首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The till-covered clay and silt deposits at Mertuanoja, Pohjanmaa (Ostrobothnia), western Finland, have been investigated in great detail. The Eemian interglacial environment is reconstructed here on the basis of pollen, diatom and dinoflagellate analyses. The pollen stratigraphy shows an interglacial vegetational succession reflecting stable climatic conditions typical of the Eemian Stage in the Pohjanmaa area. The initial Betula forests were followed by Pinus-Betula forests with Quercus. The next successional phase was dominated by Betula, Pinus and Alnus; temperate deciduous trees and Corylus also grew in the area. Later, Picea advanced and temperate deciduous trees declined. Some Corylus was, however, still present and thermophilous Osmunda thrived in wet places. The diatom record indicates that the sediments were deposited first in a freshwater basin, then in the Eemian Baltic Sea, and finally in a freshwater basin once more. The presence of dinoflagellates demonstrates that the Eemian Baltic Sea, when at its maximum extent, was connected to the Atlantic Ocean, which brought northern cool-temperate surface waters to Finland as far north as Mertuanoja. Mertuanoja is the first interglacial site at which numerous dinoflagellate cysts were encountered in Finnish Quaternary sediments.  相似文献   

2.
The till-covered organic sediments at Leveäiemi, Swedish Lapland have been reinvestigated by pollen analysis in order to gather more detailed information on vegetation history and climatic conditions during the interglacial period represented at this site. A partly different picture of the vegetation succession has arisen compared to earlier studies and results. The organic sequence is still correlated with the Eemian, but the forests were probably more open during the initial and later parts of the interglaciation than suggested earlier. This is based on the higher values of Juniperus pollen noted, and a continuous curve for Populous pollen during the PAZ representing the later part of the interglaciation. Comparisons are made with other sites in northern Sweden, Finland and northern Norway, and the possibilities of separating Eeinian deposits from those formed during the Holsteinian interglaciation are discussed.  相似文献   

3.
The bio- and chronostratigraphy of the Eemian interglacial (marine isotope substage 5e) and an Early Weichselian glaciation (5d-a) established from representative and detailed sequences can be correlated with the deep-sea oxygen isotope stratigraphy, ice-core data, sea-level fluctuations and coupled ice sheet-climate models. Biostratigraphic sequences from Fennoscandian key sections are correlated with reference sequences from Estonia and from sections located near or beyond the margins of the last glaciation. Organic sediments previously attributed to Early and Middle Weichselian interstadial periods in Finland are argued to be redeposited and mixed older (last interglacial) material. Pollen and diatom spectra of the undisturbed materials suggest that the Eemian climatic optimum was followed by a continuously cooling climate and a regressive marine level. If only undisturbed sequences are considered, the major climatic fluctuations of the Early Weichselian, apparent in Central and Western Europe, are not apparent in the sequences from the central part of the glaciated terrain. Instead, some sequences are truncated by sediments indicating approaching ice sheets soon after the interglacial. This may imply that the ice sheet grew over Finland during the first Early Weichselian stadial. The preservation of the interglacial beds and the lack of younger non-glacial sediments support the interpretation that the area remained ice-covered until the final deglaciation. During the Early Weichselian, the Norwegian coast was probably occasionally ice free, similar to the coastal zone of Greenland today. The authors' interpretation of the Fennoscandian organic deposits of the last glaciation may also explain similar observations from the central parts of the Laurentide ice sheet.  相似文献   

