首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Fortyone successive flows of the Deccan Traps have been investigated at Mahabaleshwar, India, and the rocks from the twenty two different flows have been newly analysed. All of these basalts are silica-saturated tholeiites; and the series shows minor gradual variation with the order of eruption. These seem to be a result of magmatic differentiation somewhat similar to that shown in the Skaergaard intrusion.  相似文献   

3.
In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in Bangalore, India to develop microzonation maps. An area of 220 km2, encompassing Bangalore Mahanagara Palike (BMP) has been chosen as the study area. Seismic hazard analysis and microzonation of Bangalore are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. Second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis (using the program SHAKE2000) using both standard penetration test (SPT) data and shear wave velocity data from multichannel analysis of surface wave (MASW) survey. Further, field experiments using microtremor studies have also been carried out for evaluation of predominant frequency of the soil columns. The same has been assessed using 1-D ground response analysis and compared with microtremor results. Further, the Seed and Idriss simplified approach has been adopted to evaluate the soil liquefaction susceptibility and liquefaction resistance assessment. Microzonation maps have been prepared with a scale of 1:20,000. The detailed methodology, along with experimental details, collated data, results and maps are presented in this paper.  相似文献   

4.
The utility of using fossil soils in addition to other sedimentologic evidence in reconstructing past environments is considered with a preliminary analysis of the character of pedogenic alteration of selected floodplain deposits which have yielded the hominoid primatesRamapithecus andDryopithecus in the vicinity of Haritalyangar, District Bilaspur, H. P., India. The alluvial paleosols studied reflect variance of properties which are related to original depositional fabric modified by secondary pedogenic processes. The Nagri aged paleosols of Haritalyangar are ferruginous tropical soils or low-grade oxisols developed on typical floodplain toposequences, all reflecting somewhat varied histories as a function of proximity to ancient active stream courses.
Zusammenfassung Es wird untersucht, inwieweit es für die Rekonstruktion des früheren Bildungsmilieus sinnvoll ist, in Verbindung mit anderen sedimentologischen Erscheinungen fossile Böden mit heranzuziehen, und zwar nach einer Analyse der Merkmale pedogenetischer Veränderungen in bestimmten Ablagerungen der Alluvialebenen in der Umgebung von Haritalyangar, Bilaspur, H. P., Indien, in denen die hominoiden PrimatenRamapithecus undDryopithecus gefunden worden sind. Die untersuchten alluvialen Paleoböden zeigen, verglichen mit der ursprünglichen Ablagerungsstruktur, Abweichungen in ihren Eigenschaften, die durch sekundäre pedogenetische Prozesse bestimmt sind.Die Paleoböden der Nagri-Stufe von Haritalyangar sind eisenreiche tropische Böden oder schwächere Oxiböden, die in den typischen Toposequenzen der Alluvialebenen entstanden sind und die aufgrund ihrer verschiedenen Entfernung zu alten Flußläufen alle eine etwas unterschiedliche Vergangenheit widerspiegeln.

Résumé On considère ici la possibilité d'utiliser des sols fossiles en plus d'autres évidences sedimentologiques pour reconstruire les environnements du passé. On présente aussi une analyse préliminaire des caractéristiques de modifications pédogéniques de certains sédiments de plaines alluviales, qui ont livré les primates hominoïdesRamapithecus etDryopithecus, au voisinage de Haritalyangar, district de Bilaspur, H. P., Inde. Les paléosols alluviaux étudiés révèlent diverses propriétés caractéristiques de dé pôts originaux, modifiés par des processus pédogéniques secondaires. Les vieux paléosols de Nagri, aux environs de Haritalyangar, sont des oxisols peu évolués, formés sur des séquence topographique typique de plaines alluviales. Tous reflètent quelque peu des stages divers selon leur proximité d'anciens cours fluviatiles actifs.

