共查询到20条相似文献,搜索用时 13 毫秒
1.
Bohdan Kříbek Karel Žák Petr Dobeš Jaromír Leichmann Marta Pudilová Miloš René Bohdan Scharm Marta Scharmová Antonín Hájek Daniel Holeczy Ulrich F. Hein Bernd Lehmann 《Mineralium Deposita》2009,44(1):99-128
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average
grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium
quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization
style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root
and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of
low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a
reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into
the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma
and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early
Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx
of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions
is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these
fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C.
During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of
the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage
alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic
monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite
to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response
to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite).
The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C
and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system
during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite
thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic
polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related
to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages
on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent
with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif.
A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event. 相似文献
2.
The Ransko gabbro-peridotite massif in Eastern Bohemia is a strongly differentiated intrusive complex of Lower Cambrian age. The complex hosts low grade Ni-Cu ores mainly developed close to the contact of olivine-rich rocks with gabbros, in troctolites and, to a much lesser extent, in both pyroxene and olivine gabbros and plagioclase-rich peridotites. The ore zone is characterized by strong serpentinization and uralitization. The total Ni + Cu locally reaches up to 4 wt%. Anomalous concentrations of platinum-group elements (PGE's) (maximum 532 ppb Pd, 182 ppb Pt, 53 ppb Rh, 15 ppb Ru, 41 ppb Ir) were detected in samples of Cu-Ni and Ni-Cu ores (maximum 2.63 wt% Ni and 2.31 wt% Cu) from the Jezírka orebody. The main ore paragenesis includes pyrrhotite, pentlandite, chalcopyrite, cubanite, pyrite, magnetite, mackinawite, valleriite, ilmenite and sphalerite. During this work, michenerite, froodite, sperrylite, gold, native bismuth, altaite, tsumoite, hessite, an unnamed Bi-Ni telluride, cobaltite-gersdorffite and galena were newly identified. The host rocks originated through partial melting of a slightly depleted mantle source with noble metals scavenged from this primitive magma prior to the development of these rocks. 相似文献
3.
Decorative marbles from the Krkonoše-Jizera Terrane (Bohemian Massif,Czech Republic): provenance criteria 总被引:1,自引:0,他引:1
Marbles from western part of the Krkonoše-Jizera Terrane (northern part of the Bohemian Massif) have been studied to obtain
mineropetrographic and chemical reference data for provenance studies. Samples from six different quarries were analysed by
mineralogical-petrographic and geochemical methods (optical microscopy, X-ray diffraction, stable isotope ratio analysis,
cathodoluminescence, bulk magnetic susceptibility). Petrographic characteristics permit a distinction between fine-grained
to medium-grained marbles from the Jizera Mts (amphibolite metamorphic facies) and fine-grained marbles from the Ještěd Mts
(low-grade greenschist facies). The samples studied are mainly calcitic, with the exception of those from Raspenava in which
dolomite is abundant in two types. The mineralogical composition of the insoluble residues is clinochlore ± serpentine ± tremolite ± diopside ± pyrite + magnetite
in case of the locality Raspenava and clinochlore + muscovite ± quartz ± pyrite ± rutile ± haematite in case of the localities
from the Ještěd Mts. δ13C and δ18O variations in primary and secondary carbonate phases allow to distinguish genetically different carbonate veins and permit
quarry separation in one case (Raspenava, Jizera Mts). The δ13C and δ18O values of the groundmass range from −1 to +3‰ and from −8 to −20‰ (PDB), respectively. The δ13C and δ18O values of secondary carbonate veins decrease to −3‰ and reach more negative values up to −26‰ in case of δ18O. The fabric of cathodomicrofacies allows the distinction between calcite and dolomite, except three localities (Pilínkov,
Horní Hanychov, Jitrava—rose type) with majority of quenchers (high content of iron in carbonate). The genetically different
calcite is characterised by a pale and dark orange luminescence distribution. Serpentine, tremolite, forsterite, opaque minerals
and quartz have no luminescence and very dull luminescence, respectively. The majority of studied marbles exhibits low values
of the bulk magnetic susceptibility, with the exception of those from Raspenava rich in magnetite. 相似文献
4.
