首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three localities with marginal moraines deposited by former cirque glaciers are investigated in east-central southern Norway. The wet-based (erosive) cirque glaciers with aspects towards S-SW and N-NE are mapped at altitudes above 1100 m, and have a mean equilibrium-line altitude of 1275 m. With a suggested mean annual winter precipitation close to the average for the modern accumulation season (1 October-30 April) when the cirque glaciers existed, the mean air-temperature depression during the ablation season (1 May-30 September) is calculated to be 6–7°C lower than at present. The high-altitude cirques of central Rondane were still covered by ice when the low-altitude cirque glaciers developed in distal position for this massif in eastern Rondane and on isolated mountains. Hence, the cirque glaciers are suggested to have existed during the deglaciation after the Late Weichselian maximum, and most likely during the Younger Dryas (11000–10000 BP). The cirque glaciers indicate a downwasting ice-sheet surface well below an altitude of 1100 m prior to the Younger Dryas, and this supports a limited (small) vertical extent for the Late Weichselian ice sheet in this region. With the contemporaneous level for instantaneous glacierization (glaciation threshold) just below the highest elevated peaks in east-central southern Norway, this fits with the idea of a continuous downwasting of the Late Weichselian ice sheet since the 'first' nunataks appeared. The occurrence of the cirque glaciers indicates a multidomed Scandinavian ice-sheet geometry during the Late Weichselian.  相似文献   

2.
Younger Dryas cirque glaciers are known to have existed beyond the Scandinavian Ice Sheet in parts of western Norway. At Kråkenes, on the outermost coast, a cirque glacier formed and subsequently wasted away during the Younger Dryas. No glacier existed there during the Allerød. Large cirque moraines, some with marine deltas and associated fans, extend into the western part of Sykkylvsfjorden. Comparison with existing late-glacial sea-level curves shows that the uppermost marine sediment in these features was deposited well above Younger Dryas sea-level, demonstrating that the cirques were occupied by glaciers before the Younger Dryas. During the Younger Dryas the cirque glaciers expanded, and some advanced across the deltas, depositing till and supplying the sediment to form lower-level fans and deltas controlled by Younger Dryas sea level. The extent of the Younger Dryas advance of some of the glaciers was, at least in part, controlled by grounding on material deposited before the Younger Dryas. The depositional history of the glacial–marine deposits in the Sykkylven area indicates that cirque glaciers existed throughout Late-glacial time and only expanded during the Younger Dryas. The sediment sequence in glacial lakes beyond cirque moraines and reconstructions of glacier equilibrium lines indicate that this was true for most cirques in western Norway. Only on the outermost coast were new glaciers formed in response to Younger Dryas climate cooling. © 1998 John Wiley & Sons Ltd.  相似文献   

3.
A clay varve chronology has been established for the Late Weichselian ice recession east of Mt. Billingen in Västergötland, Sweden. In this area the Middle-Swedish end moraine zone was built up as a consequence of cold climate during the Younger Dryas stadial. A change-over from rapid to slow retreat as a result of climatic deterioration at the Alleröd/Younger Dryas transition cannot be traced with certainty in the varve sequences, but it seems to have taken place just before 11,600 varve years BP. The following deglaciation was very slow for about 700 years — within the Middle-Swedish end moraine zone the annual ice-front retreat was only c . 10 m on average. A considerable time-lag is to be expected between the Younger Dryas climatic event and this period of slow retreat. The 700 years of slow retreat were succeeded by 200 years of more rapid recession, about 50–75 m annually, and then by a mainly rapid and uncomplicated retreat of the ice-front by 100–200 m/year or more, characterizing the next 1500 years of deglaciation in south and central Sweden. The change from about 50–75 m to 100–200 m of annual ice-front retreat may reflect the Younger Dryas/Preboreal transition. Clay-stratigraph-ically defined, the transition is dated at c . 10,740 varve years BP, with an error of +100 to -250 years. In the countings of ice layers in Greenland ice cores (GRIP and GISP-2) the end of the Younger Dryas climatic event is 800–900 years older. However, a climatic amelioration after the cold part of the Younger Dryas and in early Preboreal should rapidly be reflected by for example chemical components and dust in Greenland ice cores, and by increasing δ13C content in tree rings. On the other hand, the start of a rapid retreat of the inland ice margin can be delayed by several centuries. This can explain at least a part of the discrepancy between the time-scales.  相似文献   

