首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The M s 8.0 Wenchuan earthquake or “Great Sichuan Earthquake” occurred at 14:28 p.m. local time on 12 May 2008 in Sichuan Province, China. Damage by earthquake-induced landslides was an important part of the total earthquake damage. This report presents preliminary observations on the Hongyan Resort slide located southwest of the main epicenter, shallow mountain surface failures in Xuankou village of Yingxiu Town, the Jiufengchun slide near Longmenshan Town, the Hongsong Hydro-power Station slide near Hongbai Town, the Xiaojiaqiao slide in Chaping Town, two landslides in Beichuan County-town which destroyed a large part of the town, and the Donghekou and Shibangou slides in Qingchuan County which formed the second biggest landslide lake formed in this earthquake. The influences of seismic, topographic, geologic, and hydro-geologic conditions are discussed.  相似文献   

2.
During the 2008 Wenchuan earthquake, the river valley from Yingxiu to Wenchuan experienced numerous landslides and became a prominent area of landslide complexes. The present large landslide complex near the earthquake epicenter consisted of Laohuzui slide 1, Laohuzui slide 2 and Douyaping slide. The scale, geology, morphology, sliding process, and failure mechanism of the landslide complex are analyzed by means of field investigation, aerial photograph and stereographic projection technique. Characteristics of these three slides including seismic response of slope, landslide debris, damage and potential failure are discussed: the convex slope and the upslope of fractured granitic rock at high altitude are highly prone to landsliding under earthquake; the high source altitude and long travel path determine grain sizes and the deposit angle of the slide debris; the landslide complex completely buries the G213 roadway and dams up the Minjiang River in these sections; after the earthquake, rainfall, aftershocks and river erosion may retrigger new failures, such as retrogressive slide of weathered fractured rock, colluvial landslide, debris flow, embankment failure and rockfall. The following are presented as suggested remedial measures to protect the roadway and stabilize the slope: the removing and trenching, protective concrete/rock blocks against erosion, retaining structure, rockfall stopping wall, rockfall restraining net, rock bolt, and the planting of vegetation.  相似文献   

3.
A large rock and ice avalanche occurred on the north face of Mount Steele, southwest Yukon Territory, Canada, on July 24, 2007. In the days and weeks preceding the landslide, several smaller avalanches initiated from the same slope. The ice and rock debris traveled a maximum horizontal distance 5.76 km with a maximum vertical descent of 2,160 m, leaving a deposit 3.66 km2 in area on Steele Glacier. The seismic magnitude estimated from long-period surface waves (M s) is 5.2. Modeling of the waveforms suggests an estimated duration of approximately 100 s and an average velocity of between 35 and 65 m/s. This landslide is one of 18 large rock avalanches known to have occurred since 1899 on slopes adjacent to glaciers in western Canada. We describe the setting, reconstruct the event chronology and present a preliminary characterization of the Mount Steele ice and rock avalanches based on field reconnaissance, analysis of seismic records and an airborne LiDAR survey. We also present the results of a successful dynamic simulation for the July 24 event.  相似文献   

4.
Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China   总被引:35,自引:16,他引:19  
The 2008 Wenchuan earthquake (M s = 8.0; epicenter located at 31.0° N, 103.4° E), with a focal depth of 19.0 km was triggered by the reactivation of the Longmenshan fault in Wenchuan County, Sichuan Province, China on 12 May 2008. This earthquake directly caused more than 15,000 geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000 deaths. It also caused more than 10,000 potential geohazard sites, especially for rockfalls, reflecting the susceptibility of high and steep slopes in mountainous areas affected by the earthquake. Landslide occurrence on mountain ridges and peaks indicated that seismic shaking was amplified by mountainous topography. Thirty-three of the high-risk landslide lakes with landslide dam heights greater than 10 m were classified into four levels: extremely high risk, high risk, medium risk, and low risk. The levels were created by comprehensively analyzing the capacity of landslide lakes, the height of landslide dams, and the composition and structure of materials that blocked rivers. In the epicenter area which was 300 km long and 10 km wide along the main seismic fault, there were lots of landslides triggered by the earthquake, and these landslides have a common characteristic of a discontinuous but flat sliding surface. The failure surfaces can be classified into the following three types based on their overall shape: concave, convex, and terraced. Field evidences illustrated that the vertical component of ground shaking had a significant effect on both building collapse and landslide generation. The ground motion records show that the vertical acceleration is greater than the horizontal, and the acceleration must be larger than 1.0 g in some parts along the main seismic fault. Two landslides are discussed as high speed and long runout cases. One is the Chengxi landslide in Beichuan County, and the other is the Donghekou landslide in Qingchuan County. In each case, the runout process and its impact on people and property were analyzed. The Chengxi landslide killed 1,600 people and destroyed numerous houses. The Donghekou landslide is a complex landslide–debris flow with a long runout. The debris flow scoured the bank of the Qingjiang River for a length of 2,400 m and subsequently formed a landslide dam. This landslide buried seven villages and killed more than 400 people.  相似文献   

5.
The Todagin Creek landslide is located at 57.61° N 129.98° W in Northwest British Columbia. A seismic station 90 km north of the landslide recorded the event at 1643 hours coordinated universal time (UTC; 0943 hours Pacific daylight time (PDT)) on October 3, 2006. The signal verifies the discovery and relative time bounds provided by a hunting party in the valley. The landslide initiated as a translational rock slide on sedimentary rock dipping down slope at 34° and striking parallel to the valley. The landslide transformed into a debris avalanche and had a total volume estimated at 4 Mm3. An elevation drop of 771 m along a planar length of 1,885 m resulted in a travel angle (fahrb?schung) of 21.3°. The narrowest part of the landslide through the transport zone is 345 m. The widest part of the divergent toe of the landslide reaches a width of 1,010 m. Landslide debris impounded a lake of approximately 32 ha and destroyed an additional 67 ha of forest. The impoundment took 7 to 10 days to fill, with muddied waters observed downstream on October 13. No clear linkage exists with precipitation and temperature records preceding the landslide, but strong diurnal temperature cycles occurred in the days prior to the event. The Todagin Creek area appears to have an affinity for large landslides with the deposits of three other landslides >5 Mm3 observed in the valley.  相似文献   

6.