The paper examines relations among geomorphological processes and the landforms of the Polická vrchovina Highland in the Bohemian Massif. Geologically, the Polická vrchovina Highland is a part of the Intra-Sudetic Basin on the boundary between Bohemia and Poland. The basin structure of the Highland developed during the neotectonic period. In the outer parts of the Highland, Mesozoic rocks dip gently to the centre of the basin to form cuestas. In the central part, layers are horizontal or subhorizontal. Mesas (Hejda and Osta Mesa) provide evidence of the erosion of the Mesozoic deposits. The relative uplift of the Highland resulted in the incision of the Metuje River and its tributaries. Unloading of rocks and erosion initiated typical geomorphological processes such as deep- seated creep, cambering, rockfalls, landslides and pseudokarst processes. These processes produced some typical forms controlled by rock properties, jointing, relative differences in height and climatic changes in the Tertiary and Quaternary. 相似文献
5.
In the Variscan French Massif Central and Armorican Massif, the tectonic significance of a widespread NW–SE-trending stretching lineation, coeval with medium pressure–medium temperature metamorphism, is an open question. Based on a structural analysis in the southern part of the Massif Central, we show that this top-to-the-NW shearing is a deformation event, referred to as D2, which followed a D1 top-to-the-south shearing Devonian phase, and was itself re-deformed by a Late D3 Visean–Serpukhovian southward-thrusting event. We date the D2 phase at 360 Ma (Famennian–Tournaisian boundary). In the Armorican Massif, D2 is the “Bretonian phase” recorded in the metamorphic series and sedimentary basins. Geodynamically, D2 is related to a general northwestward shearing during the Laurussia–Gondwana collision, which occurred after the closure of the Rheic Ocean, as indicated by the emplacement of the Lizard ophiolitic nappe in Britain. The left-lateral Nort-sur-Erdre fault accommodated the absence of ductile shearing in Central Armorica. 相似文献
6.
《Geodinamica Acta》2013,26(5):363-374
Granitoid rocks of the southern Menderes Massif, SW Turkey include widespread possibly Ediacaran high-grade granitic orthogneisses and younger (Tertiary) sheets, sills and/or dikes of variably deformed tourmaline-bearing leucogranites. The latter are confined to the immediate footwall of the regional-scale ductile southern Menderes shear zone. Although both sets of granitoid rocks are essentially calc-alkaline and peraluminous, the syn- to post-collisional tourmaline-bearing leucogranites are chemically distinguishable from both the granitoid orthogneisses and from two sets of mostly sodic siliceous dyke rocks. The leucogranites were generated by partial melting induced by shear heating during the waning stages of the Eocene main Menderes metamorphism and associated top-to-the-NNE thrusting along the southern Menderes ductile shear zone, which transported schists northwards over the granitoid orthogneisses of the core Menderes complex. Upward migration and emplacement of leucogranitic melt weakened formerly sheared rocks, so that when thrust-related deformation ceased it facilitated rapid crustal extension along the shear zone. The emplacement of leucogranites, in turn, promoted the reactivation of the southern Menderes shear zone as a top-to-the-SSW extensional feature. Continued extensional deformation affected the leucogranites which became parallel to the shear-zone foliation; local S-C fabrics were also generated. The additional occurrence of less or almost undeformed leucogranites suggests that the latest stages of extension might have induced adiabatic decompressional melting. Hence the leucogranite melt generation and emplacement in the southern Menderes Massif occurred in pulses. Both compressional and extensional processes played key roles in melt generation, emplacement, deformation and exhumation of the massif. A clear distinction may also be made between the composition of granite-hosted tourmalines and those from metasedimentary schists. Tourmalines from a pebble of uncertain provenance in the Gökçay metaconglomerate plotted with schist-hosted tourmalines, suggesting that it was unlikely to be derived from granitoid gneiss. This crucial piece of evidence suggests that the presence of a major (Pan-African) unconformity at the so-called “core (orthogneiss)-cover (schist)” boundary in the southern Menderes Massif is unnecessary. 相似文献
7.
