首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
鄂尔多斯地块深部岩石圈电性结构研究   总被引:6,自引:3,他引:6       下载免费PDF全文

近年来新的研究成果反应出鄂尔多斯地块岩石圈并不是一个具有深根的完整的刚性块体,尤其在鄂尔多斯北部以及河套地堑发现有大范围的下地壳-上地幔低速低阻物质,如果这一情况属实,那么人们对鄂尔多斯地块的认识将发生大的变化.为此,我们在华北克拉通西部布设了一条穿过鄂尔多斯地块、河套地堑和阴山造山带的南北向大地电磁剖面,试图通过深部电性结构的探测提供更多信息.该剖面全长约850 km,共布设54个宽频测点和17个长周期测点.二维和三维反演结果均表明:鄂尔多斯地块内部以38° N为界,南部和北部电性结构存在明显差异.鄂尔多斯地块南部地壳至上地幔150 km深度范围内整体表现为高阻,具有刚性克拉通的特征;鄂尔多斯地块北部到河套地堑之间下地壳出现低阻层,特别是鄂尔多斯北端与河套地堑接壤地段,深部存在一个规模较大的下地壳-上地幔低阻异常体,该异常体从河套地堑开始,横向上向南延伸到鄂尔多斯地块内部约200 km,纵向上从下地壳向下延伸到上地幔(约100 km深度).根据该异常体的空间特征,参考该区地震波低速异常体的分布,我们认为鄂尔多斯北部及河套地堑中下地壳到上地幔存在热物质,其原因与深部的构造活动有关(软流圈热物质上涌、侧向流动等),这一情况可能反映出鄂尔多斯地块北部岩石圈深部正处于被改造(或者破坏)阶段,这对进一步认识青藏高原东北缘与华北克拉通之间的深部关系具有一定的启示作用.

  相似文献   

2.
横跨大兴安岭与海拉尔盆地和松辽盆地结合地带的大地电磁测深剖面揭示了盆山构造的深部电性结构.剖面西起海拉尔盆地东缘,向东延伸穿过大兴安岭中部,一直到达松辽盆地西缘.本文对剖面测点的二维偏离度、构造走向等进行了计算和分析,采用非线性共轭梯度(NLCG)二维反演方法对TM模式的数据进行了反演,获得了该剖面的地壳、上地幔电性结构模型,划分出三个典型构造单元:海拉尔盆地、大兴安岭和松辽盆地.研究结果表明,海拉尔盆地东缘和松辽盆地西缘浅部都呈低阻特征,但松辽盆地西缘深部电性结构比较复杂,而大兴安岭整体呈高阻特征.海拉尔盆地东缘可能属于兴安块体,松辽盆地西缘与大兴安岭接触关系复杂.海拉尔盆地东缘岩石圈厚度约为110 km,大兴安岭岩石圈厚度约为110~150 km.大兴安岭上地壳基本呈高阻特征,可能为多次叠置的岩浆岩,代表大兴安岭经历了多期次岩浆作用;中下地壳横向存在较大范围低阻体,可能反映了大兴安岭地壳内部非刚性的特点;残存在岩石圈地幔的高阻异常,说明其下地壳可能发生过拆沉作用.大兴安岭与松辽盆地结合带存在一个岩石圈尺度的西倾低阻带,向下延伸到岩石圈底部,可能是早期松嫩地块向兴安地块俯冲并以软碰撞形式拼合的构造遗迹.  相似文献   

3.
为了获取青藏高原东北缘至鄂尔多斯地块的壳幔电性结构,研究祁连造山带、鄂尔多斯地块及六盘山构造带的构造变形,布设一条甘肃陇西至陕西黄陵的近东西向大地电磁测深剖面,获取了91个大地电磁测深点的响应.经过对全剖面观测资料的数据处理、分析及二维反演,获得了剖面壳幔电性结构模型.研究结果表明:剖面横向可划分为三个区块,分别对应祁连造山带、六盘山构造带与鄂尔多斯地块;祁连造山带东段可能残存沟弧盆体系的构造格架,青藏高原北东向生长可能是在这一先存格架上的叠加与改造;六盘山构造带壳幔结构复杂,以中地壳拆离断层为界,上地壳发育拆离断层系统而下地壳挤压缩短增厚;鄂尔多斯地块成层性较好,地块总体较为稳定,但局部经历了与地幔上涌相关的物质与结构再造.  相似文献   

