首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present preliminary results of a campaign undertaken with different radio interferometers to observe a sample of the most variable unidentified EGRET sources. We expect to detect which of the possible counterparts of the γ-ray sources (any of the radio emitters in the field) varies in time with similar timescales as the γ-ray variation. If the γ-rays are produced in a jet-like source, as we have modelled theoretically, synchrotron emission is also expected at radio wavelengths. Such radio emission should appear variable in time and correlated with the γ-ray variability.  相似文献   

2.
We consider the contribution to the Galactic diffuse γ-ray emission from unresolved γ-ray pulsars. Based on the thick outer gap model, Monte Carlo methods are used to simulate the properties (period, distance, magnetic field, etc.) of the Galactic population of rotation-powered pulsars the gamma-ray flux of which is lower than the threshold sensitivity of the EGRET detector on the Compton Gamma-Ray Observatory . Furthermore, the contribution to the Galactic diffuse γ-ray spectrum from the unresolved γ-ray pulsars is calculated. Our results indicate that the unresolved γ-ray pulsars contribute ∼5 to ∼10 per cent to the measured Galactic diffuse γ-ray emission if the birth rate of neutron stars in the Galaxy is 1 to 2 per century, and that these pulsars contribute significantly to the observed Galactic diffuse γ-ray emission above 1 GeV. Comparing the model spectrum with the observed spectrum, we show that the unresolved γ-ray pulsars contribute very little to the diffuse emission at lower energies but can account for ∼50 per cent of the observed spectrum above 1 GeV if the product of the birth rate of neutron stars and the γ-ray beaming fraction is about unity. Such a large pulsar contribution can explain the difference (∼60 per cent) between the intensity of the Galactic diffuse emission as measured by EGRET above 1 GeV and model predictions based on cosmic ray–matter interaction only.  相似文献   

3.
Radio-quiet γ-ray pulsars like Geminga may account for a number of the unidentified EGRET sources in the Galaxy. The number of Geminga-like pulsars is very sensitive to the geometry of both the γ-ray and radio beams. Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1–10%) of their light cylinder radius. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the γ-ray beams predicted by slot gap and outer gap models. From the results of this study, one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the γ-ray pulsar population.   相似文献   

4.
We present results of our pulsar population synthesis of normal and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for γ-ray emission from both millisecond and normal pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.   相似文献   

5.
The overall dynamical evolution and radiation mechanism of γ-ray burst (GRB) jets are briefly introduced. Various interesting topics concerning beaming in GRBs are discussed, including jet structures, orphan afterglows and cylindrical jets. The possible connection between GRBs and neutron stars is also addressed.  相似文献   

6.
A subset of the unidentified EGRET γ-ray sources with no active galactic nucleus or other conspicuous counterpart appears to be concentrated at medium latitudes. Their long-term variability and their spatial distribution indicate that they are distinct from the more persistent sources associated with the nearby Gould Belt. They exhibit a large scale height of 1.3 ± 0.6 kpc above the Galactic plane. Potential counterparts for these sources include microquasars accreting from a low-mass star and spewing a continuous jet. Detailed calculations have been performed of the jet inverse Compton emission in the radiation fields from the star, the accretion disc, and a hot corona. Different jet Lorentz factors, powers, and aspect angles have been explored. The up-scattered emission from the corona predominates below 100 MeV whereas the disc and stellar contributions are preponderant at higher energies for moderate (∼15) and small (∼1) aspect angles, respectively. Yet, unlike in the high-mass, brighter versions of these systems, the external Compton emission largely fails to produce the luminosities required for 5 to 10 kpc distant EGRET sources. Synchrotron-self-Compton emission appears as a promising alternative.  相似文献   

7.
The field of Very High Energy (VHE) gamma ray astronomy using the Atmospheric Cerenkov Technique has entered an interesting phase with detection of various galactic and extragalactic sources. Among galactic sources, only the Crab nebula has been established as a standard candle. Most observations on pulsars are in agreement as to the necessity for the GeV spectra to steepen at < 200 GeV. While the Imaging method for increase of sensitivity has been successful with many results, an alternate technique —Wavefront Sampling Technique- is also being used by an increasing number of experiments. The recently commissioned experiment at Pachmarhi (PACT) in India is presented as an example of this technique. Preliminary results from this experiment show detection of VHE γ-ray emission from (a) the Crab nebula at a high significance and (b) Crab and Geminga pulsars at > 1.5 TeV which could be the second component of the Outer Gap pulsar models.  相似文献   