Cambrian and Ordovician-Middle Devonian sequences of two successive Early Palaeozoic basins of the Barrandian unconformably overlie Cadomian basement in the Bohemian Massif NW interior (Teplá-Barrandian unit) which is the easternmost peri-Gondwanan remnant within the Variscides. Correlation of stratigraphy and geochemistry of the Early Palaeozoic siliciclastic rocks elucidated sediment provenances. Sandstones of the Middle Cambrian Píbram-Jince Basin were derived from a Cadomian Neoproterozoic island arc. The source area of the Ordovician shallow-marine siliciclastics of the successor Prague Basin is a dissected Cadomian orogen. Late Cambrian acid volcanics of the Barrandian and Cambrian (meta)granitoids emplaced in the W part of the Teplá-Barrandian Cadomian basement are also discernible in these sediments. Old sedimentary component increased during the Ordovician. Early Llandovery siliciclastic rocks show characteristics of an abruptly weakened supply of terrigenous material and an elevated proportion of synsedimentary basic volcanics as a result of Silurian transgression. Emsian siliciclastics (intercalated in the Late Silurian to Early Devonian limestone suite) presumably comprise an addition of coeval basic/ultrabasic volcaniclastics. Middle Devonian flysch-like siliciclastics indicate reappearance of Cadomian source near the Barrandian during early Variscan convergences of Armorican microplates that preceeded accretion of the Teplá-Barrandian unit within the Bohemian Massif terrane mosaic.Dr. Patoka deceased in July 2004. 相似文献
8.
The studied Mokrsko-West (90–100 t Au), Mokrsko-East (30 t Au) and Čelina (11 t Au) deposits represent three spatially and genetically interrelated deposits of supposed affiliation to the intrusion-related gold deposit type. The deposits differ in their dominant host rocks, which are represented by ca 354 Ma old biotite tonalite (Mokrsko-West) and Neoproterozoic volcanic and volcanosedimentary rocks (Mokrsko-East, Čelina). Another difference lies in the style of veining — densely spaced networks of 0.1–5 mm thin veins (Q2) within the tonalite, compared to thick (usually 5–20 cm; Q1–2) and widely spaced veins within the Neoproterozoic rocks.Five generations of quartz veins, referred to as Q0 through Q4 were distinguished: Q0 veins are the oldest and ore-barren, Q1 veins mark the onset of the Au-ore formation, Q2 veins its culmination and Q3 veins its fading. Late quartz gangue (Q4) is associated with uneconomic Ag–Pb–Zn vein-type ores hosted by calcite–barite–(quartz) veins.Quartz vein thickness (~ 0.3 to ~ 300 mm), spacing (~ 3 mm to ~ 500 mm), distribution, and related extensional strain (ca. 3–25%) evolve systematically across the studied ore district, reflecting both the major host rock and other tectonic factors. Detailed study of vein dimension parameters (thickness, length, width, aspect ratios) allowed estimation of the probable depth of the fluid source reservoir (~ 2 km or ~ 4 km) below the present surface. The depth to the fluid source seems to increase through time, being the shallowest for the Q0 veins and the deepest for the Q2 veins. Two independent methods of estimating fluid overpressure are discussed in the paper. Fluid overpressure during vein formation decreases from the Q0 through the Q2 veins, from 10 to 4 MPa or from 26 to 10 MPa, depending on the assumed tensile strength of the tonalite (5.5 and 15 MPa, respectively).The origin of joints and veins is discussed in terms of the stress orientation and crack-seal and crack-jump mechanisms. Field relationships unambiguously indicate that the veins hosted by Neoproterozoic rocks originated by reopening of the pre-existing extension joints (J1) due to fluid overpressure. The origin of the densely-spaced thin veins (Q2) hosted by the tonalite at the Mokrsko-West deposit is, however, less certain. It is probable that the tonalite was already affected by microfracturing analogous to the J1 joints prior to the formation of quartz veins.The formation of the Q1–2 veins at the Mokrsko-East deposit was constrained by the Re–Os dating of molybdenite to 342.9 ± 1.4 Ma. The ore-bearing hydrothermal system is thus ca 12 Ma younger than the tonalite that hosts the Mokrsko-West deposit. A similar ca 15–2 Ma difference between the age of the host-intrusion and the age of the hydrothermal event was encountered in several other gold deposits in the vicinity of the Central Bohemian Plutonic Complex. Two hypotheses to explain this are discussed in the paper. 相似文献
9.
Mineralogy and Petrology - The results of the new Electron Microprobe Analysis of apatite, hornblende and biotite crystals of the hornblende-biotite variety of the Strzegom-Sobótka granite... 相似文献
10.