4.
西秦岭与南北地震构造带交汇区深部电性结构特征   总被引:5,自引:10,他引:5       下载免费PDF全文
西秦岭造山带与南北地震构造带接触区是中国大陆最重要的南北向和东西向构造转化的接合部位之一.本文介绍了分别位于该区106°E东、西两侧的LMS-L3和DBS-L1两条大地电磁剖面的探测结果,两条剖面分别跨过了龙门山构造带东北段的青川段和宁强段.采用大地电磁相位张量分解技术对两条剖面上各测点的电性走向、二维偏离度等进行了计算和分析,采用NLCG二维反演方法对TE+TM模式的视电阻率和阻抗相位数据进行了二维联合反演.反演得到二维电性结构,在经度106°西侧LMS-L3剖面的深部电性结构自北向南揭示出,西秦岭北缘、成县盆地北缘、康县(即勉略构造带)和平武-青川断裂带都表现为明显的电性梯度带,深部延伸可达几十公里;西秦岭造山带、碧口地块与龙门山构造带东北段3个构造单元整体表现为高电阻体、呈现往南叠合且角度逐渐变陡的趋势.在106°E西侧西秦岭造山带区域的深部存在壳内低阻层,而东侧区域表现为高电阻体,深部电性结构在106°E东、西两侧的差异与该区深部速度结构特征一致,东、西两侧深部结构差异可能是该区中强地震分布差异的深层原因.LMS-L3和DBS-L1两条剖面南段的深部电性结构图像揭示出龙门山构造带东北部的青川段和宁强段内的平武-青川断裂带具有明显不同的深部结构特征,平武-青川断裂带在青川段为明显的电性梯度带,在宁强段不再表现为电性梯度带,而是完整的高电阻块体.汶川强余震向东北发展止于青川青木川附近,与平武-青川断裂带延伸深度和向北东方向的延伸长度密切相关,同时高电阻块体的宁强段对汶川强余震东北发展起到了阻挡作用.  相似文献   

5.

在SinoProbe-01项目的资助下,完成了一条跨越鄂尔多斯地块北部、河套断陷盆地和阴山造山带的大地电磁剖面,剖面长约440 km,共包括24个宽频测点和4个宽频-长周期联合测点.采用NLCG算法对TE和TM模式数据进行了二维反演,获得了该剖面的二维电性结构模型.结果表明:鄂尔多斯地块北部由浅至深电性结构比较简单,成层性较好,大体可分为低阻沉积盖层-高阻上地壳-低阻下地壳和上地幔顶部三层;河套断陷盆地和阴山造山带电性结构相对复杂,电阻率高低相间.鄂尔多斯地块北缘、河套断陷盆地以及阴山造山带区域的壳幔高导体可能与硫化物和部分熔融作用有关,而鄂尔多斯地块内部大规模的壳幔高导层可能是由高导矿物引起的.河套断陷盆地的沉降、阴山造山带的地势抬升和鄂尔多斯地块北缘东胜-杭锦旗一带的的隆起之间有着紧密的关系,它们的形成可能与区域伸展构造环境条件下的软流圈物质上涌有关.

  相似文献   

6.
屈健鹏 《内陆地震》1998,12(4):312-319
对在地理位置上具有一定代表性的鄂尔多斯块体体西缘及西南缘 的3条大地电磁剖面进行了分析。盐池-阿拉善左旗剖面:整条剖面上均有壳内低阻层和上地幔低阻尼分布,低阻层在银川断陷地上降。  相似文献   

7.

