首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
山东临朐山旺新生代玄武岩中超镁铁岩包体的研究   总被引:5,自引:0,他引:5  
山旺新生代玄武岩中的超镁铁质包体分为五类:尖晶石纯橄榄岩、尖晶石二辉橄榄岩、尖晶石方辉橄榄岩、尖晶石石榴石二辉岩和石榴石二辉橄榄岩。对它们的地质学,岩相学、岩石化学,造岩矿物的化学成分,稀土配分模式及热力学计算的研究表明,前三种岩石属原始地幔岩,后二种是地幔中岩浆作用的产物。  相似文献   

2.
The author describes a new occurrence of garnet peridotite and garnet pyroxenite interlayered in the biotite-sillimanite-garnet gneisses at the top of the granulitic serie of the Monts du Lyonnais (Massif Central français). Its dimensions are rather significant for a crustal gisement (500×100 m). It is only composed of forsterite, enstatite, chromiferous diopside, pyrope and spinel peridotites with their products of retrograde transformations as kelyphites, amphiboles, chlorites, lizardite, ores, etc. The petrographic studies show the heterogeneity of the massif and the anteriority of the red spinel upon the garnet which always forms a corona around the spinel. The peridotites are intermingled with numerous streched and dislocated layers of garnet websterites with rare centimetric levels. These pyroxenites would be derived of particular magmatic processes (partial anatectic melting followed by cristallisation) developped from an upper mantle level in a primary pyrolitic lherzolitic (s. l) or garnet peridotitic material. The garnet peridotite of “Le Bois des Feuilles” would be, in fact, a “secondary garnet lherzolite” derived: - either from a spinel lherzolite intermingled with garnet websterite layers and their “dunitic” remnants, to form a “pseudo-garnet lherzolite” like this of Beni Bouchera described by Kornprobst; - or from a spinel lherzolite associated with garnet websterites and submitted temporarily, at the time of its diapiric rising movement from the mantle towards the crust to the conditions of the spinel garnet lherzolite facies. The plastic deformations and intense laminations form blastomylonites of mixed rocks recristallised ultimately under granulitic facies conditions. These rocks are, pro parte, not very different from the other crustal garnet peridotites, in spite of the frequency of the spinel inclusions in garnet. In corollary, it seems that numerous crustal garnet peridotites would have the same origin.  相似文献   

3.
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.  相似文献   

4.
Spinels from cumulus and non-cumulus members of the Othris ophiolite display a considerable variation in composition. Cumulus picrites and gabbros contain either a primary chromite and/or a reaction spinel formed by reaction with co-existing silicates (Cr-Al varia tion) or intercumulus liquid (Cr-Fe variation). Non-cumulus peridotites contain spinels which vary along a Cr-Al trend. Harzburgites contain a Cr-spinel and lherzolites a more aluminous spinel. The occurence of gabbroic segregations within the host lherzolite appears to affect the spinel chemistry. Spinels adjacent to these plagioclase—diopside veinlets are richer in aluminium than the spinels scattered within the depleted lherzolite surrounding the veinlet. [Protoclastic harzburgites contain a highly aluminous spinel phase either as an exsolution phase within pyroxenes or as a groundmass spinel.] The Cr-Al variation of the peridotites is believed to have resulted from interaction with interstitial aluminous liquid—in situ basaltic melt from a fused peridotite?  相似文献   

5.
Numerous lenticular bodies of ultramafic rocks occur withinthe upper amphibolite- to granulitefacies metamorphic terraneof the Austrides between the Non and Ultimo valleys (Nonsbergregion), northern Italy. The ultramafic rocks are divided intotwo textural types: (a) coarse-type; and (b) finetype. The coarse-typerocks have the protogranular texture and are predominantly spinellherzolite. Some coarse-type spinel lherzolites have partlytransformed to garnet lherzolite. The fine-types are consideredto be metamorphic derivatives of the former, and the observedmineral assemblages are: (1) olivine + orthopyroxene + clinopyroxene+ garnet + amphibole ? spinel, (2) olivine + orthopyroxene +garnet + amphibole + spinel; (3) olivine + orthopyroxene + amphibole+ spinel; and (4) olivine+ orthopyroxene + amphibole + chlorite.Based on the microprobe analyses of constituent minerals fromten representative peridotite samples, physical conditions ofthe metamorphism, particularly that of the spinel to garnetlherzolite transformation, are estimated. Applications of pyroxenegeothermometry yield temperature estimates of 1100–1300?Cfor the formation of the primary spinel lherzolite, and 700–800?Cfor that of the fine-type peridotites. A pressure range of 16–28kb is obtained for the garnet lherzolite crystallization dependingon the choice of geobarometers. Two alternative P-T paths, i.e.(1) isobaric cooling or (2) pressure-increase and temperaturedecrease are considered and their geodynamic implications discussed.  相似文献   