The mineral assemblage and the sedimentological characteristics of the “Donauplatin” (Danubian fluvial placer containing platinum-group elements (PGE) and gold (Au)) are described for the first time in connection with upstream reference placer deposits near the potential source area in tributaries of the River Danube/Donau. Granulometric and morphometric data have been obtained using the CCD-based CAMSIZER technique. The platinum-group minerals (PGM; iridium, osmium, unknown iridium-osmium-sulfide, ruthenium-osmium-iridium alloys, platinum-iron alloys, iridium-bearing platinum, sperrylite) have been derived from ultramafic magmatic rocks, probably belonging to the ophiolitic series in the Tepla Barrandian unit of the Bohemian Massif. The Au-Pd-Cu compounds in the placer originated from dynamo-metamorphogenic processes in a sulfur-deficient environment at the SW edge of the Bavarian Basement. Gold in the “Donauplatin” has been reworked from a “secondary” or intermediate repository of lateritic gold (Boddington-type). Its primary source is supposed to be of orogenic origin. Provenance analyses of the associated non-heavy minerals point to high-pressure metamorphic rocks, igneous rocks (monazite) and high-temperature metamorphic rocks (750° to 850°C, zircon morphology). Garnet compositions indicate that meta(ultra)basic igneous rocks, calc-silicate rocks and skarns prevailed over paragneisses in the provenance area. Extraterrestrial processes creating the well-known Ries impact crater in the environs of Nördlingen during the Miocene have a minor share in the PGE budget by delivering molybdenum-ruthenium-osmium-iridium alloys and iridium solid-solution series (s.s.s.) minerals. Judging by the heavy mineral suites, Saxothuringian source rocks of the NE Bavarian Basement connected with the Donau River via the Naab River drainage system have not contributed to the element budget of the “Donauplatin” under study. Stream sediments which have been derived from this provenance area are characterized by low-temperature (LT) crystalline rocks and a considerable proportion of pegmatitic and metabauxitic material lacking in the Holocene sediments of the “Donauplatin”. 相似文献
11.
《Geodinamica Acta》2013,26(5-6):273-290
In the post-Variscan Early Permian deposits of southwestern Europe, andesites belong to successions characterized by the constant occurrence of a basal rhyolite ignimbrite, followed by andesites, and by abundant dacite-rhyodacite products, interbedded with lacustrine sediments. The subalkaline andesite to K-andesite volcanism developed within intramontane basins following the collapse of the Variscan orogen. The compositional features, including trace element ratios and initial Sr (and Nd) of post-Variscan intermediate products allow excluding continental or island arc settings. The andesite composition of Lower Permian lavas was reproduced starting from two potential primary magmas: picrobasaltic and enriched MORB compositions. In particular, the picrobasalt was modified, by adding incremental amounts of a felsic granulite, from the lower continental crust. Mixing and fractional crystallization (MFC) were modelled by the MELTS software in a closed system under isobaric, isenthalpic conditions (P = 0.3 GPa). The computed residual liquid evolves to match closely the composition of Lower Permian andesite lavas after ~34 % crystallization by adding ~27 % of contaminant to the parental magma. 相似文献
12.
Vojtěch Janoušek Jaroslav Aichler Pavel Hanžl Axel Gerdes Vojtěch Erban Vladimír Žáček Vratislav Pecina Marta Pudilová Kristýna Hrdličková Petr Mixa Eliška Žáčková 《International Journal of Earth Sciences》2014,103(2):455-483
The low-grade metavolcanic/volcanosedimentary complex of the Devonian Vrbno Group (Silesicum, NE Bohemian Massif, Czech Republic) occurs in two ~NE–SW trending belts, separated by tectonic slices of Cadomian metagranitic paraautochton. (1) The basic–intermediate lavas of the calc-alkaline Western Volcanic Belt came from a moderately depleted mantle $ \left( {\varepsilon_{\text{Nd}}^{370} \sim + 3} \right) $ . Rare rhyolites (374.0 ± 1.7 Ma: 2σ, LA–ICP–MS U–Pb Zrn) were derived most likely from immature crust or by extensive fractionation of primary basaltic melts. The rock association is interpreted as a vestige of a deeply dissected continental arc. (2) The Eastern Volcanic Belt consists mainly of (nearly) contemporaneous (371.0 ± 1.4 Ma) felsic alkaline lavas with high HFSE contents, as well as high Ga/Al and Fe/Mg ratios, typical of within-plate igneous setting. The petrology and Nd–Sr isotopic data point to a high-T anatexis of a young metagranitic crust, resembling the Cadomian (Brunovistulian) basement, in a back-arc setting. The attenuated Brunovistulian lithosphere could have partially melted by the heat provided by the upwelling asthenosphere and/or underplating basic magma. (3) Finally, the region was penetrated by numerous subalkaline, MORB/EMORB-like dolerite sheets—a hallmark of the considerable crustal thinning. 相似文献
13.
