phase of solar flares.  相似文献   

5.
The correlation between the long-term intensity variations of cosmic rays at neutron monitor energies and the LDE index measure of solar flares with long-lasting soft X-ray emissions is reported. Three subsequent solar cycles, 20–22, are taken into account and half-monthly data are analyzed. Possible explanation of this correlation is discussed in terms of the recent concepts of cosmic-ray modulation, in particular with merged interaction regions affecting the cosmic-ray intensity.  相似文献   

6.
We present X-ray observations of the 21 July, 1980 flare which was observed both with the Einstein Observatory Imaging Proportional Counter (IPC) and the X-Ray Polychromator (XRP) and Gamma-Ray Spectrometer onboard the SMM satellite. The Einstein observations were obtained in scattered X-ray light, i.e., in X-rays scattered off the Earth's atmosphere. In this way it is possible to obtain spatially unresolved X-ray data of a solar flare with the same instrument that observed many X-ray flares on other stars. This paper juxtaposes the results and implications of the stellar interpretation to those obtained from the far more detailed SMM observations. The result of this calibration observation is that the basic properties of the flaring plasma can be reliably determined from the stellar data, however, the basic physics issues can only be studied through models.  相似文献   

7.
In a search for linear polarization effects, 37 profiles of the H line emitted in the 16 May 1991 flare have been analyzed. Linear polarization is clearly present in the central part of line. On average, the degree of polarization is 7 %, but it reaches 20 % in regions with lower H ga emission. Generally the orientation of the plane of polarization coincides with the flare to disk center direction, except for sections where the H ga line has the characteristic form observed in moustaches. We believe that the linear polarization observed in the 16 May 1991 flare was caused by bombardment of the chromosphere by beams of accelerated particles, protons in the main part of the flare and electrons at locations where the H ga line has the characteristic moustache structure.  相似文献   

8.
We have analyzed the sidereal diurnal variation of cosmic rays, using 620 station-years of neutron monitor data during the period 1958–1979. The sidereal variation averaged over the period for all the stations in the Northern Hemisphere is different from the corresponding variation in the Southern Hemisphere. The difference is statistically significant and can be identified with the spurious sidereal variation produced from the stationary anisotropy of solar origin, responsible for the solar semi-diurnal variation. The variation common to both hemispheres is also exceptionally significant from the statistical point of view and could be regarded as being due to a uni-directional galactic anisotropy. This variation has an amplitude of 0.0204 ± 0.0015% and a phase of 6.8 ± 0.3 h and is clearly different from that ( ~ 0.05%, 0 ~ 3 h) observed in the high rigidity region (500 ~ 104 GV). The physical meaning of the variation is discussed from the standpoint of the heliomagnetospheric modulation of galactic anisotropy.  相似文献   

9.
I. D. Palmer 《Solar physics》1972,27(2):466-477
Two low-energy ( 1 MeV) solar proton events which display a gradual intensity increase to a maximum near the time of an SSC, followed by an abrupt, large decrease, are interpreted in terms of a population of cosmic rays which are swept ahead of an interplanetary shock wave. A model which describes the variation with time of intensity and anisotropy at the Earth is developed using a Monte Carlo technique which traces the histories of particles released impulsively at the Sun. A good fit to each of the profiles observed at 0.6 to 0.9 MeV proton energies is obtained with a diffusion coefficient 2 × 1020 cm2 s) = 13.46 - 2.99 sin21 and a near perfect shock reflector.Now at University of California, LASL, Los Alamos, New Mexico.  相似文献   

10.
In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.  相似文献   

11.
Based on their source of origin, high speed streams detected in the solar wind plasma have been classified into two classes, coronal hole and solar flare associated streams. Observed heliospheric plasma and field parameters of these streams such as speed, field strength and its variance have been utilized in a systematic manner in order to see their effects in cosmic ray modulation. It is found that flare associated streams are much more effective in modulation than streams from coronal holes. Inspite of the possibility that solar wind structures during two types of streams might be different, the field variance appears to be the most cricial parameter responsible for this difference in their effectiveness in modulation.  相似文献   

12.
Cosmic ray exposure ages of lunar samples have been used to date surface features related to impact cratering and downslope movement of material. Only when multiple samples related to a feature have the same rare gas exposure age, or when a single sample has the same81Kr-Kr and track exposure age can a feature be considered reliably dated. Because any single lunar sample is likely to have had a complex exposure history, assignment of ages to features based upon only one determination by any method should be avoided. Based on the above criteria, there are only five well-dated lunar features: Cone Crater (Apollo 14) 26 m.y., North Ray Crater (Apollo 16) 50 m.y., South Ray Crater (Apollo 16) 2 m.y., the emplacement of the Station 6 boulders (Apollo 17) 22 m.y., and the emplacement of the Station 7 boulder (Apollo 17) 28 m.y. Other features are tentatively dated or have limits set on their ages: Bench Crater (Apollo 12) ?99 m.y., Baby Ray Crater (Apollo 16) ?2 m.y., Shorty Crater (Apollo 17) ≈ 30 m.y., Camelot Crater (Apollo 17) ?140 m.y., the emplacement of the Station 2 boulder 1 (Apollo 17) 45–55 m.y., and the slide which generated the light mantle (Apollo 17) ?50 m.y.  相似文献   