4.
Deglaciation of western Central Norway   总被引:4,自引:0,他引:4  
The glacier movements and corresponding ice margins in Central Norway during Younger Dryas and Preboreal are reconstructed. Scattered, older marginal deposits are difficult to correlate. Raised beach features indicate that the deep fjords became ice-free at an early stage due to calving. In Møre og Romsdal county the glacier front lay at the fjord heads during Younger Dryas, with extensive local glaciation in the intervening mountain areas, and a limit of glaciation 500–600 m lower than the present. In certain places local moraines older than Younger Dryas have been preserved. Autochthonous block fields are widespread in the mountains of Møre og Romsdal. The lower limit of block fields lies at c. 500 m above sea level on the outermost coast and rises to c. 1500 m above sea level in the interior fjord country. No erratics, striation or lateral moraines from the inland ice have been found above this limit. Its gradient, which in outer fjord districts is about 1%, seems to indicate the ice surface at the last maximum of Weichsel glaciation.  相似文献   

5.
Svalbard has been completely covered by an extensive ice sheet at least once, but not in the Late Weichselian (max. 18,000–20,000 years ago). Areas in the western and northwestern parts of Svalbard have been ice-free for more than 40,000 years. The extension and time of a Barents Shelf glaciation are questions still open for discussion. For most of the Svalbard area we do not know when the last deglaciation started, geographically and in time. The oldest datings for the interval 15,000 to 10,000 years B.P. have an age of about 12,600 years, and datings from between 11,000 and 10,000 years B.P. are rather frequent in the western and northern parts of Spitsbergen. No moraines from Younger Dryas have been found in Svalbard and the glaciers were probably less extensive 10,000 years ago than today. The maximum extension of glaciers in the Holocene took place only a few hundred years ago.  相似文献   