4.
《Quaternary Science Reviews》2005,24(1-2):173-194
The climate history and dynamics of the Greenland Ice Sheet are studied using a coupled model of the depositional provenance and transport of glacier ice, allowing simultaneous prediction of the detailed isotopic stratigraphy of ice cores at all the major Greenland sites. Adopting a novel method for reconstructing the age–depth relationship, we greatly improve the accuracy of semi-Lagrangian tracer tracking schemes and can readily incorporate an age-dependent ice rheology. The larger aim of our study is to impose new constraints on the glacial history of the Greenland Ice Sheet. Leading sources of uncertainty in the climate and dynamic history are encapsulated in a small number of parameters: the temperature and elevation isotopic sensitivities, the glacial–interglacial precipitation contrast and the effective viscosity of ice in the flow law. Comparing predicted and observed ice layering at ice core sites, we establish plausible ranges for the key model parameters, identify climate and dynamic histories that are mutually consistent and recover the past depositional elevation of ice cores to ease interpretation of their climatic records. With the coupled three-dimensional model of ice dynamics and provenance transport we propose a method to place all the ice core records on a common time scale and use discrepancies to adjust the reconstructed climate history. Analysis of simulated GRIP ice layering and borehole temperature profiles confirms that the GRIP record is sensitive to the dynamic as well as to the climatic history, but not enough to strongly limit speculation on the state of the Greenland Ice Sheet during the Eemian. In contrast, our study indicates that the Dye 3 and Camp Century ice cores are extremely sensitive to ice dynamics and greatly constrain Eemian ice sheet reconstructions. We suggest that the maximum Eemian sea-level contribution of the ice sheet was in the range of 3.5–4.5 m.  相似文献   

5.
A new investigation of the coastal cliff section at Mommark in southern Denmark has revealed a complete Eemian interglacial sequence for the first time in the southwestern Baltic area. Environmental changes through the lacustrine and marine interglacial deposits are discussed on the basis of foraminiferal assemblages and stable isotope composition as well as ostracods. In general, the assemblages indicate relatively high temperatures throughout the Eemian, and the Lusitanian foraminiferal species Pseudoeponides falsobeccarii Rouvillois has been reported for the first time from the Eemian of northwest Europe. A floating chronology of the deposits is based on a previously published correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. An initial early Eemian lacustrine phase, with ostracodal indication of deposition in a large freshwater lake, lasted until c. 300 years after the beginning of the interglacial, i.e. to the transition between the regional pollen zones E2 and E3. After that, marine conditions persisted almost throughout the interglacial, and the Cyprina Clay was deposited. The foraminiferal and ostracodal assemblages indicate that relatively deep water prevailed in the area until c. 6000 years after the beginning of the interglacial. However, both the foraminiferal assemblages and the oxygen isotope results show that a trend from relatively high salinity to lower salinity conditions had begun already at about 4000 years. After c. 6000 years the fauna indicates a gradual change to shallower water and further reduction in salinity, the latter also being reflected by a general decrease in the oxygen isotope values. The marine deposition ended at c. 10 600 years after the beginning of the Eemian, i.e. within the topmost part of pollen zone E7. This was succeeded by a late Eemian and early Weichselian freshwater phase.  相似文献   

6.
A complete interglacial cycle, named the Fjøsangerian and correlated with the Eemian by means of its pollen stratigraphy, is found in marine sediments just above the present day sea level outside Bergen, western Norway. At the base of the section there are two basal tills of assumed Saalian ( sensu lato ) age in which the mineralogy and geochemistry indicate local provenance. Above occur beds of marine silt, sand and gravel, deposited at water depths of between 10 and 50 m. The terrestrial pollen and the marine foraminifera and molluscs indicate a cold-warm-cold sequence with parallel development of the atmospheric and sea surface temperatures. In both environments the flora/fauna indicate an interglacial climatic optimum at least as warm as that during the Holocene. The high relative sea level during the Eemian (at least 30 m above sea level) requires younger neotectonic uplift. The uppermost marine beds are partly glaciomarine silts, as indicated by their mineralogy, drop stones and fauna, and partly interstadial gravels. The pollen indicates an open vegetation throughout these upper beds, and the correlation of the described interstadial with Early Weichselian interstadials elsewhere is essentially unknown. The section is capped by an Early Weichselian basal till containing redeposited fossils, sediments, and weathering products. Several clastic dikes injected from the glacier sole penetrate the till and the interglacial sediments. Radiocarbon dates on wood and shells gave infinite ages. Amino acid epimerization ratios in molluscs support the inferred Eemian age of the deposit. The Fjøsangerian is correlated with the Eemian and deep sea oxygen isotope stage 5e; other possible correlations are also discussed.  相似文献   