木里—盐源地区地处青藏高原东南缘,属于古特提斯洋构造域,是松潘—甘孜地块及扬子地块的交接地带,是研究青藏高原东南缘构造演化过程的重要区域.本文介绍的是横穿木里—盐源地区的大地电磁剖面,自北西向南东依次跨越锦屏山断裂、木里弧形构造区、丽江—小金河断裂、盐源盆地、金河—箐河断裂等构造.维性分析表明木里弧形构造区和金河—箐河断裂都表现为较强的三维性,因此本文采用大地电磁三维反演技术,获得了木里—盐源地区的精细电性结构.电性模型显示,沿剖面可以划分为4个主要的电性构造单元.锦屏山断裂以北的川西北次级地块下方10~20 km处,发育北西向低阻体,推断是古老的义敦岛弧区残留的物质;锦屏山断裂以南至丽江—小金河断裂为高阻体,可能是锦屏山山根;丽江—小金河断裂下方~10 km处发育北东向的低阻体,与龙门山—锦屏山构造带走向一致,结合剖面附近表现为张性的震源机制解特点,推测该低阻体很可能是北部的塑性物质受阻后一部分往西南沿着丽江—小金河断裂缝隙挤入的结果;盐源盆地下方在3~7 km发育厚度约5 km、长度达40 km的低阻层,电性主轴方向为北西向,与盐源断裂走向一致,解释为盐岩层,尤其是南段低阻体表现为延伸至地表的特征,与地表盐泉对应,为在盐源地区开展深部找钾盐矿提供了电磁方面的证据.

  相似文献   

8.
青藏高原东缘川滇构造区深部电性结构特征   总被引:2,自引:2,他引:2       下载免费PDF全文
本文对位于青藏高原东缘川滇构造区的贡山一绥江大地电磁测深(MT)剖面数据进行反演,获得沿剖面的深部电性结构,为研究喜马拉雅东构造结、川滇菱形地块与华南地块的构造变形特征、壳幔耦合关系、地块间接触关系以及相互作用等问题,提供电性结构的依据.研究发现:(1)电性结构揭示澜沧江断裂带和小金河断裂带为深大断裂带,控制着研究区的深部结构特征和形变机制;(2)澜沧江断裂带和金沙江断裂带之间的高阻体,可能是扬子古地块的残留部分;小金河断裂带和安宁河断裂带之间的高阻体,则是峨眉山大火山省喷发形成的冕宁一越西杂岩带;(3)在滇西地块、川滇地块和大凉山地块均存在低阻层,它们的介质属性有所不同,滇西地块下的低阻层"疑似"高热状态的岩浆囊,主要由缅甸弧向东俯冲运动引起的,中上地壳的高热状态使地块的活动性增强;川滇地块内部的壳内低阻层的成因为:理塘断裂带和小金河断裂带之间的地表低阻层由破碎带充水所致,而金沙江断裂带和理塘断裂带之间的中地壳低阻层可能是由局部熔融物质或含盐流体导致的,其为壳内物质运移的通道.从而在地下物质发生大规模走滑运动的过程中起到引导作用;川滇地块东部和大凉山地块西部的壳内低阻层可能与地慢物质的上涌有关;马边断裂带附近的低阻体可能与破碎带变宽和破碎带内的流体有关.  相似文献   

9.
兰州地区深部电性结构的初步研究   总被引:1,自引:0,他引:1  
利用兰州地区现有的大地电磁资料,对该区的深部电性结构进行了初步研究。结果表明,兰州地区各地质构造单元的电性差异较明显,与区域构造有较好的对应性。  相似文献   