6.
Northern Folgefonna (c. 23 km2), is a nearly circular maritime ice cap located on the Folgefonna Peninsula in Hardanger, western Norway. By combining the position of marginal moraines with AMS radiocarbon dated glacier‐meltwater induced sediments in proglacial lakes draining northern Folgefonna, a continuous high‐resolution record of variations in glacier size and equilibrium‐line altitudes (ELAs) during the Lateglacial and early Holocene has been obtained. After the termination of the Younger Dryas (c. 11 500 cal. yr BP), a short‐lived (100–150 years) climatically induced glacier readvance termed the ‘Jondal Event 1’ occurred within the ‘Preboreal Oscillation’ (PBO) c. 11 100 cal. yr BP. Bracketed to 10 550–10 450 cal. yr BP, a second glacier readvance is named the ‘Jondal Event 2’. A third readvance occurred about 10 000 cal. yr BP and corresponds with the ‘Erdalen Event 1’ recorded at Jostedalsbreen. An exponential relationship between mean solid winter precipitation and ablation‐season temperature at the ELA of Norwegian glaciers is used to reconstruct former variations in winter precipitation based on the corresponding ELA and an independent proxy for summer temperature. Compared to the present, the Younger Dryas was much colder and drier, the ‘Jondal Event 1’/PBO was colder and somewhat drier, and the ‘Jondal Event 2’ was much wetter. The ‘Erdalen Event 1’ started as rather dry and terminated as somewhat wetter. Variations in glacier magnitude/ELAs and corresponding palaeoclimatic reconstructions at northern Folgefonna suggest that low‐altitude cirque glaciers (lowest altitude of marginal moraines 290 m) in the area existed for the last time during the Younger Dryas. These low‐altitude cirque glaciers of suggested Younger Dryas age do not fit into the previous reconstructions of the Younger Dryas ice sheet in Hardanger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Recent research based primarily on exposure ages of boulders on moraines has suggested that extensive ice masses persisted in fjords and across low ground in north‐west Scotland throughout the Lateglacial Interstade (≈ Greenland Interstade 1, ca. 14.7–12.9 ka), and that glacier ice was much more extensive in this area during the Older Dryas chronozone (ca. 14.0 ka) than during the Younger Dryas Stade (ca. 12.9–11.7 ka). We have recalibrated the same exposure age data using locally derived 10Be production rates. This increases the original mean ages by 6.5–12%, implying moraine deposition between ca. 14.3 and ca. 15.1 ka, and we infer a most probable age of ca. 14.7 ka based on palaeoclimatic considerations. The internal consistency of the ages implies that the dated moraines represent a single readvance of the ice margin (the Wester Ross Readvance). Pollen–stratigraphic evidence from a Lateglacial site at Loch Droma on the present drainage divide demonstrates deglaciation before ca. 14.0 ka, and therefore implies extensive deglaciation of all low ground and fjords in this area during the first half of the interstade (ca. 14.7–14.0 ka). This inference appears consistent with Lateglacial radiocarbon dates for shells recovered from glacimarine sediments and a dated tephra layer. Our revised chronology conflicts with earlier proposals that substantial dynamic ice caps persisted in Scotland between 14 and 13 ka, that large active glaciers probably survived throughout the Lateglacial Interstade and that ice extent was greater during the Older Dryas period than during the Younger Dryas Stade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Pollen analysis from Sandvikvatn has elucidated the local Late Weichselian vegetational and climatic history since deglaciation about 14,000 B.P. The pleniglacial period, the first of three climatic main periods and ending c. 13,600 B.P., is an Artemisia -dominated pioneer vegetation on disturbed mineral soils. The Late Weichselian Interstadial (13,600-11,000 B.P.) comprises a Salix -shrub consolidation phase and, from 12,900 B.P., a birch-forest optimum phase. In the Younger Dryas Stadial (11,000–10,100 B.P.) the Artemisia -dominated pioneer vegetation returns. Three climatic oscillations are demonstrated at intervals of about 500 years within the Interstadial. The oldest two, about 12,500 and 12,000 B.P., could both have been connected with the 'Older Dryas'. Cold winters and strong winds, causing soil erosion and drought, are suggested as important factors during the climatic periods unfavourable to woody vegetation. In the pleniglacial and Younger Dryas periods the winds are assumed to be katabatic. During the whole Late Weichselian southern species dominate locally. A northwards spread is demonstrated for the majority of the local late-glacial taxa, including the endemic Primula scandinavica and also Papaver radicatum and Aconitum , both previously discussed as part of the hypothesis of Weichselian ice-free refugia.  相似文献   

9.
Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling‐Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re‐advance into the ocean during the Older Dryas (c. 14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre‐date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c. 18.5 and 14.8 cal. ka BP; however, no ice‐marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.  相似文献   

10.
Lyså, A., Hjelstuen, B. O. & Larsen, E. 2009: Fjord infill in a high‐relief area: Rapid deposition influenced by deglaciation dynamics, glacio‐isostatic rebound and gravitational activity. Boreas, 10.1111/j.1502‐3885.2009.00117.x. ISSN 0300‐9483. Seismic profiles and gravity cores have been collected from the previously glaciated Nordfjord system on the west coast of Norway. The results give new information about the deglaciation history of the area and contribute to our understanding of fjord fill in high relief areas. During the last deglaciation, up to 360 m of sediments was deposited in the 135 km long fjord system. Shortly after the coastal area became ice‐free, ~12 300 14C years BP, the first ice‐marginal deposits were formed, probably due to a minor glacier re‐advance. The greatest volume of sediments in the fjord was deposited during the Allerød ice recession period, the Younger Dryas re‐advance and the succeeding ice retreat period until the ice disappeared from the fjord in early Preboreal. During the Allerød, the fjord was ice‐free and glaciomarine stratified sediments were deposited. The ice margin is suggested to have been located just west of Lake Strynevatnet before the advance during the Younger Dryas. In the late phase of the Younger Dryas, and within the succeeding ~1000 years, the glacio‐isostatic rebound was rapid, and extensive re‐sedimentation took place. Slide activities continued into mid‐Holocene, albeit with less intensity and were followed by normal and calm marine conditions that prevailed until the present. One huge rock avalanche into the fjord took place between 2200 and 1800 14C yr BP, probably triggering a tsunami and several slides in the fjord. Even though glacigenic sediments totally dominate in terms of sediment volume, the present study underlines the importance of re‐sedimentation and other gravitational processes in such fjord settings.  相似文献   