7.
Seventy-four meters of a 95-m-long drill core recovered from the Lappäjarvi crater, a meteoritic impact site in western Finland, consisted of Pleistocene sediments. These sediments refer to two events of glacial deposition (Saalian and Weichselian) interrupted by non-glacigenic freshwater sedimentation. The sediments contain abundant redeposited Holsteinian and Tertiary microfossils, and possibly represent a pre-Weichselian interstadial not described from elsewhere in Finland. The pollen flora indicates a mixed primary arctic to subarctic succession that followed deglaciation, i.e. the beginning of an interglacial or interstadial event. The secondary pollen component derives from an eroded interglacial deposit that can be interpreted as Holsteinian, or possibly Eemian, in age. The vegetation succession interpreted from the primary pollen flora reflects a transition from arctic conditions to subarctic birch forests. The diatom flora indicates a primary succession that can be observed clearly in the uppermost gyttja layer in which the rich alkaliphilous diatom flora refers to more or less eutrophic conditions. The diatom flora of sediments below the gyttja layer is composed of a primary component and a secondary, redeposited or relict component. The diatoms encountered are interglacial or Tertiary in origin. The results show that meteorite craters can provide long, representative stratigraphic sequences in glacially eroded Precambrian shield areas such as Finland.  相似文献   

8.
The Mommark sequence represents a nearly complete record of sedimentation in the Eemian (MIS 5e), and the diatom succession covers almost the entire interglacial. A floating chronology of the deposits is based on correlation of the local pollen stratigraphy with annually laminated sequences in northern Germany. The diatom succession starts with a short freshwater stage followed by a similarly episodic transitional brackish phase, which began c. 300 years after the beginning of the Eemian interglacial. A few hundred years later, simultaneously with the start of deposition of the shallow marine sediment, Cyprina Clay, the flora turns almost fully marine, suggesting salinities clearly higher than at present. The culmination of the marine transgression occurs close to the climatic optimum of the Eemian interglacial, c. 3000 years after the beginning of the interglacial. In the several metres thick Cyprina Clay, only marginal changes in the composition of diatom taxa are noticed. According to the diatom stratigraphy and chronostratigraphy based on regional pollen zones, the total duration of the Eemian Sea phase with brackish/marine conditions was c. 10 500 years. As the sedimentation of the Cyprina Clay ends, the proportions of diatom species thriving in freshwater increase, but the marine taxa remain common. The mixture of species with non-compatible ecological requirements suggests allochthonous input from freshwater and/or tidal estuary environment. The results of this study are consistent with studies of other aquatic fossil assemblage data from this site.  相似文献   

9.
Bińka, K., Nitychoruk, J. & Dzier?ek, J. 2010: Climate stability during the Eemian – new pollen evidence from the Nidzica site, northern Poland. Boreas, 10.1111/j.1502‐3885.2010.00179.x. ISSN 0300‐9483 Interglacial sediments at Nidzica, northern Poland were investigated by means of pollen and isotope analysis. These deposits accumulated in an extensive basin through most of the Eemian and Early Weichselian, practically without stratigraphic gaps. Continuous subsidence of the basin floor has resulted in the accumulation of a great thickness of lacustrine sediments, consisting mostly of calcareous gyttja. The course of pollen and isotope curves in the interglacial interval does not indicate the abrupt climatic shifts reported from some other continental climatic archives. Particularly important has been the reconstruction of the final stages of the Eemian, a potential analogue for future climatic change in the late Holocene. At Nidzica, this period is registered as a gradual modification of forest composition, devoid of any pulsations in which temperate forest is followed by terminal, boreal pine–birch communities.  相似文献   

10.
The coastal cliff section at Kås Hoved in northern Denmark represents one of the largest exposures of marine interglacial deposits in Europe. High‐resolution analyses of sediments, foraminifera, ostracods, and stable isotopes (oxygen and carbon) in glacial‐interglacial marine sediments from this section, as well as from two adjacent boreholes, are the basis for an interpretation of marine environmental and climatic change through the Late Elsterian‐Holsteinian glacial‐interglacial cycle. The overlying glacial deposits show two ice advances during the Saalian and Weichselian glaciations. The assemblages in the initial glacier‐proximal part of the marine Late Elsterian succession reveal fluctuations in the inflow of sediment‐loaded meltwater to the area. This is followed by faunal indication of glacier‐distal, open marine conditions, coinciding with a gradual climatic change from arctic to subarctic environments. Continuous marine sedimentation during the glacial‐interglacial transition is presumably a result of a large‐scale isostatic subsidence caused by the preceding extended Elsterian glaciation. The similarity of the climatic signature of the interglacial Holsteinian and Holocene assemblages in this region indicates that the Atlantic Ocean circulation was similar during these two interglacials, whereas Eemian interglacial assemblages indicate a comparatively high water temperature associated with an enhanced North Atlantic Current. The foraminiferal zones are correlated with other Elsterian‐Holsteinian sites in Denmark, as well as those in the type area for the Holsteinian interglacial in northern Germany and the southern North Sea. Correlation of the NW European Holsteinian succession with the marine isotope stages MIS 7, 9 or 11 is still unresolved.  相似文献   

