首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Interaction with the interstellar medium (ISM) cannot be ignored in understanding planetary nebula (PN) evolution and shaping. In an effort to understand the range of shapes observed in the outer envelopes of PNe, we have run a comprehensive set of three-dimensional hydrodynamic simulations, from the beginning of the asymptotic giant branch (AGB) superwind phase until the end of the post-AGB/PN phase. A 'triple-wind' model is used, including a slow AGB wind, fast post-AGB wind and third wind reflecting the linear movement through the ISM. A wide range of stellar velocities, mass-loss rates and ISM densities have been considered.
We find that ISM interaction strongly affects outer PN structures, with the dominant shaping occurring during the AGB phase. The simulations predict four stages of PN–ISM interaction whereby (i) the PN is initially unaffected, (ii) then limb-brightened in the direction of motion, (iii) then distorted with the star moving away from the geometric centre, and (iv) finally so distorted that the object is no longer recognizable as a PN and may not be classed as such. Parsec-size shells around PNe are predicted to be common. The structure and brightness of ancient PNe are largely determined by the ISM interaction, caused by rebrightening during the second stage; this effect may address the current discrepancies in Galactic PN abundance. The majority of PNe will have tail structures. Evidence for strong interaction is found for all known PNe in globular clusters.  相似文献   

2.
We examine the possibility of detecting signatures of surviving Uranus/Neptune-like planets inside planetary nebulae. Planets that are not too close to the stars (orbital separation larger than ∼5 au) are likely to survive the entire evolution of the star. As the star turns into a planetary nebula, it has a fast wind and strong ionizing radiation. The interaction of the radiation and wind with a planet may lead to the formation of a compact condensation or tail inside the planetary nebula, which emits strongly in H α , but not in [O  iii ]. The position of the condensation (or tail) will change over a time-scale of ∼10 yr. Such condensations might be detected with currently existing telescopes.  相似文献   

3.
We have evaluated the likely progenitor masses M PG of nebulae having elliptical, circular and bipolar morphologies, using observed ratios between the populations of these sources, and deduced central star mass functions. We find that most bipolar nebulae (BPNe) are likely to arise from progenitors having mass M PG>2.3 M and spectral types earlier than A3.2, whilst circular sources are associated with progenitors of mass 1.0 M< M PG<1.2 M and spectral range G1.9–F7.8 . Elliptical sources arise from intermediate-mass progenitors. The procedures employed to determine these values are relatively insensitive to uncertainties in scaleheights and population ratios, and completely insensitive to uncertainties in the distance scale. They are, however, dependent upon the precise forms adopted for the initial–final and central star mass functions, and we discuss the sensitivity of M PG to uncertainties in these functions.  相似文献   

4.
5.
We study the formation of radially aligned condensations and tails through the compression of material inside ionization shadows at early ionization phases of planetary nebulae. A dense clump, formed before ionization starts, forms an ionization shadow behind it. The surroundings, which are ionized before the shadow, have a higher temperature, and as a result compress the material in the shadow, forming a compressed tail. If the compressed tail crosses a dense shell, a dense condensation (clump) is formed there. At later stages this condensation is ionized and observed as a bright knot, radially aligned with the inner clump. We find that for the shadow to be effective, the clump should be already present as the ionization by the central star starts, and its density enhancement should be by a factor of ≳ 5. We propose this mechanism as an explanation for the radially aligned condensations recently found in the planetary nebula IC 4593.  相似文献   

6.
7.
8.
9.
We calculate the X-ray emission from both constant and time-evolving shocked fast winds blown by the central stars of planetary nebulae (PNe) and compare our calculations with observations. Using spherically symmetric numerical simulations with radiative cooling, we calculate the flow structure and the X-ray temperature and luminosity of the hot bubble formed by the shocked fast wind. We find that a constant fast wind gives results that are very close to those obtained from the self-similar solution. We show that in order for a fast shocked wind to explain the observed X-ray properties of PNe, rapid evolution of the wind is essential. More specifically, the mass-loss rate of the fast wind should be high early on when the speed is  ∼300–700 km s−1  , and then it needs to drop drastically by the time the PN age reaches ∼1000 yr. This implies that the central star has a very short pre-PN (post-asymptotic giant branch) phase.  相似文献   