11.
Clague, J. J., Mathewes, R. W., Guilbault, J.-P., Hutchinson, I. & Ricketts, B. D. 1997 (September): Pre-Younger Dryas resurgence of the southwestern margin of the Cordilleran ice sheet, British Columbia, Canada. Boreas , Vol. 26, pp. 261–278. Oslo. ISSN 0300–9483.
A lobe of the Cordilleran ice sheet readvanced into the central Fvaser Lowland, southwestern British Columbia, Canada, on at least two occasions near the end of the last glaciation. This ice also flowed into the previously deglaciated, lower reaches of mountain valleys adjacent to the Fraser Lowland and into Washington state. The first of these advances occurred before about 11900 BP and ended with glacier retreat and the establishment of lodgepole pine forest on newly deglaciated terrain. Parts of this forest were overridden by ice during a second advance, shortly after 11300 BP. The younger advance is most likely older than the Younger Dryas Chronozone (11000–10000 BP) and may correlate with an intra-Allerad cooling event (the Killarney-Gerzensee oscillation). The older advance may have occurred during the Oldest Dryas or Older Dryas cold period. Non-climatic factors could also be involved, as emergence of the Fraser Lowland before the older advance greatly reduced or eliminated calving at the glacier margin and thus altered the mass balance of the ice lobe.  相似文献   

12.
Cosmogenic 10Be surface exposure ages for bedrock sites around Torridon and the Applecross Peninsula in Wester Ross, northwest Scotland, provide new insights into the Lateglacial transition. Accounting for postglacial weathering, six statistically comparable exposure ages give a late Younger Dryas (G‐1) exposure age of 11.8 ± 1.1 ka. Two further outliers are tentative pre‐Younger Dryas exposure ages of 13.4 ± 0.5 ka in Torridon, and 17.5 ± 1.2 ka in Applecross. The Younger Dryas exposure ages have compelling implications for the deglaciation of marginal Loch Lomond Stadial ice fields in Torridon and Applecross. Firstly, they conflict with predictions of restricted ice cover and rapid retreat based on modelling experiments and climate proxies, instead fitting a model of vertically extensive and prolonged ice coverage in Wester Ross. Secondly, they indicate that >2 m of erosion took place in the upper valleys of Torridon and Applecross during the Younger Dryas, implying a dominantly warm‐based glacial regime. Finally, the exposure ages have clarified that corrie (cirque) glaciers did not readvance in Wester Ross, following final deglaciation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The boundary between the last two geological epochs, the Pleistocene and the Holocene, is placed at 'the date 10,000 B.P., measured in radiocarbon years'. In the European chronostratigraphy, this corresponds to the Younger Dryas/Preboreal boundary, the pollen zone III/IV boundary and the Late Glacial/Postglacial boundary. The stratal sequence in the Botanical Garden of Gothenburg is proposed as a suitable boundary-stratotype of the Pleistocene/Holocene that fulfils the stratigraphical rules of marine environment and accessibility. A core, labelled B 873, has been analyzed for multiple parameters by various authors. The suggested Pleistocene/Holocene boundary in Core B 873 is indicated by a lithologic boundary, a palynological change tentatively correlated with the pollen zone III/IV boundary, and a distinct palaeomagnetic intensity maximum, the 'Gålön Magnetic Intensity Maximum', identified in numerous other cores at the Younger Dryas/Preboreal boundary and at the drainage of the Baltic Ice Lake in varved clay sequences (with the peak dated at the drainage ±4 varves). This boundary is closely radiocarbon dated at 10,000 B.P. (10,000–9950 B.P.) in terrestrial-lacustrine sequences within the proposed type area in Gothenburg and in Southern Sweden, the established type region for the Pleistocene/Holocene boundary. The corresponding varve date is 9965 varves B.P. (De Geer's varve –1073). The various parameters directly and indirectly connected with the study of Core B 873 make global correlations possible. Because every region has its own local characteristics, however, it will be necessary to establish regional type sections, hypostratotypes.  相似文献   