13.
This paper investigates the physical state of the photosphere in the main phase of the two-ribbon solar flare on June 3, 1979. The derived models show that the photosphere was in a disturbed state for a long time during the main phase of the flare. In the models, the temperature in the upper photospheric layers is higher and that in the lower layers is lower than in the quiet-sun model atmosphere. During the flare, the heating extends to the lower photospheric layers, and the upper layers cool down. A comparison of the obtained models to those for the two-ribbon solar flare on October 7, 1979, shows that the height distributions of the temperature in the main phase of the flares are strongly different.  相似文献   

14.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

15.
Lites  Bruce W. 《Solar physics》1981,71(2):329-336
The rapid dissipation of flare energy has been observed in the transition-zone line of C iv at 1548.2 Å using the University of Colorado spectrometer aboard OSO-8. Impulsive brightenings have been resolved with characteristic risetimes as low as 3.5 s. One event is analyzed in detail, in which it is inferred that the electron density is greater than 2 × 1011 cm–3 at T = 60 000 K, and that the flare energy is deposited at a rate of 2 ergs cm–3 s–1 or greater. The temporal behavior of the intensity at the center of the C iv line is consistent with a non-equilibrium ionization of C iii through C v. If this event is a result of the multiple tearing mode instability as the primary energy release mechanism, then the observations indicate a pre-flare magnetic field of about 175 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
Recently, correlations have been reported between fluctuations in nuclear decay rates and Earth–Sun distance, which suggest that nuclear decay rates may be affected by solar activity. In this paper, we report the detection of a significant decrease in the decay of 54Mn during the solar flare of 2006 December 13, whose X-rays were first recorded at 02:37 UT (21:37 EST on 2006 December 12). Our detector was a 1 μCi sample of 54Mn, whose decay rate exhibited a dip coincident in time with spikes in both the X-ray and subsequent charged particle fluxes recorded by the Geostationary Operational Environmental Satellites (GOES). A secondary peak in the X-ray and proton fluxes on December 17 at 12:40 EST was also accompanied by a coincident dip in the 54Mn decay rate. These observations support the claim by Jenkins et al. that nuclear decay rates may vary with Earth–Sun distance.  相似文献   

17.
The EUV emission spectra in the wavelength range 110–1900 Å of the 5 September 1973 flare observed with the NRL slit spectrograph on Skylab are studied. The results are: (1) The chromospheric and transition-zone lines are greatly enhanced during the flare. In particular, the allowed lines are enhanced more than the intersystem lines. The Ni ii and P ii lines show the greatest enhancement with a factor of 800 increase in intensity. Other lines such as O i, C i, Si iii, S iii, S iv, O iv, O v, and N v show increases in intensity 10–100 times during the flare. (2) The chromospheric lines, although greatly enhanced during the flare, maintain their sharp and gaussian profiles and are not appreciably broadened. The transition zone lines, on the other hand, show a red-shifted component during the initial phase of the flare. The deduced downward velocity in the transition zone is 50 km s–1. In addition, there are large turbulent mass motions. The downward mass motion is probably caused by the pressure imbalance between the flare hot plasma at 13 × 106 K and the cooler plasma at 105 K. (3) The density of the 105 K flare plasma, as deduced from density-sensitive lines, is greater than 1012 cm-3. The depth of the 105 K plasma in the flare transition zone is only of the order of 0.1 km, giving a steep temperature gradient. Consideration of the energy balance between the conductive flux and the radiative energy losses shows that, indeed, the high density in the transition zone requires that its thickness be very small. This is a consequence of the maximum radiative efficiency at the temperature around 105 K in the solar plasma.Ball Brothers Research Corporation.  相似文献   

18.
Fifteen type II solar radio events have been identified in the 2 MHz to 30 kHz frequency range by the radio astronomy experiment on the ISEE-3 satellite over the period from September 1978 to December 1979. These data provide the most comprehensive sample of type II radio bursts hitherto observed at kilometer wavelengths. Dynamic spectra of a number of events are presented. Where possible, the 15 events have been associated with an initiating flare, ground-based radio data, the passage of a shock at the spacecraft and the sudden commencement of a geomagnetic storm. The general characteristics of kilometric type II bursts are discussed.Research Associate, University of Maryland, U.S.A.  相似文献   

19.
This study deals with the short-term variations of cosmic ray intensity during the interval 1973–78. Daily means of high latitude neutron and meson monitors from the same station and those of a low latitude neutron monitor have been analysed using the Chree method of superposed epochs. The zero epoch for the Chree analyses corresponds to the day of a substantial increase (V 200 km s–1) in the solar wind speed to values of 550 km s–1 and which persists at such high values for an interval of at least three days. The investigation reveals the existence of two types of cosmic ray intensity variations with distinctly different spectral characteristics. During the interval 1973–76, relative changes in the neutron and meson monitor rates are nearly equal indicating an almost flat rigidity spectrum of variation. During 1977–78, however, the spectrum acquires a negative spectral character similar to that observed for Forbush decreases. We suggest that events of the interval 1973–76 are essentially due to high speed streams associated with solar coronal holes and that events of the interval 1977–78 are due to fast streams from solar active regions with flare activity.  相似文献   

20.
The proton energy spectra I(E, t) as functions of time were obtained and analyzed in the energy range of a few tens of MeV on the basis of GOES observations of proton enhancements during solar cycle 23. The energy spectra were approximated by power-law functions. We found a wide variety of functions I(E, t) for studied events. The spectra cannot be described by a universal function of time, although three groups of proton events seem to have some common features. This allows us to outline an approach to their empirical classification in future using a number of dimensionless scaling parameters. The regularities we observe may be partly due to the dynamical processes occurring on the Sun, in the heliosphere, and magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号