11.
Velichko, A. A., Novenko, E. Y., Pisareva, V. V., Zelikson, E. M., Boettger, T. & Junge, F. W. 2005 (May): Vegetation and climate changes during the Eemian interglacial in Central and Eastern Europe: comparative analysis of pollen data. Boreas , Vol. 34, pp. 207–219. Oslo. ISSN 0300–9483.
The article discusses pollen data from Central and Eastern Europe and provides insight into the climate and vegetation dynamics throughout the Eemian interglacial (including preceding and succeeding transitional phases). Three sections with high resolution pollen records are presented. Comparison of the data indicates that the range of climatic and environmental changes increased from west to east, whereas the main phases of vegetation development appear to have been similar throughout the latitudinal belt. At the interglacial optimum, the vegetation in both Central and Eastern Europe was essentially homogeneous. An abrupt change marks the Saalian/Eemian boundary (transition from OIS 6 to OIS 5e), where environmental fluctuations were similar to those detected at the transition from the Weichselian to the Holocene (Allerød and Dryas 3). Transition from the Eemian to the Weichselian was gradual in the western part of the transect, with forest persisting. In the east, fluctuations of climate and vegetation were more dramatic; forest deteriorated and was replaced by cold open landscapes.  相似文献   

12.
Pollen analysis was carried out on sediments older than the Würm pleniglacial (OIS 4), in two new sequences (H and I) derived from the centre of Lac du Bouchet, Massif Central. The inferred vegetation history enables, for the first time in France, five temperate episodes to be defined which pre-date the last interglacial. These temperate episodes alternate with episodes during which the changes in vegetation are indicative of glacial climates. Comparison of these climatic episodes with the oceanic isotope record shows that the pollen record of sequences H and I from Lac du Bouchet spans the time interval from OIS 9c (Ussel interstadial) to OIS 5e (Ribains/Eemian interglacial). In the organic sediments from the Amargiers interstadial (OIS 9a), a trachytic layer, Ar/Ar dated to ca 275 ka, enables a correlation to be established with the upper part of a sequence derived from the nearby Praclaux crater, the lower part of this sequence being of Holsteinian age (OIS 11c). The cross-dating of the pollen sequences from Lac du Bouchet (cores H, I and D) and from Praclaux provides a complete record from the Massif Central, southern France, of successive glacial and interglacial episodes that span the last ca. 400 ka, that is the interval from the Holsteinian to the Holocene.  相似文献   

13.
Robertsson, A.-M., Svedlund, J.-O., Andrén, T. & Sundh, M. 1997 (September): Pleistocene stratigraphy in the Dellen region, central Sweden. Boreas, Vol. 26, pp. 237–260. Oslo. ISSN 0300–9483. The Pleistocene stratigraphy in the Dellen region, central Sweden was studied using field observations made during mapping of Quaternary deposits and fabric analyses in excavated sections. The lithostratigraphy was also studied by seismic refraction measurements, analyses of grain-size distribution and organic carbon content. Biostratigraphical methods applied were pollen and diatom analyses. A general outline of the Pleistocene stratigraphy in the area is presented. Three different till beds are identified, the lowermost suggested to have been deposited during the Saalian glaciation and the other two during the Weichselian glaciation. According to the interpretation of the stratigraphy, it is questioned whether the first Weichselian ice sheet did in fact reach the Dellen area. A clayey sediment sequence at Norra Sannas accumulated during an interglacial, probably the Eemian. Most of the interglacial vegetation succession is reflected in the identified pollen flora. An initial phase with a light-demanding forest of Belula and Pinus was followed by immigration of Alnus, Picea and scattered occurrences of Corylus. A freshwater diatom flora was identified dominated by plankton taxa, e.g. Aulacoseira italica, A. distans and Cyclotella spp. In the lower part of the sequence a brackish-marine flora was registered, representing accumulation in a bay of the Eemian Sea. Fine-grained sediments at the Sundson and Vastansjd sites are interpreted as rebedded Eemian sediments according to the pollen flora. An (Early Weichselian) interstadial age is suggested for sediments found at Bjuraker. Dating by the 14C- and OSL methods was carried out on the interglacial and interstadial sediments, respectively. The ages range from approximately 19000 to 92000 BP. Correlation of interglacial vegetation history with central Finland and other areas is discussed.  相似文献   

