共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sandip K. Chakrabarti † Santabrata Das 《Monthly notices of the Royal Astronomical Society》2001,327(3):808-812
We analytically study how the behaviour of accretion flows changes when the flow model is varied. We study the transonic properties of the conical flow, a flow of constant height and a flow in vertical equilibrium, and show that all these models are basically identical, provided that the polytropic constant is suitably changed from one model to another. We show that this behaviour is extendible even when standing shocks are produced in the flow. The parameter space where shocks are produced remains roughly identical in all these models when the same transformation among the polytropic indices is used. We present applications of these findings. 相似文献
3.
4.
5.
S. Mondal P. Basu S. K. Chakrabarti † 《Monthly notices of the Royal Astronomical Society》2009,396(2):1038-1045
In the present communication of our series of papers dealing with the accretion flows in the pseudo-Kerr geometry, we discuss the effects of viscosity on the accretion flow around a rotating black hole. We find the solution topologies and give special attention to the solutions containing shocks. We draw the parameter space where standing shocks are possible and where the shocks could be oscillating and could produce quasi-periodic oscillations (QPOs) of X-rays observed from black hole candidates. In this model, the extreme locations of the shocks give the upper limits of the QPO frequencies (νQPO ) which could be observed. We show that both the viscosity of the flow and the spin of the black hole a increase the QPO frequency while, as expected, the black hole mass reduces the QPO frequencies. Our major conclusion is that the highest observed frequency gives a strict lower limit of the spin. For instance, a black hole exhibiting νQPO ∼ 400 and 700 Hz must have the spin parameters of a > 0.25 and >0.75 , respectively, provided viscosity of the flow is small. We discuss the implications of our results in the light of observations of QPOs from black hole candidates. 相似文献
6.
Santabrata Das 《Monthly notices of the Royal Astronomical Society》2007,376(4):1659-1670
We investigate the behaviour of dissipative accreting matter close to a black hole, as this provides important observational features of galactic and extragalactic black hole candidates. We find a complete set of global solutions in the presence of viscosity and synchrotron cooling. We show that advective accretion flow can have a standing shock wave and the dynamics of the shock is controlled by the dissipation parameters (both viscosity and cooling). We study the effective region of the parameter space for standing as well as oscillating shock. We find that the shock front always moves towards the black hole as the dissipation parameters are increased. However, viscosity and cooling have opposite effects in deciding the solution topologies. We obtain two critical cooling parameters that separate the nature of the accretion solution. 相似文献
7.
Tapas K. Das 《Monthly notices of the Royal Astronomical Society》1999,308(1):201-206
We compute the mass outflow rate R m˙ from relativistic matter that is accreting quasi-spherically on to the Schwarzschild black holes. Taking the pair-plasma pressure-mediated shock surface as the effective boundary layer (of the black hole) from where the bulk of the outflow is assumed to be generated, computation of this rate is done using combinations of exact transonic inflow and outflow solutions. We find that R m˙ depends on the initial parameters of the flow, the polytropic index of matter, the degree of compression of matter near the shock surface and the location of the shock surface itself. We thus not only study the variation of the mass outflow rate as a function of various physical parameters governing the problem, but also provide a sufficiently plausible estimation of this rate. 相似文献
8.