10.
对青藏高原过班公—怒江构造带的三条大地电磁剖面进行探测,获得班公—怒江构造带及其邻区的电性结构模型,研究了班公—怒江构造带的深部结构与构造特征.研究结果表明:构造带及其两侧上地壳内广泛分布不连续高阻体,反映了岩浆岩的空间分布特征,表明构造带南北两侧岩浆的活动规律可能存在较大差别.研究区内的冈底斯及羌塘地体的中、下地壳普遍发育高导层,反映了印度大陆碰撞、俯冲过程的效应与痕迹,而高导层之下的高阻块体则可能是向北俯冲、冷的、刚性的印度大陆地壳.羌塘地体的电性结构模型可以分为南北两个区段,南羌塘块体的壳内高导层与班公—怒江构造带对印度板块俯冲的阻挡作用有关;而北羌塘块体壳内高导层与亚洲大陆对印度板块向北俯冲的“阻挡”与向南“对冲”有关.印度板块向北的俯冲与挤入,受到班公—怒江构造带及亚洲板块的阻挡,可能没有越过班公—怒江构造带,并在班公—怒江构造带附近向下插入软流圈,导致幔源物质上涌,形成壳、幔热交换与物质交换的通道和规模巨大、延伸至上地幔的高导体.班公—怒江构造带的电性结构证明了该构造带是一组产状陡立、巨型的超壳深断裂带.  相似文献   

11.
青藏高原东缘及四川盆地的壳幔导电性结构研究   总被引:8,自引:16,他引:8       下载免费PDF全文
自从2008年MS8.0级汶川大地震发生以来,青藏高原东缘便成为地质与地球物理研究的热点区域.该区域的龙门山断裂带标志着青藏高原东缘与四川盆地的边界.汶川地震即发生于龙门山断裂带内的映秀—北川断裂上.该地区现有的研究工作多集中于青藏高原东缘及四川盆地的西部,对四川盆地东部构造情况的研究目前较少.在SinoProbe项目的资助下,完成了一条跨越青藏高原东缘及整个四川盆地的大地电磁测深剖面.该剖面自西北始于青藏高原内部的松潘—甘孜地块,向东南延伸穿过龙门山断裂带、四川盆地内部及四川盆地东部的华蓥山断裂,最终止于重庆东南的川东滑脱褶皱带附近.维性分析表明剖面数据整体二维性较好,通过二维反演得到了最终的电性结构模型.该模型表明,从电性结构上看,沿剖面可分为三个主要的电性结构单元,分别为:浅部高阻、中下地壳低阻的松潘—甘孜地块,浅部低阻、中下地壳相对高阻的四川盆地,以及华蓥山以东整体为高阻特征的扬子克拉通地块.龙门山断裂带在电性结构上表现为倾角较缓、北西倾向的逆冲低阻体,反映了青藏高原东缘相对四川盆地的推覆作用.其在地下向青藏高原内部延伸,深度约为20 km左右.在标志逆冲推覆滑脱面的低阻层下存在一电性梯度带,表征着低阻的青藏高原中下地壳与高阻的扬子地壳之间的电性转换.位于四川盆地东边界的华蓥山断裂在电性结构上表现为一倾向为南东向的低阻体插入高阻的扬子克拉通结晶基底,切割深度约为30 km左右.这一结构反映出华蓥山向西的推覆作用.在电性结构模型的基础上,进一步讨论了青藏高原东缘的壳内物质流、青藏块体与扬子块体的深部关系以及青藏高原东部的隆升机制等构造问题.  相似文献   

12.

研究青藏高原东缘地区的深部物质结构对于理解青藏高原的隆升及扩张机制具有重要的科学意义.本文将青藏高原东缘实测大地电磁测深剖面反演所得的岩石圈电性结构模型与高温高压岩石物理实验测得的上地幔矿物和熔融体导电性定量关系相结合,通过Hashin-Shtrikman(HS)边界条件建立上地幔电导率与温度、熔融百分比等参数的定量关系,在此基础上计算得到了青藏高原东缘上地幔热结构及熔融百分比分布模型.研究结果表明在青藏高原东缘地区通过大地电磁测深方法所探测到的上地幔低阻体可以解释为由高温作用所产生的局部熔融区域.其中,松潘—甘孜地块上地幔高导体对应的温度介于1300~1500℃之间,熔融百分比可高达10%,支持前人将松潘—甘孜地块内部的低阻体解释为局部熔融的观点.龙门山断裂带以东、四川盆地西缘的上地幔高导体温度介于1200~1400℃之间,熔融百分比介于1%~5%左右,表明扬子克拉通的西缘可能正在经历一定程度的活化作用.龙门山断裂带下方的上地幔高阻体温度介于1100℃附近,基本没有发生局部熔融,具有较冷的刚性块体特征,与该区域频发的地震活动相吻合.四川盆地东部的扬子上地幔温度介于800~900℃之间,没有发生局部熔融,符合古老稳定的克拉通块体的基本特征.