《Chemie der Erde / Geochemistry》2015,75(1):51-54
Our reply deals with the investigations of Kropáč et al. (2012) concerning the evolution of Mn-rich garnetites (=coticules) in the Silesian Desná Unit which are closely associated with Fe-rich rocks. Pouba (1970) who described these mineralizations in greater detail, postulated an origin identical with banded iron-formations of the Algoma type. However, Mücke and Losos (2007) excluded a banded iron-formation origin for the magnetite mineralizations and came to the conclusion that these are connected with the Devonian amphibolite of the Sobotín Massif. The older garnetites were inferred to be identical with coticules and, therefore, are comparable with Mn-rich iron-formations of the Algoma type. Concerning the coticules, Kropáč et al. (2012) confirmed the same origin as proposed by us. For the magnetite-rich rocks, on the other hand, Kropáč et al. (2012) strictly followed Pouba (1970), but did neither present new results or data, nor considered the arguments of Mücke and Losos (2007). In this reply, the most important results of Mücke and Losos (2007) are discussed in comparison with banded iron-formations. 相似文献
14.
The Jílové deposit in the central part of the Bohemian Massif represents a vein to stockwork type of orogenic-type gold deposit. It is hosted by Neoproterozoic rocks of the Jílové Belt and by various magmatic dikes related to the ~ 355 to ~ 335 Ma Central Bohemian Plutonic Complex. The deposit is situated along the terrane boundary of the Teplá Barrandian and Moldanubian units.The deposit offered an exceptional opportunity to trace O, C, S and Sr stable isotope evolution of parent fluids based on combined mineralogical and geochemical study of carbonate, quartz, scheelite, and sulfide minerals, which represent six stages of mineralization, including the gold-bearing event.Stable isotope data and mineral and isotope thermometry indicate gangue and ore mineral formation between ~ 350 °C and < 100 °C, which can be divided into 6 stages. Scheelite-bearing assemblages (stages 2–3) precipitated at 292 ± 8 °C from a fluid with calculated values: δ18OSMOW = + 4.2 ± 0.5‰ and δ13CPDB = − 11 ± 1‰. Gold precipitation (stage 5) probably started at about 300 °C, but the major event probably occurred at 230 ± 30 °C from a fluid with more variable isotope values (δ18OSMOW = + 2.5 to + 5‰ and δ13CPDB = − 9 to − 13.5‰). The carbon speciation was characterized by predomination of dissolved CO2 (H2CO3ap.) in the fluids. Some gold, however, undoubtedly precipitated from bicarbonate dominated fluids even at < 120 °C.Extreme variations in the δ18O values of carbonate minerals, obtained from sampling profiles across individual veins with macroscopic gold, revealed severe thermal gradients during vein formation (~ 50 to ~ 100 °C difference of crystallization temperatures between the vein margin and core).The sulfur stable isotope composition of sulfide minerals indicates the dominant role of sulfur remobilization from Neoproterozoic rocks and stratiform mineralizations of the Jílové Belt by Variscan hydrothermal fluids. Similarly, the Sr-isotope composition of carbonates indicates both relatively primitive (87Sr/86Sr = 0.7055) and more evolved (87Sr/86Sr ~ 0.7090) fluid compositions, probably indicating fluid exchange with the Jílové Belt and the Central Bohemian Plutonic Complex rocks, respectively.Age determination of hydrothermal muscovite (related to stage 2) via 40Ar/39Ar indicated an age of 339.0 ± 1.5 Ma for the quartz veins. The mineralization is essentially coeval with the late intrusive phases of the Central Bohemian Plutonic Complex (i.e. the ultrapotassic suite) and with late-orogenic large-scale tectonic movements at the boundary between the two crustal terranes (Teplá-Barrandian and Moldanubian).Based on evaluation of the available age data on the hydrothermal and magmatic activity within the broader area of the Central Bohemian Plutonic Complex, we suggest two intervals of gold mineralization: 347 to 341 Ma and 340 to 337 Ma. The former interval overlaps with the intrusive activity of the Blatná high-K suite (granodiorite). The associated gold deposits (Mokrsko and Petráčkova hora) exhibit strong affiliation to the intrusion-related-gold-type deposit. The later interval overlaps with the ultrapotassic magmatism and is associated with more or less “classical” orogenic-gold-type deposits (Jílové, Bělčice, Libčice deposits). 相似文献
15.