10.
Magnetic fields are an important but largely unknown ingredient of planetary nebulae. They have been detected in oxygen-rich asymptotic giant branch (AGB) and post-AGB stars, and may play a role in the shaping of their nebulae. Here we present SCUBA submillimetre polarimetric observations of four bipolar planetary nebulae and post-AGB stars, including two oxygen-rich and two carbon-rich nebulae, to determine the geometry of the magnetic field by dust alignment. Three of the four sources (NGC 7027, 6537 and 6302) present a well-defined toroidal magnetic field oriented along their equatorial torus or disc. NGC 6302 may also show field lines along the bipolar outflow. CRL 2688 shows a complex field structure, where part of the field aligns with the torus, whilst an other part approximately aligns with the polar outflow. It also presents marked asymmetries in its magnetic structure. NGC 7027 shows evidence for a disorganized field in the south-west corner, where the SCUBA shows an indication for an outflow. The findings show a clear correlation between field orientation and nebular structure.  相似文献   

11.
12.
I study some effects of aspherical mass loss during the last stages of the asymptotic giant branch (AGB) on the appearance of proto-planetary nebulae (proto-PNs) and young PNs. The aspherical mass loss can be small-scale inhomogeneities, and/or axially symmetric mass-loss geometry. I first examine the role of the dust opacity in the optical band on the appearance of proto-PNs. I conclude that large optical depths will be found in proto-PNs that are post-AGB stars having high equatorial mass-loss rates, which require a stellar binary companion for their existence. In these cases light from the central star will reach larger distances along and near the polar directions, leading to the appearance of an elongated reflection nebula. These proto-PNs will become bipolar PNs, i.e., PNs with two lobes and an equatorial waist between them, or extreme ellipticals, e.g., a ring but no lobes on the two sides of the equatorial plane. I then derive the conditions for the enhancement of non-radial density inhomogeneity by the propagation of the ionization front at the early PN stages. The ionization will proceed faster in the radial direction along low-density regions. The low-density regions will be heated earlier, and they will expand as a result of their higher pressures, reducing further their densities. The opposite occurs in high-density regions. The condition for this ionization instability to develop is that the ionization time difference between two directions at the same radius is longer than the sound crossing time between these two regions. This condition for the ionization front instability can be expressed as a condition on the mass-loss rate inhomogeneity, i.e., its dependence on direction.  相似文献   

13.
A sample of 25 infrared-bright planetary nebulae (PNe) towards the Galactic bulge is analysed through 8–13 μm spectroscopy. The classification of the warm dust emission features provides a measure of the C/O chemical balance, and represents the first C/O estimates for bulge PNe. Out of 13 PNe with identified dust types, four PNe have emission features associated with C-based grains, while the remaining 9 have O-rich dust signatures. The low fraction of C-rich PNe, ≲ 30 per cent, contrasts with that for local PNe, around ∼ 80 per cent, although it follows the trend for a decreasing frequency of C-rich PNe with galactocentric radius (Paper I). We investigate whether the PNe discussed here are linked to the bulge stellar population (similar to type IV, or halo, PNe) or the inner Galactic disc (a young and super-metal-rich population). Although 60 per cent of the PNe with warm dust are convincing bulge members, none of the C-rich PNe satisfies our criteria, and they are probably linked to the inner Galactic disc. In the framework of single star evolution, the available information on bulge PNe points towards a progenitor population similar in age to that of local PNe (type I PNe are found in similar proportions), but super-metal-rich (to account for the scarcity of C-rich objects). Yet the metallicities of bulge PNe, as inferred from [O/H], fail to reach the required values – except for the C-rich objects. It is likely that the sample discussed here is derived from a mixed disc/bulge progenitor population and dominated by type IV PNe, as suggested by Peimbert. The much higher fraction of O-rich PNe in this sample than in the solar neighbourhood should result in a proportionally greater injection of silicate grains into the inner Galactic medium.  相似文献   