  相似文献   

13.
为深入理解华北克拉通破坏机理,本研究通过鄂尔多斯盆地北缘南北向宽频带线性高密度流动地震台观测记录的远震波形数据,获得了1985条高质量到时资料,进而利用FMTT(Fast Marching Teleseismic Tomography)快速行进层析成像方法获得了华北克拉通西部鄂尔多斯盆地北缘深至300 km范围的P波速度模型.结果显示,鄂尔多斯盆地下方呈现出深至150~200 km的高波速异常,说明华北克拉通其西部岩石圈保存完好尚未遭到明显破坏.河套地堑下方存在向鄂尔多斯盆地下方延伸的明显低波速异常,其深度可达300 km深度,而阴山造山带下方上地幔存在深至100 km左右的弱高波速异常,说明鄂尔多斯盆地周边地区的岩石圈均遭到一定程度破坏并减薄,可能与新生代时期太平洋板块的俯冲引起深部热物质上涌等作用密切相关.这些研究结果说明,华北克拉通在构造演化过程中不同块体经历了不同的破坏演化历史,这对于认识克拉通破坏减薄机制具有重要意义.  相似文献   

14.
华北克拉通北缘—西伯利亚板块南缘(张家口—中蒙边界)的深地震测深剖面长600 km,跨越华北板块、内蒙造山带和西伯利亚板块.沿测线采用8个1.5t的爆炸震源激发地震波,使用300套数字地震仪接收,取得了高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳内的反射波(P3)、中地壳底面的反射波(P4)、下地壳内的反射波(P5,仅在镶黄旗—苏尼特右旗下方出现)和莫霍面的反射波(Pm)等6个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在华北板块与内蒙造山带之间,内蒙造山带与西伯利亚板块之间,上地壳中存在明显的高速度局部变化,在地表发育大量的古生代花岗岩体、超基性岩体.(2)在中下地壳华北板块南缘的地震波速度大,为6.3~6.7 km/s,西伯利亚板块北缘的速度小,为6.1~6.7 km/s,且界面比较平缓.原因是在内蒙造山带内地壳的缩短和隆升造山引起了中下地壳界面的剧烈起伏,不同海陆块的拼合和物质交换导致了不同区域速度的不均匀性.(3)莫霍面在赤峰断裂带(F2)以南和索伦敖包—阿鲁科尔沁旗断裂带(F4)以北较为平缓,平均深度为40~42 km.在F2—F4之间呈双莫霍面,莫霍面1明显上隆,深度为33.5 km,层速度为6.6~6.7 km/s.莫霍面2明显下凹,在西拉木伦河断裂带(F3)下方,最深达到47 km,速度达到最大为6.8~6.9 km/s,这可能是由壳幔物质混合引起的.依据莫霍面的特点,本文认为双莫霍面以南为华北板块北缘,以北为西伯利亚板块南缘,拼合位置在赤峰断裂带(F2)与索伦敖包—阿鲁科尔沁旗断裂带(F4)之间的区域.  相似文献   

15.