《International Geology Review》2012,54(9):1003-1031
We have studied the petrography and the bulk-rock geochemistry of arenites and mudstones of the Cenomanian Peruc–Korycany Formation to characterize their provenance and sedimentary history, as well as the influence of weathering, hydraulic sorting, and recycling of the source rocks. The Peruc–Korycany Formation contains sedimentary facies reflecting both meandering- and braided-river systems and shallow-marine systems. Differences in the three depositional settings did not cause distinctly different modifications of the framework compositions of the arenites. The sand from the fluvial systems is very mature (Qm98F0Lt2). These fluvial arenites were subsequently modified by shallow-marine processes; reworking produced very slight decreases in the abundance of lithic fragments and polycrystalline quartz grains. The Cenomanian strata of the Bohemian Cretaceous Basin were derived dominantly from metasedimentary and crystalline rocks of the Palaeozoic Teplà-Barrandian and Cadomian Moldanubian units, respectively. Periods of low tectonic activity resulted in the deposition of arenites with quartzose framework compositions, indicating that climatic and/or transport/depositional-environmental controls overwhelmed factors such as source-rock compositions. Ultrastable dense minerals are useful indicators of sedimentary recycling within the Peruc–Korycanytarenites. Mudstone samples are characterized by abundant kaolinite, illite, chlorite, and quartz but by negligible amounts of goethite and gypsum. Concentrations normalized to the post-Archaean Australian shale (PAAS) show that the sediments are strongly depleted of Na, K, Ca, Sr, and Ba, probably because of the mobility of these elements during weathering. Chemical indices of alteration (CIA, CIW, and PIA) show that the degree of weathering of the source area was high. The data fall closer to the compositional fields of highly weathered minerals such as kaolinite, gibbsite, and chlorite on an A-CN-K diagram. The indices of compositional variability of the studied samples are much less than 1, suggesting that the samples are compositionally mature and were likely dominated by recycling. The elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Co, Th/Cr, and Cr/Th) are similar to fine fractions derived from the weathering of mostly granitoids rather than mafic rocks. 相似文献
16.
Summary A fully cored drillhole was drilled to 1596m by the Czech Geological Survey in 1961–1963 in the central part of the Cínovec (Zinnwald) granite cupola. Two types of granite were intersected: zinnwaldite granite (ZG), observed down to a depth of 730m, and protolithionite granite (PG), occurring to the end of the hole. The core was used to study the distribution and chemistry of: zircon, thorite, xenotime, monazite, bastnäsite, synchysite, REE oxyfluorides and hydroxyfluorides. Zircon occurs throughout the drillcore; it is strongly hydrated and fluorinated with about 18.5wt.% H2O content in the apical part of the cupola. Its F-content reaches 2.41wt.%. Within the PG, the F concentration in zircon is low. Zircon is poor in Th and U and its HfO2 contents vary from 1.01 to 5.24wt.%. Thorite is common in the PG, becoming rare in the ZG. It is strongly hydrated (up to 14wt.% H2O) and fluorinated (up to 2.04wt.% F). Extensive solid solution between ThSiO4 and YPO4 was observed. Xenotime is strongly hydrated (up to 16wt.% H2O), but its F content is low (<0.31wt.%). Two types of monazite were identified: Th-rich (up to 9.3wt.% ThO2) in the ZG, and Th-poor (<2.5wt.% ThO2) in the PG. Monazite remained stable during the hydration and fluorination process. Its REE chondrite-normalized distribution patterns show negative anomalies for La and Nd and a pronounced negative anomaly for Eu. Chemical compositions of several REE oxyfluorides and hydroxyfluorides were studied. REE fluorocarbonates are represented by bastnäsite and synchysite. Bastnäsite is abundant in the ZG. Its chondrite-normalized REE patterns are characterized by an important negative Eu anomaly and downward kinks at La and Nd. Synchysite-(Ce) and synchysite-(Y) are particularly well developed in the deeper parts of the cupola, and exhibit REE distribution patterns characterized by a weak negative Eu anomaly (synchysite-(Ce)), or a weak positive Eu anomaly (synchysite-(Y)).The distribution of accessory minerals reveals five major evolution stages: (1) Early magmatic crystallization of albite and orthoclase. (2) A late magmatic stage comprising protolithionite, quartz, accessory zircon, thorite, xenotime and monazite. (3) Interaction of this magmatic association with a fluid phase rich in F, CO2 and H2O, leading to the transformation protolithionite zinnwaldite and to the remobilisation of Nb, Ta, Ti, W, Sn. Accessory minerals formed during stage (2) were hydrated and fluorinated, except monazite. (4) The transfer of volatiles into the apical part of the cupola followed by the opening of the magmatic system generated microgranites and hydrolysis-type reactions leading to the appearance of REE oxyfluorides and hydroxyfluorides. (5) A late CO2- and F-rich fluid phase was responsible for the deposition of REE fluorocarbonates. Monazite and xenotime became unstable in the apical part of the cupola. An influx of fluids with high Ca-activity occurred late during stage (5) and led to the formation of synchysite, and finally to the extensive precipitation of fluorite. 相似文献
17.