14.
15.
We present the many evolutionary routes that progenitors of bipolar planetary nebulae (BPNe) can take. Overall, there are about a hundred qualitatively different evolutionary routes, hence about a hundred qualitatively different types of BPNe. Within each type there are quantitative differences as well. Adding the dependence of the appearance on inclination, we find that the number of different apparent structures of BPNe is about equal to, or even larger than, the number of known BPNe and proto-BPNe. Accordingly we argue that every BPN is a 'unique' object in its appearance, but all can be explained within the binary model paradigm. Therefore, we request a stop to the attaching of adjectives such as 'unique', 'peculiar', and 'unusual' to BPNe and proto-BPNe, thereby removing the need to invoke a new model for almost every 'unusual' BPN. As a case study we try to build a binary model for the proto-BPN OH 231.8+4.2. In our preferred model the AGB Mira-type star has a main sequence companion of mass ∼1 M, orbital period of ∼5 yr, and eccentricity of ≳0.1.  相似文献   

16.
We study the bending of jets in binary stellar systems. A compact companion accretes mass from the slow wind of the mass-losing primary star, forms an accretion disc and blows two opposite jets. These fast jets are bent by the slow wind. Disregarding the orbital motion, we find the dependence of the bending angle on the properties of the slow wind and the jets. Bending of jets is observed in planetary nebulae which are thought to be the descendants of interacting binary stars. For example, in some of these planetary nebulae, the two bubbles (lobes) which are inflated by the two opposite jets are displaced to the same side of the symmetry axis of the nebula. Similar displacements are observed in bubble pairs in the centre of some clusters and groups of galaxies. We compare the bending of jets in binary stellar systems with that in clusters of galaxies.  相似文献   

17.
18.
The low excitation properties of the planetary nebula (PN) NGC 6720 are known to be unusual, and to imply large ring/core emission ratios. We point out that such characteristics are by no means confined to this source alone, and that high ratios may occur in a large fraction of elliptical and circular PNe. Such trends may arise because of the presence of thin low-excitation emission sheets 'wrapped' within and around the primary outflows. The widths of such shells are required to be exceedingly small, and may (for certain cases) be of order ≪10−2 pc. Such a mechanism appears capable of explaining most of the observed emission properties, and may arise through shock interaction between differing envelopes. Alternative explanations in terms of bipolar or cylindrical outflows are shown to be implausible.  相似文献   

19.
We examine the flow from asymptotic giant branch (AGB) stars when along a small solid angle the optical depth resulting from dust is very large. We consider two types of flows. In the first, small cool spots are formed on the surface of slowly rotating AGB stars. Large quantities of dust are expected to be formed above the surface of these cool spots. We propose that if the dust formation occurs during the last AGB phase when the mass-loss rate is high, the dust shields the region above it from the stellar radiation. This leads to both further dust formation in the shaded region and, owing to lower temperature and pressure, the convergence of the stream toward the shaded region, and the formation of a flow having a higher density than its surroundings. This density contrast can be as high as ∼4. A concentration of magnetic cool spots toward the equator will lead to a density contrast of up to a few between the equatorial and polar directions. This process can explain the positive correlation between high mass-loss rate and a larger departure from sphericity in progenitors of elliptical planetary nebulae. In the second type of flow, the high density in the equatorial plane is formed by a binary interaction, where the secondary star is close to, but outside the AGB envelope. The shielding of the radiation by dust results in a very slow and dense flow in the equatorial plane. We suggest this flow as an alternative explanation for the equatorial dense matter found at several hundred astronomical units around several post-AGB binary systems.  相似文献   

20.
Accurate optical coordinates of 734 PNe, measured on the charts of the Digitized Palomar Sky Survey, are presented. As a result of the discussion about the external accuracy the constants –0.8″ in RA and +0.8″ in DEC should be added to the coordinates measured by us. They were used but rounded off already in CGPN(2000). The list and measurements of new 31 candidates of central stars are given which might be interesting for stellar evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号