本文对喜马拉雅计划二期部分台站的远震波形数据进行接收函数提取,利用接收函数共转换点叠加方法获得阿拉善地块、鄂尔多斯地块以及银川—河套盆地下方0~80 km深度的速度间断面结构.结果表明:鄂尔多斯地块成层性好,地壳厚度为38~42 km,康拉德界面为18~22 km,阿拉善地区的Moho面深度为38~45 km.河套盆地地壳厚度约52 km,银川断陷盆地和贺兰山下方的Moho面最深为~55 km.鄂尔多斯西缘构造边界下方Moho面变化明显,且黄河断裂为深大断裂直接切割莫霍界面.根据本文的间断面成像结果我们进一步确定阿拉善地块与鄂尔多斯地块分属不同的大地构造单元.与此同时,我们推测贺兰山以西70~80 km范围内和鄂尔多斯地块西缘北段存在地壳增厚变形的可能.

  相似文献   

16.
利用双差地震定位方法对鄂尔多斯东缘地区(34°N—41°N,110°E—115°E)2008年1月—2012年12月的中小地震进行了重新定位.重定位后,定位精度得到改善,震中分布更加集中.鄂尔多斯东缘拉张盆地内部震源深度较浅,大多小于13 km,向盆地两端震源深度有加深的趋势,特别是太原盆地北端,临汾盆地北端,以及运城与临汾盆地之间的峨眉台地,震源深度可达20~25 km左右.我们认为盆地内部地壳减薄,上地幔上隆,热作用导致地壳内部脆性层减薄,致使最大震源深度变浅;盆地之间的横向隆起区受区域应力场挤压剪切作用以及盆地内部上地幔上拱产生的水平向挤压力作用等,在横向隆起区与盆地接触带易产生应力集中,导致地震的发生,由于受脆性层厚度变化等的影响,在盆地向横向隆起区过渡部位出现震源深度加深的现象.鄂尔多斯东北缘地区地震分布弥散、震源深度相对较浅,可能与源自地幔的大范围深部热作用以及地壳脆性层厚度减薄有关.根据地震的空间分布特征,对部分盆地内部的断层特征进行了讨论.  相似文献   

17.
鄂尔多斯块体北缘与西缘地区地壳各向异性特征   总被引:1,自引:0,他引:1       下载免费PDF全文

本研究使用内蒙古自治区数字测震台网2010年1月至2017年10月区域小地震的波形记录资料,采用SAM方法,进行了地壳剪切波分裂的分析,得到鄂尔多斯块体北缘与西缘地区地壳介质地震各向异性的初步研究结果.根据15个台站161个有效地震记录的分析,鄂尔多斯块体北缘与西缘地区的快剪切波平均偏振方向为NE44.4°±38.4°,慢剪切波平均时间延迟为1.7±1.6 ms·km-1.研究区域的快剪切波偏振显示出两个优势方向,一个是NE方向,另一个是近NS方向.区内的逆冲凸起与走滑正倾断层构造对剪切波分裂产生了直接的影响,造成了剪切波分裂参数的复杂分布,反映了剪切波分裂参数受到区域应力和构造共同作用的影响.鄂尔多斯块体北缘的快波偏振特征有NE和近NS两个优势偏振方向,其东区与西区的快剪切波偏振表现出明显不同的特征.东区的第一快剪切波优势偏振方向为NE,第二快剪切波优势偏振方向为近NS;西区的第一快剪切波优势偏振方向为近EW,第二快剪切波优势偏振方向为近NS.鄂尔多斯块体北缘的区域背景主压应力方向可能总体上为近NS方向,但空间分布有差异,东区NE方向的优势偏振与西区近EW方向的优势偏振更可能反映了断裂与构造的影响.鄂尔多斯块体西缘的快剪切波偏振特征显示出非常清楚的NE向的优势偏振方向,近NS向的优势偏振方向则不太明显,反映出该地区复杂构造对各向异性分布的影响.慢波时间延迟呈现出西低东高的特点,时间延迟的高值出现在鄂尔多斯块体北缘的东部,时间延迟的这种西低东高的各向异性强度变化,可能反映了区域构造活动西强东弱的特性.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号