14.
Shane, Linda C. K. 1987 03 01: Late-glacial vegetational and climatic history of the Allegheny Plateau and the Till Plains of Ohio and Indiana, U.S.A. Boreas , Vol. 16, pp. 1–20. Oslo. ISSN 0300–9483.
Pollen evidence from the Allegheny Plateau and the Till Plains south of the Great Lakes shows marked post-glacial vegetation gradients. C. 15,500–11,000 B.P .: On the Plateau, spruce forest was rapidly established, persisted for 2,000 years, then began a gradual change to deciduous-conifer forest. On the Till Plains, open spruce forest tundra closed slowly over 1,000 years, declined rapidly c . 13,500 B.P., and a deciduous open woodland developed. C. 11,000–10,300 B.P .: On the Till Plains, a brief cooling is recorded by increases in the abundance of spruce and fir, contemporaneous with the European Younger Dryas. No clear change is seen on the Plateau. 10,300–4,000 B.P .: Warming and/or drying occurred in both areas, as hemlock and jack/red pine trees immigrated, followed by white pine. Conifers disappeared from the Till Plains by 9,800 B.P., but pine and hemlock trees may have persisted on the Plateau. After 10,000 B.P. mixed deciduous forest was established across the entire region. Between 8,000 and 4,000 B.P., further warming/drying is indicated on the Till Plains with development of open oak forest and lake shallowing, and on the Plateau by a minor increase in herbs, lake shallowing, and reduction in pine.  相似文献   

15.
We present a chronology of late Pleistocene deglaciation and Neoglaciation for two valleys in the north‐central Brooks Range, Alaska, using cosmogenic 10Be exposure dating. The two valleys show evidence of ice retreat from the northern range front before ~16–15 ka, and into individual cirques by ~14 ka. There is no evidence for a standstill or re‐advance during the Lateglacial period, indicating that a glacier advance during the Younger Dryas, if any, was less extensive than during the Neoglaciation. The maximum glacier expansion during the Neoglacial is delimited by moraines in two cirques separated by about 200 km and dated to 4.6 ± 0.5 and 2.7 ± 0.2 cal ka BP. Both moraine ages agree with previously published lichen‐inferred ages, and confirm that glaciers in the Brooks Range experienced multiple advances of similar magnitude throughout the late Holocene. The similar extent of glaciers during the middle Holocene and the Little Ice Age may imply that the effect of decreasing summer insolation was surpassed by increasing aridity to limit glacier growth as Neoglaciation progressed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Eight box cores from the tropical Atlantic were studied in detail with regard to foraminiferal oxygen isotopes, radiocarbon, and Globorotalia menardii abundance. A standard Atlantic oxygen-isotope signal was reconstructed for the last 20,000 yr. It is quite similar to the west-equatorial Pacific signal published previously. Deglaciation is seen to occur in two steps which are separated by a pause. Onset of deglaciation is after 15,000 yr B.P. The pause is centered between 11,000 and 12,000 yr B.P., but may be correlative with the Younger Dryas (10,500 yr B.P.) if allowance is made for a scale shift due to mixing processes on the sea floor. Step 2 is centered near 10,000 yr B.P. and is followed by a brief excursion toward light oxygen values. This excursion (the M event) may correlate with the Gulf of Mexico meltwater spike.  相似文献   

17.
Late Weichselian deglaciation in the Oslofjord area, south Norway   总被引:2,自引:0,他引:2  
The older 'moraine lines' outside the Ra Moraine in the outer Oslofjord area have been correlated with events in Bohuslän, Sweden. Recent radiocarbon datings in the vicinity of the Ra Moraine and a radiocarbon dated sea-level curve for the Ski area show that the Ra Moraine was formed during the Early Younger Dryas, whereas the Ski Moraine was formed at the end of the Younger Dryas chronozone. An equidistant shoreline diagram together with a large number of marine limit observations have been used to establish the position of the glacier front during Late Younger Dryas and Early Preboreal chronozones. Reconnaissance mapping indicates a fairly regular recession with many short stops during the Bølling, Older Dryas and Allerød chronozones; at least two readvances to the Ra Moraine before 10,600 years B.P.; a rapid recession during the Middle Younger Dryas and a number of ice-front oscillations at the end of the Younger Dryas chronozone.  相似文献   