14.
Data from the Greenland ice sheet and continental records from Europe have indicated climatic fluctuations during the last interglacial (Eemian: Oxygen Isotope Substage 5e). Similar fluctuations have not, however, been documented previously from marine environments. Here, we show the existence of two cold events during substage 5e in two marine, benthic foraminiferal, shelf records from northwest Europe and suggest that these cooling events are a result of fluctuations in the strength of the North Atlantic surface-water circulation.  相似文献   

15.
Synoptically mapped faunal abundance and faunal composition data, derived from a suite of 24 Norwegian Sea cores, were used to derive sea-surface temperatures for the last glacial maximum (18,000 B.P.), the last interglacial (120,000 B.P.), and isotope stage 5a (82,000 B.P.). Surface circulation and ice cover reconstructions for these three times, deduced from the sea-surface temperatures, suggest the following conclusions: (1) During glacial periods, Norwegian Sea surface circulation formed a single, sluggish, counterclockwise gyre that was caused by wind drag on the ubiquitous sea ice cover; (2) the last interglacial was characterized by a circulation pattern similar to that of today except that the two counterclockwise gyres were displaced toward the east and were more vigorous than they are today. This circulation pattern forced the Norwegian Current into a position close to the coast of Norway and permitted formation of a strong east-west temperature gradient close to the Scandinavian landmass; (3) interglacial periods prior to 120,000 B.P. had similar climatic conditions to the 82,000 B.P. level and were characterized by a weak two-gyre circulation pattern. The southern gyre, driven by wind stress in summer months, was ice covered in winters. The northern gyre had little open water even in summers and was primarily formed by wind drag on sea ice. Atmospheric modifications resulting from these circulation patterns and sea ice conditions produced varying climatic conditions in Scandinavia during interglacials prior to the Holocene. The climate was probably warmer and moister during the last interglacial (Eemian) than it is today. Other interglacials during the last 450,000 years, but prior to the Eemian, were probably colder and drier as the Norwegian Sea was not an important source of heat and moisture.  相似文献   

16.
Marine, fluvial and glacigene sediments exposed in coastal cliffs and stream-cut sections in East Greenland between latitudes 69° and 78° N display a record of Quaternary climatic and environmental change going back to pre-Saalian times (> 240 ka), but with main emphasis on the last interglacial/glacial cycle. The stratigraphical scheme is based on studies on the Jameson Land peninsula, and contains five glacial stages and stades with the Greenland ice sheet or its outlets reaching the outer coasts. Individual sites are correlated and dated by a combination of biostratigraphy, luminescence dating, amino acid analyses, as well as 14C- and uranium series dating. The pre-Weichselian Lollandselv and Scoresby Sund glaciations were the most extensive. During the Weichselian the Inland Ice margin in this part of East Greenland was apparently very stable. The Aucellaelv, Jyllandselv and Flakkerhuk stades mark the advance and subsequent retreat of outlet glaciers from the Inland Ice which advanced through the wide Scoresby Sund basin and reached the inner shelf. In-between the glacier advances, three interglacial or interstadial periods have been recognized. During the Langelandselv interglacia-tion (≅ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faunas show that summer temperatures were 3–4°C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sø interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2° -3° lower than the present. The marine and fluvial sediments from the second ice-free period, the Mønselv interstade, are devoid of organic remains.  相似文献   