6.
汉诺坝地区上地幔尖晶石—石榴石相转变带温压条件   总被引:7,自引:1,他引:7  
根据汉诺坝尖晶石石榴石二辉辉石岩包体矿物成分新资料和前人的尖晶石石榴石二辉橄榄岩包体矿物成分资料,运用斜方辉石Ca溶解度温度计和斜方辉石-石榴石Al分配压力计,计算了尖晶石—石榴石相转变带的温度和压力条件,首次获得了汉诺坝地区的新生代古地温曲线。尖晶石石榴石二辉辉石岩包体代表的温度范围为930~978℃,压力范围为142~165GPa:尖晶石石榴石二辉橄榄岩包体代表的温度范围为991~1110℃,压力范围为158~216GPa,与最新的实验结果基本吻合。地温曲线沿大洋地温曲线(曲线方程为t=2524+897478p-18308p2)上方近平行延伸。推测汉诺坝玄武岩的起源深度至少为70km。二辉辉石岩包体来自较冷的岩石圈,而二辉橄榄岩来自岩石圈与软流圈的过渡带,并且表明后者的地温梯度以对流热地温梯度为主。  相似文献   

7.
R. V. Conceio  D. H. Green 《Lithos》2004,72(3-4):209-229
A model metasomatized lherzolite composition contains phlogopite and pargasite, together with olivine, orthopyroxene, clinopyroxene and spinel or garnet as subsolidus phases to 3 GPa. Previous works established that at ≥1.5 GPa, phlogopite is stable above the dehydration solidus, determined by the melting behaviour of pargasite and coexisting phases. At 2.8 GPa, melts with residual phlogopite+garnet lherzolite mineralogy at 1195 °C and with garnet lherzolite mineralogy at 1250 °C are both olivine nephelinite with K/Na (atomic)=0.51 and K/Na=0.65, respectively. Recent work shows that melting along the dehydration (fluid-absent) solidus of the phlogopite+pargasite lherzolite at pressures <1.5 GPa is very different with the presence of phlogopite, decreasing the solidus below that of pargasite lherzolite. At 1.0 GPa, both phlogopite and pargasite disappear at temperatures at or slightly above the solidus. The compositions of two melts at 1.0 GPa, 1075 °C (with different water contents), in equilibrium with residual spinel lherzolite mineralogy are silica-saturated trachyandesite (5% melt fraction, 3% H2O) to silica-oversaturated basaltic andesite (8% melt fraction, 4.5% H2O). Both compositions may be classified as ‘shoshonites’ on the basis of normative compositions, silica-saturation, and K/Na ratio. Decompression melting of metasomatized lithospheric lherzolite with minor phlogopite and pargasite may produce primary ‘shoshonitic’ magmas by dehydration melting at 1 GPa, 1050–1150 °C. Such magmas may be parental to Proterozoic batholithic syenites occurring in Brazil.  相似文献   

8.
Five spinel lherzolite xenoliths hosted in Neogene alkali basalts from the marginal parts of the Pannonian Basin (Styrian Basin in Austria and Persani Mts. in the Eastern Transylvanian Basin, Romania) contain orthopyroxene–clinopyroxene–spinel clusters, which are believed to represent former garnet in lherzolitic mantle material. 'Palaeo' equilibrium pressure of this former garnet lherzolite was estimated to be equivalent to depths of 90–120 km using calculated garnet compositions and measured orthopyroxene compositions from the clusters. 'Neo' equilibrium pressures of the xenoliths indicate depths of 55–65 km, suggesting c.  50–60 km uprise of the mantle section represented by these xenoliths. This petrological result confirms the observations from previous geophysical studies that significant mantle uplift has occurred beneath the Pannonian Basin.  相似文献   