, , , , Haritalyangar'a, Bilaspur'a H.P., , . , , . Haritalyangar , , , , .
  相似文献   

5.
6.
7.
Hydrogeochemical investigations are carried out in the different blocks of Burdwan district, West Bengal, India in order to assess its suitability for drinking as well as irrigation water purpose. Altogether 49 representative groundwater samples are collected from bore wells and the water chemistry of various ions viz. Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42− and NO3 are carried out. The chemical relationships in Piper and Gibbs diagram suggest that the groundwater mainly belongs to alkali type and Cl group and are controlled by rock dominance. A comparison of groundwater quality in relation to drinking water quality standards proves that most of the water samples are suitable for drinking water purpose whereas groundwater in some areas of the district has high salinity and high sodium adsorption ratio (SAR), indicating unsuitability for irrigation water and needs adequate drainage.  相似文献   

8.
Gabbros at Purimetla occur in close association with the alkaline pluton. Petrography and petrochemistry of these gabbros indicate their tholeiitic nature. Chemical variation of these tholeiites suggests that an initial undersaturated tholeiitic magma yielded oversaturated fractions in the final stages of differentiation. Their regional distribution suggests that basic magmatism preceded the emplacement of the alkaline rocks in the Prakasam alkaline province.  相似文献   

9.
The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.  相似文献   

10.
Sphene coronites around magnetite are recorded in the granodiorite of Hyderabad. The metamorphic origin of the corona is discussed.  相似文献   

11.
In the Amba Dongar diatreme, “ferrocarbonatite” is not a single unit of late differentiate of calciocarbonatite magma but it is a family with variation on field occurrence, mineralogy and chemistry of each unit. The family includes dikes of ankeritic carbonatites (phase I and II), plugs of ankeritic carbonatite within sövite ring dike, dikes of sideritic carbonatite in ankeritic carbonatite plug and rödberg veins. Their intrusive relations are very clear in the field and each phase has characteristic mineralogy and trace and REE geochemistry. According to the nomenclature suggested by Harmer and Gittins (1997) majority of “ferrocarbonatites” of Amba Dongar plot in field of “ferruginous calciocarbonatite” and only siderite and rödberg plot in the field of “ferrocarbonatite”. Within these family members, their trace and REE show clear increase from early phase to last phase of sideritic carbonatite. The present short communication discusses various aspects of “ferrocarbonatites”.  相似文献   

12.
The Aravalli Range runs southwest from Delhi for a distance of about 700 km. Its western margin is well defined, but the eastern margin is diffuse. Five geomorphic provinces are recognized in the study area: the western piedmont plains; the ridge and valley province which in the Central Aravallis occurs at two different heights separated by a fault scarp; the plateau province demarcated from the former by a fault scarp, confined to the Southern Aravallis, and occurring for a short stretch at two heights across another fault scarp; the BGC rolling plains east of the Range; and the BGC uplands south of the above. The scarps coincide with Precambrian faults. A series of rapids and water-falls, together with deeply entrenched river courses across the scarps and the youthful aspects of the escarpments with no projecting spurs, or straight river courses along their feet, all point unmistakably to a recent or post-Neogene vertical uplift along pre-existing faults. Presence of knickpoints at a constant distance from the Range in all west-flowing rivers, the ubiquitous terraces, and river courses entrenched within their own flood-plain deposits of thick gritty to conglomeratic sand, are indicative of a constant disturbance with a gradual rise of the Range east of the knickpoint, wherefrom the coarse materials were carried by the fast west-flowing streams. There is a differential uplift across the plateau scarp together with a right-lateral offset.This epeirogenic tectonism is ascribed to the collision of the Eurasian and the subducting Indian plates and to a locking of their continental crusts. By early Pleistocene, with the MBT gradually dying off, continued plate movement caused a flexural bending of the plate by a moment generated at the back, and a possible delinking of the continental crust along the zone of subduction. The felexural bending ripped open the Precambrian regional faults. The differential uplift and the difference in the distances of the nodes on two sides of the major reactivated fault were possibly caused by a difference in the values of the flexural rigidity and the foundation modulus owing to a slight compositional difference of the constiuent rocks in the two sectors.  相似文献   

13.
 A field study was conducted to assess variations in physico-chemical characteristics of water of the springs located within the boundary of a Central Himalayan town where the springwater is used for drinking purposes. Monitoring of 12 springs was carried out for three seasons (winter, summer and monsoon). The results indicate direct influence of unplanned sewage disposal on the springwater quality as reflected by significant regional variations in the concentration of nitrates, chlorides, sulfates, sulfides and electrical conductivity. Population density varies within the town from 3110 to 14 137 persons/km–2 and has direct relationship with water quality. Springs located in the densely populated area had higher concentrations of all these compounds. Concentrations of nitrates up to 60 ppm were observed in some springs, making water unsuitable for human consumption. No significant changes were observed in springwater quality during different seasons. Received: 3 February 1995 · Accepted: 27 February 1996  相似文献   