18.
The North Atlantic Younger Dryas climatic reversal did not cause a glacier advance on Mount Rainier. The glaciers on Mount Rainier seem to have advanced in response to regional or local shifts in climate. However, the Younger Dryas climatic reversal may have affected the Mount Rainier area, causing a cold, but dry, climate unfavorable to glacier advances. Glaciers in the vicinity of Mount Rainier advanced twice during late glacial/early Holocene time. Radiocarbon dates obtained from lake sediments adjacent to the corresponding moraines are concordant, indicating that the ages for the advances are closely limiting. The first advance occurred before 11,300 14C yr BP (13,200 cal yr BP). During the North Atlantic Younger Dryas event, between 11,000 and 10,000 14C yr BP (12,900 and 11,600 cal yr BP), glaciers retreated on Mount Rainier, probably due to a lack of available moisture, but conditions may have remained cold. The onset of warmer conditions on Mount Rainier occurred around 10,000 14C yr BP (11,600 cal yr BP). Organic sedimentation lasted for at least 700 years before glaciers readvanced between 9800 and 8950 14C yr BP (10,900 and 9950 cal yr BP).  相似文献   

19.
Lake Vättern represents a critical region geographically and dynamically in the deglaciation of the Fennoscandian Ice Sheet. The outlet glacier that occupied the basin and its behaviour during ice‐sheet retreat were key to the development and drainage of the Baltic Ice Lake, dammed just west of the basin, yet its geometry, extent, thickness, margin dynamics, timing and sensitivity to regional retreat forcing are rather poorly known. The submerged sediment archives of Lake Vättern represent a missing component of the regional Swedish deglaciation history. Newly collected geophysical data, including high‐resolution multibeam bathymetry of the lake floor and seismic reflection profiles of southern Lake Vättern, are used here together with a unique 74‐m sediment record recently acquired by drill coring, and with onshore LiDAR‐based geomorphological analysis, to investigate the deglacial environments and dynamics in the basin and its terrestrial environs. Five stratigraphical units comprise a thick subglacial package attributed to the last glacial period (and probably earlier), and an overlying >120‐m deglacial sequence. Three distinct retreat–re‐advance episodes occurred in southern Lake Vättern between the initial deglaciation and the Younger Dryas. In the most recent of these, ice overrode proglacial lake sediments and re‐advanced from north of Visingsö to the southern reaches of the lake, where ice up to 400 m thick encroached on land in a lobate fashion, moulding crag‐and‐tail lineations and depositing till above earlier glacifluvial sediments. This event precedes the Younger Dryas, which our data reveal was probably restricted to north‐central sectors of the basin. These dynamics, and their position within the regional retreat chronology, indicate a highly active ice margin during deglaciation, with retreat rates on average 175 m a?1. The pronounced topography of the Vättern basin and its deep proglacial‐dammed lake are likely to have encouraged the dynamic behaviour of this major Fennoscandian outlet glacier.  相似文献   

20.
Four boulder samples from the Piano del Praiet frontal moraine in the Gesso della Barra Valley (Maritime Alps) have been 10Be dated. The results give a weighted mean age of 11 340±370 (870) yr, constraining the frontal moraine to the Egesen glacial stadial, during the Younger Dryas cold phase. By applying the same 10Be production rate to other Egesen moraines previously dated in the Alps, we obtain similar ages for all of them. This suggests a synchroneity of the Egesen deglaciation in the European Alps at the end of the Younger Dryas. From the palaeoshape of the Egesen glacier, reconstructed by means of geomorphological mapping, an Equilibrium Line Altitude depression (δELA) of −520 to −530 m, with respect to the present-day ELA, and of −260 to −320 m, with respect to the Little Ice Age ELA, has been calculated. Comparison with other Alpine sector δELAs indicates that the Maritime Alps experienced humid climatic conditions during the Younger Dryas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号