F. J. Rodríguez-Tovar I. Sánchez-Almazo E. Pardo-Igúzquiza J. C. Braga J. M. Martín 《International Journal of Earth Sciences》2013,102(6):1735-1755
Spectral analysis of the Messinian Abad marls in the Cariatiz section (Sorbas Basin, south-eastern Spain) reveals three relevant orders of cyclicity. The most significant cycle is in the lowest frequency (average thickness of 365 cm, 4–5 cycles in the section). It is recorded in the composition of planktic foraminiferal assemblages indicative of surface-water temperature, planktic and benthic stable isotope signals, and carbonate proportions. The planktic assemblages, isotope values and carbonate proportions also record a middle-frequency cycle with an average of 177 cm (9–10 cycles in the section). The highest frequency cycle (average of 132 cm, 12–13 cycles in the section) is mainly reflected in siliciclastic and calcite proportions. Age constraints and cycle patterns suggest that the lowest frequency cycle was forced by orbital obliquity, whereas the two higher-frequency ones are related to precession. Obliquity seems to have controlled major changes in surface-water temperature in the Sorbas Basin during the early Messinian. Surface-water temperature was also affected by precession, with changes in weathering and run-off. Spectral analysis has also been applied to vertical shifts of reef facies throughout the progradation of the Cariatiz reef. This reef is coeval with the Cariatiz section. Vertical shifts of reef talus breccias point to the existence of 4–5 major cycles of sea-level change, whereas 7–9 higher-frequency cycles are reflected in the repeated occurrence of lowstand, non-reefal deposits. Correlation with the cycles observed at the Cariatiz section suggests that obliquity forced glacio-eustatic sea-level oscillations in the western Mediterranean during the Late Miocene. 相似文献
18.
Uwe Hoffmann Christoph Breitkreuz Karel Breiter Sergey Sergeev Klaus Stanek Marion Tichomirowa 《International Journal of Earth Sciences》2013,102(1):73-99
Nine SHRIMP U/Pb ages on zircon and two Pb/Pb single zircon ages have been determined from Late Paleozoic volcanic rocks from Saxony and northern Bohemia. Samples came from the Teplice-Altenberg Volcanic Complex, the Meissen Volcanic Complex, the Chemnitz Basin, the Döhlen Basin, the Brandov-Olbernhau Basin, and the North Saxon Volcanic Complex. The Teplice-Altenberg Volcanic Complex is subdivided into an early Namurian phase (Mikulov Ignimbrite, 326.8 ± 4.3 Ma), thus older than assumed by previous studies, and a late caldera-forming phase (Teplice Ignimbrite, 308.8 ± 4.9 Ma). The age of the latter, however, is not well constrained due to a large population of inherited zircon and possible hydrothermal overprint. The Leutewitz Ignimbrite, product of an early explosive volcanic episode of the Meissen Volcanic Complex yielded an age of 302.9 ± 2.5 Ma (Stephanian A). Volcanic rocks intercalated in the Brandov-Olbernhau Basin (BOB, 302 ± 2.8 Ma), Chemnitz Basin (CB, 296.6 ± 3.0 Ma), Döhlen Basin (DB, 296 ± 3.0 Ma), and the North Saxon Volcanic Complex (NSVC, c. 300–290 Ma) yielded well-constrained Stephanian to Sakmarian ages. The largest Late Paleozoic ignimbrite-forming eruption in Central Europe, the Rochlitz Ignimbrite, has a well-defined middle Asselian age of 294.4 ± 1.8 Ma. Ages of palingenic zircon revealed that the Namurian-Westphalian magmatism assimilated larger amounts of crystalline basement that formed during previous Paleozoic geodynamic phases. The Precambrian inherited ages support the chronostratigraphic structure assumed for the Saxo-Thuringian Zone of the Variscan Orogen. The present results help to improve the chronostratigraphic allocation of the Late Paleozoic volcanic zones in Central Europe. At the same time, the radiometric ages have implications for the interbasinal correlation and for the geodynamic evolution of the Variscan Orogeny. 相似文献
19.