8.
We study collective wind configurations produced by a number of massive stars, and obtain densities and expansion velocities of the stellar wind gas that is to be target, in this model, of hadronic interactions. We study the expected γ-ray emission from these regions, considering in an approximate way the effect of cosmic ray modulation. We compute secondary particle production (electrons from knock-on interactions and electrons and positrons from charged pion decay), and solve the loss equation with ionization, synchrotron, bremsstrahlung, inverse Compton, and expansion losses. We provide examples where configurations can produce sources for GLAST satellite, and the MAGIC, HESS, or VERITAS telescopes in non-uniform ways, i.e., with or without the corresponding counterparts. We show that in all cases we studied no EGRET source is expected.  相似文献   

9.
A major legacy of the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) is the detection of a large number of unidentified Gamma-ray sources. Out of the 271 EGRET sources are 170 not identified yet [Hartman et al. ApJS (123) (1999) 79]. To provide additional information on these unidentified EGRET sources, we derived simultaneous MeV fluxes or flux limits for each source by analyzing the contemporaneous COMPTEL data. Then we compare these MeV fluxes to the extrapolations of the published EGRET spectra. Our results can be grouped into 4 categories [Zhang et al. A&A (421) (2004) 983]: (1) non-constraining upper limits (∼120 sources), (2) hints (> 2 sigma) or detections with consistent MeV fluxes (∼16 sources), (3) enhanced MeV emission (2 sources), and (4) constraining MeV flux limits, requiring a spectral break (∼22 sources). In summary, for about 40 of the unidentified EGRET sources we can provide supplementary spectral information in the neighboring gamma-ray band, which – together with other source parameters – might provide clues to the underlying source nature.  相似文献   

10.
The discovery of the microquasar LS 5039 well within the 95% confidence contour of the Unidentified EGRET Source (UES) 3EG J1824−1514 was a major step towards the possible association between microquasars (MQs) and UESs. The recent discovery of precessing relativistic radio jets in LS I +61 303, a source associated for long time with 2CG 135+01 and with the UES 3EG J0241+6103, has given further support to this idea. Finally, the very recently proposed association between the microquasar candidate AX J1639.0−4642 and the UES 3EG J1639−4702 points towards a population of High Mass X-ray Binary (HMXB)/Neutron Star (NS) microquasars as counterparts of low-latitude unidentified EGRET sources.  相似文献   

11.
We have attempted to devise a scheme by which it may be possible to identify pulsars which are likely to be γ-ray pulsars. We apply this test to a representative population of pulsars and identify the likely candidates for γ emission. We also discuss some individual cases including the Crab and Vela pulsars.  相似文献   

12.
Summary. As of today, seven X-ray sources have been tentatively identified as radio-quiet, isolated neutron stars. The family appears to be a rapidly growing one, although not all the objects have been identified with the same degree of certainty. The most convincing example of radio quiet pulsar is certainly Geminga, the neutron star nature of which, proposed in 1983 on the basis of its similarity with the Vela pulsar, has been firmly established with the discovery of its X and pulsation. Four more neutron star candidates, originally found in the Einstein data, have been confirmed by ROSAT, which has added to the list two more entries. All this is not the result of an unbiased search. The seven sources were not selected at random: four are inside supernova remnants, an obvious place to search for isolated neutron stars, while the remaining three were singled out because of some peculiarity. Intense -ray emission in the case of Geminga, very high X-ray counting rate for RXJ185635-3754, or being the brightest unidentified source in the Einstein medium sensitivity survey, MS 0317-6647. In spite of the limited number of objects and of the observational biases, these seven radio quiet neutron star candidates add valuable pieces of information to the observational panorama of known pulsars. Their properties, inferred from the X-ray emission, offer a coherent picture, pointing towards thermally emitting, cooling neutron stars. Received: April 1, 1996  相似文献   

13.
Most of the unidentified gamma ray sources detected near the Galactic plane by EGRET aboard CGRO are expected to be gamma ray pulsars. We present a study about the detectability and identification of some unidentified EGRET sources with the MAGIC telescope. We list some unidentified gamma ray sources from the third EGRET catalogue to be detected with MAGIC taking into account some important conditions such as the variability parameter of the source, spectral index, inclusion in the GeV catalogue (ApJ 488, 1997, p. 872) and possible associations with known X-ray/radio sources located within the error box of the unidentified gamma ray source. We show the required observation time of these gamma ray pulsar candidates to be detected by MAGIC telescope considering reasonable values of cut-off energy. To be more realistic, we have chosen the zenith angle corresponding to the source culmination in the simulation of the effective area A since the observation time is function of the effective area. In addition to this study, it is very important to consider the extrapolated EGRET flux at MAGIC energies above 30 GeV of the gamma ray pulsar candidates taking the MAGIC sensitivity.  相似文献   