9.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


10.
Ultramafic xenoliths of garnet lherzolite (?rare spinel), spinellherzolites, spinel harzburgites, clinopyroxenites, and clinopyroxenemegacrysts were collected from Cenozoic basalts in all partsof eastern China. From their modal composition and mineral chemistryall the xenoliths may be placed into three types representing:a fertile or more primitive mantle (garnet lherzolite and spinellherzolite), a refractory or more depleted mantle (spinel harzburgiteand dunite), and inclusions cognate with the host alkali basaltsat mantle pressures (pyroxenite and megacrysts). There are systematicdifferences between the mineral compositions of each type. Spinelshows a wide compositional range and the spinel cr-number [100Cr/(Cr + Al)] is a significant indicator of the xenolithtype. Spinel cr-number and Al2O3 of coexisting minerals (spinel,clinopyroxene, and orthopyroxene) are useful as refractory indicatorsfor spinel peridotite in that the cr-number increases and thepercentage of Al2O3 decreases with increasing degrees of melting.In garnet peridotite, however, the same functions vary withpressure, not degree of melting. According to P–T estimates,the various xenoliths were derived from a large range of depthsin the upper mantle: spinel peridotite from approximately 11to 22 kb (37–66 km), spinel/garnet lherzolite from 19to 24 kb (62–80 km), and garnet lherzolite from 24 to25 kb (79–83 km). We conclude that the uppermost mantlebeneath eastern China is heterogeneous, with a north-northeastzone of more depleted mantle lying beneath the continental marginand a more primitive mantle occurring towards the continentalinterior.  相似文献   

11.
The metamorphic evolution of Mg---Cr type Norwegian garnet peridotites   总被引:6,自引:0,他引:6  
D.A. Carswell 《Lithos》1986,19(3-4):279-297
Mineralogical and microstructural data are presented which demonstrate that the garnet peridotites variably preserved in Alpine-type bodies within the Western Gneiss Region of Norway have had a prolonged, 7-stage, evolutionary history. High-temperature Al-pyroxene ± spinel protolith assemblages (ass. I) are only rarely preserved but predate the coarse-grained Pmax garnet lherzolite assemblages (ass. II). Porphyroclastic textured samples demonstrate subsequent recrystallisation to a lower-pressure 5-phase garnet + spinel lherzolite assemblage (ass. III). Most samples show development of kelyphites of intimately intergrown replacement pyroxenes + spinel (ass. IV) around garnets. These are in turn frequently overgrown by late coarser-grained coronas of orthopyroxene + pargasittic amphibole + spinel (ass. V). The chrome-depleted secondary garnets are interpreted to have predated kelyphite formation contrary to most previous interpretations. Assemblages VI and VII reflect the late-stage stability at reduced temperatures of firstly aluminous chlorite and finally serpentine + talc assemblages.

As the peridotites may contain up to six generations of certain mineral phases (notably orthopyroxene) and individual grains are frequently compositionally zoned, considerable care has been exercised over the selection of mineral compositions appropriate to the various mineral equilibria used to deduce the overall P-T path followed by these rocks. Finally, general aspects of the origin and tectonic setting of these rocks and of the age of the various observed assemblages are discussed. Whilst the early assemblages (I and II) appear to be mid-Proterozoic in age, the later assemblages (III å VII) are probably all Caledonian).  相似文献   


12.
普兰蛇绿岩位于雅鲁藏布江缝合带西段,其中地幔橄榄岩由方辉橄榄岩、含单斜辉石方辉橄榄岩以及少量二辉橄榄岩及纯橄岩组成。尖晶石是地幔橄榄岩中常见的副矿物,可以作为重要的岩石学成因指示剂。在野外地质调查基础上,通过岩相观察、电子探针、尖晶石成分面分析、电子背反射衍射分析,可将普兰地幔橄榄岩铬尖晶石分为三类:第一类铬尖晶石呈自形,粒径较小(<100μm),或包裹于斜方辉石中,或杂乱分布于橄榄石和辉石之间,具有高Cr^#(>0.6)、低Mg^#(0.43~0.57)的特征,为部分熔融+玻安质熔体交代成因;第二类铬尖晶石呈半自形-他形,粒径较大(>100μm),常含有橄榄石、辉石包裹体,具有中Cr^#(0.17~0.42)、高Mg^#(0.63~0.77)的特点,主要受部分熔融作用影响;第三类铬尖晶石呈他形蠕虫状与辉石交生在一起构成后成合晶结构,粒径变化较大,具有低Cr#(0.17~0.28)、高Mg^#(0.67~0.77)的特点。EBSD分析结果显示尖晶石、辉石的结晶学优选方位(CPO)较为相似,表明为同一矿物分解而来,单斜辉石与大陆岩石圈地幔捕掳体中石榴子石的稀土元素对比表明构成后成合晶结构的辉石和铬尖晶石为具有大陆岩石圈地幔属性的高压石榴子石退变分解而成。综合分析表明:普兰蛇绿岩的地幔橄榄岩体在从石榴子石相深度上升过程中发生了石榴子石退变、岩石部分熔融及熔体渗透作用,岩体经历了威尔逊旋回初期的大陆裂谷阶段,主体经历了中-低程度的部分熔融,类似大洋中脊环境,局部受到了富硅、富镁玻安质熔体的影响。  相似文献   