14.
Intermontane basin sedimentation occurred during Pliocene-Pleistocene in the Karewa Basin which formed after the continent-continent collision resulting in the formation of Himalayan orogenic belt around Eocene. These are elongated, narrow, thrust bounded basins which have formed during the late stages of orogeny. Situated at a height of 1700–1800 m above sea level, the Karewa basin received sediments because of ponding of a pre-existing river system and the tectonic movements along the Great Himalayan Ranges in the north and the Pir-Panjal ranges in the south along active faults. About 1300 m thick sediments of largely fluvio-lacustrine, glacio-fluvio-lacustrine and eolian origin are exposed having evidences of neotectonically formed structural features such as folds and faults. Folds are more prominent in the Lower Karewa formation (Hirpur Formation) while faults (mostly normal faults) are abundant in the Upper Karewas (Nagum Formation). Drainage in the area varies from dendritic to anastomosing to parallel. Anastomosing drainage suggests sudden decrease in gradient while presence of linear features such as faults and ridges is evident by parallel drainage. Study of morphometric parameters such as stream length (Lsm) and stream length ratios (RL), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) also indicate intense tectonic activity in the recent past.  相似文献   

15.
Earthquake activity is monitored in real time at the Koyna reservoir in western India, beginning from August 2005 and successful short term forecasts have been made of M ∼ 4 earthquakes. The basis of these forecasts is the observation of nucleation that precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5 to 5.1 occurred in the region during the period of August 2005 through May 2010. These earthquakes could broadly be put in three zones. Zone-A has been most active accounting for 18 earthquakes, while 5 earthquakes in Zone-B and 6 in Zone-C have occurred. Earthquakes in Zone-A are preceded by well defined nucleation, while it is not the case with zones B and C. This indicates the complexity of the earthquakes processes and the fact that even in a small seismically active area of only 20 km × 30 km earthquake forecast is difficult.  相似文献   

16.
The present paper deals in detail with the coal typology, rank and correlation of some Indian coal seams. Petrological evaluation of several known coal seams reveals that there are two main seams, the King (lower) seam and Queen (upper) seam, with distinctly different characteristics. All the other seams, locally known by different names elsewhere in the field, are correlatable with either the King or Queen seams.The coals are of inferior quality because of the predominance of mixed coals types associated with dispersed mineral matter. However, some seams show characteristics which are amenable to quality improvement with suitable preparation methods. The coals appear to have been formed rapidly in a fluctuating environment (aerobic to anaerobic) under relatively cold to gradually warming conditions.  相似文献   

17.
The northeast India region is seismically very active and it has experienced two large earthquakes of magnitude 8.7 during the last eight decades (1897 and 1950). We have analysed teleseismic P-wave residuals at Shillong, the only reliable seismic station operating in the region, to investigate a possible association of travel-time residual anomaly with earthquake occurrence. The period covered is from October 1964 through March 1976. The total number of events is 9479, including 1767 events with depth >/ 100 km. Six-monthly average residuals have been calculated. The standard deviations are less than 0.10 sec for these data sets. During the period of investigations, no major earthquake took place close to Shillong. The earthquake of June 1, 1969 with a magnitude (Mb) of 5.0, at an epicentral distance of 20 km from Shillong is the only significant event. This earthquake is found to be associated with a travel-time increase with a maximum amplitude of 0.4 sec. It appears that, in general, the P-wave velocity has decreased in the neighbourhood of Shillong since 1969. A quadrant-wise analysis of residuals indicates that the residual anomaly is most prominent in the SE quadrant from Shillong.  相似文献   

18.
Seismic hazard in mega city Kolkata, India   总被引:2,自引:1,他引:1  
The damages caused by recent earthquakes in India have been a wake up call for people to take proper mitigation measures, especially the major cities that lie in the high seismic hazard zones. Kolkata City, with thick sediment deposit (∼12 km), one of the earliest cities of India, is an area of great concern as it lies over the Bengal Basin and lies at the boundary of the seismic zones III and IV of the zonation map of India. Kolkata has been affected by the 1897 Shillong earthquake, the 1906 Calcutta earthquake, and the 1964 Calcutta earthquake. An analysis on the maximum magnitude and b-value for Kolkata City region is carried out after the preparation of earthquake catalog from various sources. Based on the tectonic set-up and seismicity of the region, five seismic zones are delineated, which can pose a threat to Kolkata in the event of an earthquake. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ), and Zone 5: Shield Zone (SZ). The maximum magnitude (m max) for Zones 1, 2, 3, 4, and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. A probability of 10% exceedance value in 50 years is used for each zone. The probabilities of occurrences of earthquakes of different magnitudes for return periods of 50 and 100 years are computed for the five seismic zones. The Peak Ground Acceleration (PGA) obtained for Kolkata City varies from 0.34 to 0.10 g.  相似文献   