17.
Sediments from the last interglacial (Eemian) in Jameson Land, East Greenland, and the Thule area, NW Greenland, have revealed a number of insect fragments of both arctic and more or less warmth‐demanding species. Altogether, the interglacial fauna of Coleoptera (beetles) indicates boreal conditions. Undoubtedly, a large fraction of the insect fauna succumbed when the mild Eemian climate cooled drastically during the last glacial stage. However, a group of hardy species now found far north into the High Arctic might be glacial survivors. It is, however, still puzzling why well‐adapted arctic beetle species such as Amara alpina and Isochnus arcticus did not survive the last glacial stage in Greenland. Two factors that have not been sufficiently considered when discussing survival contra extinction are the importance of microclimate and the number of sun‐hours during the Arctic summer. Even among the Coleoptera, which as a group fares quite badly in the Arctic, there might be survivors, at least among those found both during the interglacial and as fossils during the early Holocene. First of all, glacial survival applies to the seed bug Nysius groenlandicus, which was widespread during the Eemian, was found soon after the last deglaciation, and is now almost omnipresent in Greenland.  相似文献   

18.
Marine Isotope Stage 11 (MIS 11) is considered one of the best analogues for the Holocene. In the UK the long lacustrine sequence at Marks Tey, Essex, spans the entirety of the Hoxnian interglacial, the British correlative of MIS 11c. We present multiproxy evidence from a new 18.5‐m core from this sequence. Lithostratigraphy, pollen stratigraphy and biomarker evidence indicate that these sediments span the pre‐, early and late temperate intervals of this interglacial as well as cold climate sediments that post‐date the Hoxnian. The δ18O signal of endogenic carbonate from this sequence produces several clear patterns that are interpreted as reflecting the climatic structure of the interglacial. As well as providing evidence for long‐term climate stability during the interglacial and a major post‐Hoxnian stadial/interstadial oscillation the δ18O signal provides strong evidence for abrupt cooling events during the interglacial itself. One of these isotopic events occurs in association with a short‐lived increase in non‐arboreal pollen (the NAP phase). The results presented here are discussed in the context of other MIS 11 records from Europe and the North Atlantic, particularly with respect to our understanding of the occurrence of abrupt climatic events in pre‐Holocene interglacials. Copyright © 2016 The Authors. Journal of Quaternary Science Published by John Wiley & Sons Ltd.  相似文献   

19.
Benthic foraminiferal faunas suggesting interglacial climatic conditions are present in several shallow drillings in the North Sea and in northern Jutland. Denmark. The interglacial deposits in six of the cores arc correlated by means of isoleucine epimerization, paleomagnetic data and environmental inferences. Four episodes of interglacial circulation are recorded in sediments of Brunhes age and one warm episode is found just below the Brunhes Matuyama boundary. The Holocene and Eemian faunas of the North Sea are richer in species and individuals and contain more thermophilous species than the older interglacial faunas. However. a much more northern distribution of Bulimina marginata in sediments of Eemian age suggests that oceanic circulation was different during this period than during the Holocene. Sediments of the three other Brunhes interglacials (the Holsteinian, the Norwegian Trench and the Devils Hole Interglacial) and the Leerdam Interglacial record periods of relatively cooler conditions and possibly reduced inflow of Atlantic water.  相似文献   

20.
Pollen analysis of the 1973 ice core from Devon Island glacier,Canada   总被引:1,自引:0,他引:1  
Meltwater from a 299-m-long ice core was filtered and analyzed for fossil pollen and spores. Pollen concentration was higher in the late Holocene and interglacial intervals (ca. 7 liter?1) than in the early Holocene and Wisconsinan (ca. 1–2 liter?1) ones. The late Holocene and interglacial assemblages were dominated by Alnus (alder), whereas the early Holocene and Wisconsinan ones were dominated by Betula (birch) and Artemisia (sage). During the Holocene and probably the last interglaciation, most of the pollen and spores were blown a minimum of 1000 km from low arctic shrub tundra and adjacent subarctic Picea (spruce) forest; these areas were dominated by the arctic air mass during the summer pollinating season. During the Wisconsinan-early Holocene, glacier ice and arctic air were more widespread and pollen sources were more distant; thus, at this time relatively little pollen was incorporated into the ice.The Devon ice-core data suggest that there should have been pollen in the continental ice sheet of Wisconsin time. When the ice sheet retreated this pollen would be carried by meltwater and redeposited with silt and clay together with contemporary pollen, producing an ecologically anomalous assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号