13.
Phase equilibrium data have been collected for isobaricallyunivariant melting of simplified Iherzolite compositions inthe system CaO-MgO-Al2O3 SiO2-Na2O over a pressure range of7–35 kbar. These data permit the melting behavior of awide variety of model lherzolite compositions to be determinedquantitatively by algebraic methods. Two P-T univariant meltingreactions, corresponding to plagioclase to spinel lherzoliteand spinel to garnet lherzolite, are identified as peritectic-typetransitions and have positive Clapeyron slopes. The univariantcurves move to higher pressures and temperatures with increasingNa2O in the liquid. The effect of the univariant curves on meltingis to produce low-temperature regions and isobarically invariantmelting intervals along lherzolite solidi. In the plagioclaselherzolite stability field, melting of four-phase model lherzoliteis pseudo-invariant, occurring over small temperature intervals(5C) and producing liquids that are quartz tholeiites at <8kbar and olivine tholeiites at >8 kbar. Calculated equilibriumconstants for plagioclase-liquid equilibria show both temperatureand pressure dependence. Plagioclase with anorthite content(AN) >90 mol%, as observed in some oceanic basalts, can crystallizefrom liquids with <1% Na2O. Melting of spinel lherzoliteis not pseudo-invariant but occurs over large temperature intervals(15–60 C), producing a wide range in liquid compositions,from alkali basalts and alkali picrites at low to moderate degreesof melting (<1–10%) to olivine tholeiites and picritesat higher degrees of melting (>10%). On the basis of limiteddata in the garnet Iherzolite field, melts from garnet lherzoliteare more silica rich for a given degree of melting than meltsfrom spinel lherzolite, and liquid compositions trend towardenstatite with increase in pressure. Source fertility (especiallyNa2O content) has a strong control on the temperature of meltingand liquid composition. Less fertile sources produce smalleramounts of liquids richer in normative silica. For certain bulkcompositions (high SiO2 and low Al2O3), spinel is not a stablephase along the lherzolite solidus.  相似文献   

14.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


15.
J.B. Dawson   《Lithos》2004,77(1-4):553-569
Porphyroclastic enstatite in a garnet lherzolite xenolith from the Monastery Mine kimberlite, South Africa, has exsolved pyrope garnet, Cr-diopside and Al-chromite, and the specimen is interpreted as representing a transition from fertile harzburgite, (containing high Ca-Al-Cr enstatite) to granular garnet lherzolite. Although the exsolved phases occur in morphologically different forms (fine and coarse lamellae; equant, ripened grains), indicating textural disequilibrium, the exsolved grains are very constant in composition, indicating chemical equilibrium. Theoretically, the exsolution could have been due to a fall in temperature, but the close association of exsolution and deformation of the host enstatite suggests that exsolution was also aided by straining of the enstatite lattice. The phase compositions can be broadly matched with those in other mantle peridotites, except that all phases are characterised by a virtual absence of Ti. In the garnet and diopside Ti, Co, Zr and most of the REE are lower than in published analyses of garnet and diopside in both granular and sheared garnet lherzolites from Southern African kimberlites, and diopside/garnet partitioning for Sr and the REE is higher. Comparison with the trace element chemistry of an enstatite from a fertile harzburgite indicates that, except for Nb, the trace element content and distribution found in the Monastery phases could arise by isochemical exsolution from such an enstatite. On the assumption that (a) the Monastery specimen represents a transition from harzburgite to garnet lherzolite, and (b) many garnet lherzolites are of exsolution origin (as suggested by their modal compositions), the inference is that most garnet lherzolites, and not just the sheared variety, have been subject to varying degrees of Ti, Zr, Sr and REE metasomatism.  相似文献   

16.
福建明溪上地幔热结构及流变学特征   总被引:3,自引:0,他引:3  
林传勇  韩秀玲 《地质论评》1999,45(4):352-360
通过对采自福建明溪的幔源包体样品的详细研究,建立了该区上地幔的地温线,探讨其流变学特征。所获地温线高于大洋地温线,但稍低于中国东部和澳大利亚东南部地温线。由该地温线推导的壳幔边界为38km左右,但尖晶石二辉橄榄岩在32km左右即已开始出现,表明存在上地幔物质的底侵作用。同样,尖晶石二辉橄榄岩和石榴子石二辉橄榄岩包体平衡温度有所重叠,表明两者不是截然分开,其间存在有5 ̄10km的过渡带。包体的变形特  相似文献   