19.
In this study, the modified stochastic method based on dynamic corner frequency has been used for the simulation of strong ground motions in Gujarat region. The earthquake-generating faults have been identified in the Gujarat region on the basis of past seismicity of the region. In all, 19 probable faults have been identified with 12 in Kachchh region, 5 in Saurashtra and 2 in Mainland Gujarat region. The maximum magnitude has been assigned to each fault based on the regional tectonic environment and past seismicity. The strong ground motions from these identified sources have been estimated at numerous points distributed all over Gujarat region on a grid. The peak ground acceleration (PGA) values have been extracted from the accelerograms and contoured. The spatial distribution of maximum of 19 PGA values at every grid point have been described and discussed. The ground motions at the surface of 32 important cities of the Gujarat have been estimated by incorporating the site amplification functions. The site amplification functions are obtained using the local earthquake data. These cities are located on various types of geological formations. We note that the site amplification functions have modified the character of the records and amplified the acceleration values at almost all the sites. The Kachchh region can expect surface accelerations between 400 and 800 cm/s2, Saurashtra between 100 and 200 cm/s2 and Mainland less than 50 cm/s2 from a future large earthquake. The obtained results are useful for disaster mitigation measures, strengthening the existing built environment and design of structures in the region.  相似文献   

20.
Abnormally high formation pressures are encountered worldwide, ranging in geological age from Cenozoic to Paleozoic, within a depth range of few hundred meters to as deep as six thousand meters while carrying out exploratory drilling by E and P companies. Several causes can increase formation fluid pressure i.e. rapid loading of sediments results compaction disequilibrium, thermal expansion of fluids, compression and/or upliftment of strata by tectonic forces, generation of oil and gas from organic matter and its volume expansion due to high thermal stress within the restricted pore volume in subsurface condition. Few global examples on overpressure occurrences have been compiled in the paper with special reference to Bengal Basin. Emphasis has been given on methodology and interpretation on abnormal pressure detection in Bengal Basin with a compiled data package on generated curves (Geologs), charts, tables in a systematic way to understand the depth/stratigraphic horizons proved/interpreted as proved or likely to be within transition and overpressure regime. The integrated analysis indicates that the wells drilled in the east of Eocene hinge zone in the onshore and offshore parts of Bengal Basin have penetrated overpressure formation within Miocene in the depth range of 2800 m to 5340 m and the mud weight used to control this overpressure zone was more than 2.0 sp gr mud. The generated Geologs can be used as reference to understand the regime of transition and overpressure, as a valuable document for exploration drilling planning and monitoring. The generated model curve (modified using available data after Hottman and Johnson, 1956 curve) using sonic departure (i.e. Δtob(sh) −Δtn(sh)) from drilled wells may be used as an additional tool to find out the expected formation pressure gradient and equivalent mud weight in all future wells. The correlation of wells based on the trend of dcs and σ logs will be useful for predicting transition and overpressure top provided all the parameters required for calculating dcs and σ log recorded smoothly during drilling phase. The study has brought out the detail procedure to generate the pressure profile in the future wells. The generation of pressure profile of a well prior to drilling has got immense importance in oil industry. The drilling of the well should be done by maintaining the optimum mud weight generated from the pressure profile. In case, during drilling, formation pressure is more than the mud pressure, resulted gas kicks or worse, blowouts of the well. Excessively high mud pressure can fracture the formation and cause lost circulation. The oil and gas companies, worldwide, attributed 15% losses due to various problems associated with drilling complications, mostly related to improper pressure prediction of a well. The losses include loss of material as well as drilling process continuity, called non-productive time (NPT). The generation of accurate pressure profile reduces drilling problems, cuts exploration and development costs and allows billions of dollars now spent on losses to be better spent-building and replacing reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号