14.
The Whipple Observatory 10 m γ-ray telescope has been used to survey the error boxes of 24 EGRET unidentified sources in an attempt to find counterparts at energies of 350 GeV and above. In no case is a statistically significant signal found in the EGRET error box which implies that, at least for this sample, the γ-ray spectra of these sources steepen between 100 MeV and 350 GeV.  相似文献   

15.
It is argued that the iron nucleosynthesis rate in the universe due to SNI outbursts is dependent on the mass function of star formation. Since the mass function depends on the chemical composition and since the masses of SNI precursors have upper limits, the iron nucleosynthesis rate was low at an earlier evolutionary epoch of the universe when mainly massive stars were formed. The iron nucleosynthesis rate should reach a maximum near z ∼ 0.5. At such or similar value of z the well-known ‘step’ in the cosmic γ-ray background spectrum may be explained by the presence of γ-gray quanta accompanying the radioactive56Co →56Fe decay. An argument is presented against the identification of the hidden mass of the universe with black-hole remnants of ‘type III’ stars.  相似文献   

16.
We present new population synthesis calculations of close young neutron stars. In comparison with our previous investigation we use a different neutron star mass spectrum and different initial spatial and velocity distributions. The results confirm that most of ROSAT dim radioquiet isolated neutron stars had their origin in the Gould Belt. We predict that about several tens of young neutron stars can be identified in ROSAT All Sky Survey data at low galactic latitudes. Some of these sources also can have counterparts among EGRET unidentified sources.  相似文献   

17.
A remarkable number of pulsar wind nebulae (PWN) are coincident with EGRET γ-ray sources. X-ray and radio imaging studies of unidentified EGRET sources have resulted in the discovery of at least six new pulsar wind nebulae (PWN). Stationary PWN (SPWN) appear to be associated with steady EGRET sources with hard spectra, typical for γ-ray pulsars. Their toroidal morphologies can help determine the geometry of the pulsar which is useful for constraining models of pulsed γ-ray emission. Rapidly moving PWN (RPWN) with more cometary morphologies seem to be associated with variable EGRET sources in regions where the ambient medium is dense compared to what is typical for the ISM.  相似文献   

18.
Neutrino energy spectra have been calculated based on the recently measured energy spectra of Galactic very high energy γ-ray sources. Based on these neutrino spectra the expected event rates in the ANTARES neutrino telescope and KM3NeT, a future neutrino telescope in the Mediterranean Sea with an instrumented volume of one km3, have been calculated. For the brightest γ-ray sources we find event rates of the order of one neutrino per year. Although the neutrino event rates are comparable to the background from atmospheric neutrinos the detection of individual sources seems possible.  相似文献   

19.
In this paper we briefly comment on the observational status of the possible physical association between unidentified EGRET sources and supernova remnants (SNRs) in our Galaxy. We draw upon recent results presented in the review by Torres et al. (2003), concerning molecular gas in the vicinity of all 19 SNRs found to be positionally coincident with EGRET sources at low Galactic latitudes. In addition, we present new results regarding the supernova remnant CTA 1. Our findings disfavor the possibility of a physical connection with the nearby (in projection) EGRET source. There remains possible, however, that the compact object produced in the supernova explosion be related with the observed γ-ray flux.  相似文献   

20.
We are undertaking a high-frequency survey of the Galactic plane for radio pulsars, using the 13-element multibeam receiver on the 64-m Parkes radio telescope. We describe briefly the survey system and some of the initial results. PSR J1811−1736, one of the first pulsars discovered with this system, has a rotation period of 104 ms. Subsequent timing observations using the 76-m radio telescope at Jodrell Bank show that it is in an 18.8-d, highly eccentric binary orbit. We have measured the rate of advance of periastron which indicates a total system mass of 2.6±0.9 M, and the minimum companion mass is about 0.7 M. This, the high orbital eccentricity and the recycled nature of the pulsar suggest that this system is composed of two neutron stars, only the fourth or fifth such system known in the disc of the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号