Lukáš Krmíček Jan Cempírek Aleš Havlín Antonín Přichystal Stanislav Houzar Michaela Krmíčková Petr Gadas 《Lithos》2011,121(1-4):74-86
A peralkaline, ultrapotassic dyke found at ?ebkovice (T?ebí? district, western Moravia) is a mineralogically extreme member of a dyke swarm occurring along the south-eastern border of the Moldanubian Region of the Bohemian Massif. The dyke shows a simple zoning, with a very fine-grained marginal zone grading into a medium-grained central zone. It has a primary mineral assemblage of microcline and potassic amphiboles, with accessory apatite and altered phlogopite. The microcline exhibits an unusual red luminescence colour and pronounced substitution of Fe3+ for Al, with measured contents of Fe2O3 up to 8.5 wt.% (0.31 apfu Fe3+). Amphiboles have very high K (up to 0.99 apfu) and Si contents; their compositions follow an alkaline fractionation trend from potassic-richterite to potassic-magnesio-arfvedsonite, characterized by an increase of Na/K and a decrease of Ca, Mg, Fe2+ and Ti via heterovalent substitutions [B]Ca + [C](Mg,Fe2+) → [B]Na + [C]Fe3+ and Ti + Mg → 2Fe3+. The most evolved apatite is significantly enriched in SrO (up to 9.7 wt.%; 0.49 apfu Sr). The core of the dyke and late veinlets contain unique late- to post-magmatic Ba–Ti–Zr-bearing mineral assemblages of baotite, henrymeyerite, titanite, rutile, benitoite and bazirite. Anhedral baotite fills interstices distributed inhomogeneously in the dyke centre; it is locally replaced by a Ba-bearing titanite + henrymeyerite + rutile + quartz assemblage. Henrymeyerite (the second record in a lamproite) shows variable Fe/Ti ratios and represents a solid solution of the hepta- and hexatitanate components. Euhedral crystals of benitoite and bazirite are enclosed in the late-stage quartz–titanite–apatite veinlets in the fine-grained margin of the intrusion. In terms of a mineralogical–genetic classification, the ?ebkovice dyke can be considered as a new high-silica (~ 57 wt.% SiO2) variety of lamproite (variety ?ebkovice), and represents a unique expression of post-collisional potassic magmatism on the south-eastern border of the Bohemian Massif. The peralkaline dykes from this area show mineralogical and geochemical features similar to those of silica-rich orogenic lamproites emplaced at destructive plate margins. In terms of the modern classification of lamproites, the ?ebkovice dyke is the first lamproite recognised in the Variscan orogenic belt. 相似文献
20.
Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts., Czech Republic) 总被引:1,自引:0,他引:1
Summary ¶Igneous quartz of the late-Variscan topaz-bearing granites from the Hub Stock (Slavkovský Les, Czech Republic) was investigated by cathodoluminescence (CL) and electron probe micro-analysis (EPMA) to demonstrate the intra-granular heterogeneity of growth patterns and trace element distribution in quartz. We show that EPMA is well suited for the in situ study of Al and Ti in zoned quartz, because of its high spatial resolution down to 5µm in conjunction with the ability to combine spot analyses with CL imaging. In the quartz phenocrysts of the topaz granites high Ti is associated with blue luminescent growth zones. High Ti (>40ppm) in quartz indicates a high crystallisation temperature and pressure. The groundmass quartz of the granites which is almost free of Ti, has higher Al than the phenocrysts which may reflect an increase of lithophile elements and water content in melt during the late magmatic stage. The occurrence of similar quartz phenocrysts in most of the late-Variscan granites and rhyolites of the Kruné Hory/Erzgebirge which intruded over a period of about 40Ma points to a similar crystallisation environment and origin of the quartz phenocrysts in the lower to middle crust.Received November 6, 2001; revised version accepted January 30, 2003
Published online June 2, 2003 相似文献