Fazeleh Khajenabi Mohsen Shadmehri 《Monthly notices of the Royal Astronomical Society》2007,377(4):1689-1695
We study the dynamical structure of a self-gravitating disc with coronae around a supermassive black hole. Assuming that the magnetorotational instability responsible for generating the turbulent stresses inside the disc is also the source for a magnetically dominated corona, a fraction of the power released when the disc matter accretes is transported to and dissipated in the corona. This has a major effect on the structure of the disc and its gravitational (in)stability according to our analytical and self-consistent solutions. We determine the radius where the disc crosses the inner radius of gravitational instability and forms the first stars. Not only the location of this radius which may extend to very large distances from the central black hole, but also the mass of the first stars highly depends on the input parameters, notably the viscosity coefficient, the mass of the central object and the accretion rate. For accretion discs around quasi-stellar objects (QSOs) and the Galactic Centre, we determine the self-gravitating radius and the mass of the first clumps. Comparing the cases with a corona and without a corona for typical discs around QSOs or the Galactic Centre, when the viscosity coefficient is around 0.3, we show that the self-gravitating radius decreases by a factor of approximately 2, but the mass of the fragments increases with more or less the same factor. The existence of a corona implies a more gravitationally unstable disc according to our results. The effect of a corona on the instability of the disc is more effective when the viscosity coefficient increases. 相似文献
9.
Bárbara T. Ferreira Gordon I. Ogilvie 《Monthly notices of the Royal Astronomical Society》2009,392(1):428-438
We consider the inward propagation of warping and eccentric disturbances in discs around black holes under a wide variety of conditions. In our calculations, we use secular theories of warped and eccentric discs and assume the deformations to be stationary and propagating in a disc model similar to regions (a) and (b) of Shakura & Sunyaev discs. We find that the propagation of deformations to the innermost regions of the disc is facilitated for low viscous damping and high accretion rate. We relate our results to the possible excitation of trapped inertial modes, and to the observations of high-frequency quasi-periodic oscillations (QPOs) in black hole systems in the very high spectral state. 相似文献
10.
11.
Giuseppe Lanzafame D. Molteni & Sandip K. Chakrabarti 《Monthly notices of the Royal Astronomical Society》1998,299(3):799-804
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics. 相似文献
12.
13.
A. M. Beloborodov 《Monthly notices of the Royal Astronomical Society》1998,297(3):739-746
We calculate the structure of the accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of large viscosity parameter, α>0.03, the accretion flow deviates strongly from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches maximum, and then falls off. The maximum is achieved in the advection-dominated regime of accretion. The maximum temperature in the disc around a massive black hole of M =108 M⊙ with α=0.3 is of order 3×108 K. The discs with large accretion rates can emit X-rays in quasars as well as in galactic black hole candidates. 相似文献
14.
Bárbara T. Ferreira Gordon I. Ogilvie 《Monthly notices of the Royal Astronomical Society》2008,386(4):2297-2310
According to one model, high-frequency quasi-periodic oscillations (QPOs) can be identified with inertial waves, trapped in the inner regions of accretion discs around black holes due to relativistic effects. In order to be detected, their amplitudes need to reach large enough values via some excitation mechanism. We work out in detail a non-linear coupling mechanism suggested by Kato, in which a global warping or eccentricity of the disc has a fundamental role. These large-scale deformations combine with trapped modes to generate 'intermediate' waves of negative energy that are damped as they approach either their corotation resonance or the inner edge of the disc, resulting in amplification of the trapped waves. We determine the growth rates of the inertial modes, as well as their dependence on the spin of the black hole and the properties of the disc. Our results indicate that this coupling mechanism can provide an efficient excitation of trapped inertial waves, provided the global deformations reach the inner part of the disc with non-negligible amplitude. 相似文献
15.
16.
17.
18.
Tapas K. Das † 《Monthly notices of the Royal Astronomical Society》2000,318(1):294-302
Introducing a spherical, steady, self-supported pair-plasma pressure-mediated shock surface around a Schwarzschild black hole as the effective physical atmosphere that may be responsible for the generation of astrophysical mass outflows from relativistic quasi-spherical accretion, we calculate the mass outflow rate R ̇ by simultaneously solving the set of equations governing transonic polytropic accretion and isothermal winds. R ̇ is computed in terms of only three inflow parameters, which, we believe, has been done for the first time in our work. We then study the dependence of R ̇ on various inflow as well as shock parameters, and establish the fact that the outflow rate is essentially controlled by the post-shock proton temperature. 相似文献
19.