17.
We performed thermodynamic calculations based on model and natural peridotitic compositions at pressure and temperature conditions relevant to the Earth’s upper mantle, using well-established free energy minimization techniques. The model is consistent with the available experimental data in Cr-bearing peridotitic systems and can therefore be used to predict phase relations and mineral compositions in a wide range of realistic mantle compositions. The generated phase diagrams for six different bulk compositions, representative of fertile, depleted and ultra-depleted peridotitic mantle, shown that the garnet + spinel stability field is always broad at low temperatures and progressively narrows with increasing temperatures. In lithospheric sections with hot geotherms (ca. 60 mW/m2), garnet coexists with spinel across an interval of 10–15 km, at ca. 50–70 km depths. In colder, cratonic, lithospheric sections (e.g. along a 40 mW/m2 geotherm), the width of the garnet–spinel transition strongly depends on bulk composition: In fertile mantle, spinel can coexist with garnet to about 120 km depth, while in an ultra-depleted harzburgitic mantle, it can be stable to over 180 km depth. The formation of chromian spinel inclusions in diamonds is restricted to pressures between 4.0 and 6.0 GPa. The modes of spinel decrease rapidly to less than 1 vol % when it coexists with garnet; hence, spinel grains can be easily overlooked during the petrographical characterization of small mantle xenoliths. The very Cr-rich nature of many spinels from xenoliths and diamonds from cratonic settings may be simply a consequence of their low modes in high-pressure assemblages; thus, their composition does not necessarily imply an extremely refractory composition of the source rock. The model also shows that large Ca and Cr variations in lherzolitic garnets in equilibrium with spinel can be explained by variations of pressure and temperature along a continental geotherm and do not necessarily imply variations of bulk composition. The slope of the Cr# [i.e. Cr/(Cr + Al)mol] isopleths in garnet in equilibrium with spinel changes significantly at high temperatures, posing serious limitations to the applicability of empirical geobarometric methods calibrated on cratonic mantle xenoliths in hotter, off-craton, lithospheric mantle sections.  相似文献   

18.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

19.
Anhydrous partial melting experiments, at 10 to 30 kbar from solidus to near liquidus temperature, have been performed on an iron-rich martian mantle composition, DW. The DW subsolidus assemblage from 5 kbar to at least 24 kbar is a spinel lherzolite. At 25 kbar garnet is stable at the solidus along with spinel. The clinopyroxene stable on the DW solidus at and above 10 kbar is a pigeonitic clinopyroxene. Pigeonitic clinopyroxene is the first phase to melt out of the spinel lherzolite assemblage at less than 20°C above the solidus. Spinel melts out of the assemblage about 50°C above the solidus followed by a 150° to 200°C temperature interval where melts are in equilibrium with orthopyroxene and olivine. The temperature interval over which pigeonitic clinopyroxene melts out of an iron-rich spinel lherzolite assemblage is smaller than the temperature interval over which augite melts out of an iron-poor spinel lherzolite assemblage. The dominant solidus assemblage in the source regions of the Tharsis plateau, and for a large percentage of the martian mantle, is a spinel lherzolite.  相似文献   

20.
伊通上地幔剪切带中辉石岩、二辉橄榄岩和易剥橄榄岩是3个主要地幔捕虏体,其中尖晶石的化学成分以富铝为特征。辉石岩中尖晶石在薄片下呈绿色,为铝含量高、铬含量低的铝尖晶石;与之相比,二辉橄榄岩和易剥橄榄岩中尖晶石在薄片下呈棕色,为铝含量相对较低、铬含量相对较高的富铝铬尖晶石。尖晶石的颜色与Al、Mg、Cr、Fe含量有关。在不同捕虏体中尖晶石成分具有不同的变化范围,尖晶石化学成分之间存在一定的相关性,Mg#与Cr#,Mg#与Fe2 和Cr与Al呈现负相关性,而Mg#与Al#呈现出正相关性,反映不同捕虏体中尖晶石具有同一来源和成因联系。在地幔岩石部分熔融和结晶过程中Cr和Al的分异明显。固溶体条件下基本服从八面体Cr Al替代关系,而不同地幔捕虏体中尖晶石的成分差异是岩浆部分熔融和结晶过程中元素分异、固溶体离子替代的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号