地震滑坡一直是地学界关注的研究热点之一,特别是2005年10月8日克什米尔Ms7.8地震、2008年5月12日汶川Ms8.0地震、2010年玉树Ms7.1地震、2014年云南鲁甸Ms6.5地震、2015年4月25日尼泊尔Ms8.1地震以及2017年8月8日九寨沟Ms7.0地震等一系列强震活动,都不同程度地触发了大量地震滑坡,并伴生了许多次生灾害,从而促进地震滑坡研究进入了新的阶段。本文通过总结国内外地震滑坡研究现状,归纳了地震滑坡的特征和分布规律、地震动参数与地震滑坡关系、边坡地质条件与地震滑坡关系、地震滑坡的动力响应特征、地震滑坡预测以及地震滑坡危险性与风险区划等6方面的研究现状,在此基础上进一步提出了未来地震滑坡应关注的主要研究方向和重点。

  相似文献   

7.
The Wenchuan earthquake, measured at M s 8.0 according to the China Earthquake Administration, occurred at 14:28 on 12 May 2008 in the Sichuan Province of China. It brought overwhelming destruction to eight provinces and cities. Landslides and rock avalanches triggered by the earthquake produced 257 landslide lakes which were distributed along the fault rupture zone and river channels. The authors traveled to the disaster zone immediately after the earthquake to examine some of the features of the debris dams and performed a quick evaluation of the potential for outburst of earthquake-induced landslide lakes for the purpose of disaster relief. The preliminary analysis indicated that the landslide lakes could be classified as those exhibiting extremely high risk, medium risk, and low risk according to field observations and remote sensing, to determine material composition, dam structure, dam height, maximum water storage capacity, and size of the population potentially affected area. The failure risk of 21 debris dams were evaluated as follows: one dam with an extremely high danger risk, seven dams with a high danger, five dams with a medium danger, and eight dams of low danger. More concern was given to the Tangjiashan Lake and different scenarios for the potential sudden failure of its dam were assessed. The risk evaluation result was accepted in full, by the earthquake disaster relief office. A successful emergency dam treatment for risk reduction was planned, based on our assessments, and these measures were quickly carried out. According to this research, the earthquake destabilized the surrounding mountains, resulting in a prolonged geohazard for the area. Landslides and debris flows will continue to develop for at least 5 to 10 years after the Wenchuan earthquake and will produce additional dammed lakes. Recommendations and plans for earthquake–landslide lake mitigation were proposed, based on past successful practices.  相似文献   

8.
The Niumiangou Creek rock avalanche was triggered by an Ms 8.0 earthquake that happened on 12 May 2008 in the Sichuan Province, China. The rock avalanche traveled a horizontal distance of 3.0 km over a vertical elevation difference of 0.89 km, equivalent to a coefficient of friction of only 0.29. The travel path of the rock avalanche can be divided into three segments: (1) failing and disintegrating, (2) flying, (3) flowing. In the failing and disintegrating segment, the rock slope failed because of the coupled action of horizontal and vertical force of the earthquake, then smashed into the opposite mountain and disintegrated. In the flying segment, the disintegrating rock mass changed direction and flew into the Lianhuaxin Creek, which was different from the previous research results that concluded rock debris flowed in Lianhuaxin Creek. A great amount of air trapped and compressed under the rock debris acted as air cushion and supported the rock debris to fly a further distance. In the flowing segment, the rock debris flowed on the ground surface in Niumiangou Creek. The flowing velocity has been estimated from the maximum elevation and runup according to the damaged trimlines of the debris. The saturated fine material in Niumiangou Creek entrained by the failed debris mass is thought to have contributed to the long runout of the debris. The Niumiangou Creek rock avalanche is one of the three longest rock avalanches triggered by Wenchuan earthquake. The conclusions of the paper have implications for hazard assessment of potential rock avalanches in the earthquake area and the other similar mountainous area in west China.  相似文献   

9.
Xu  Zhiguo  Sun  Lining  Rahman  Mohd Nashriq Abd  Liang  Shanshan  Shi  Jianyu  Li  Hongwei 《Natural Hazards》2022,111(3):2703-2719

A major left-lateral strike-slip Mw7.7 earthquake occurred in the vicinity of the Caribbean Sea on January 28, 2020. As a result, a small-scale tsunami was generated. The properties of the seismogenic source were described using observational data gathered for the earthquake and tsunami, as well as information on the regional tectonic setting. The tsunami was simulated with the COMCOT model and Okada’s dislocation model from finite fault solutions for MW7.7 Caribbean Sea earthquakes published by the United States Geological Survey. The simulation results were compared to tide gauge records to validate whether the seafloor’s vertical displacement generated by the strike-slip fault caused a small-scale tsunami. We conducted a spectral analysis of the tsunami to better understand the characteristics of tsunami records. The tsunami simulation results showed that the co-seismic vertical displacement caused by a strike-slip MW7.7 earthquake could have contributed to the small-scale tsunami, but the anomalously large high-frequency tsunami waves recorded by the George Town tide gauge 11 min after the earthquake were unrelated to the earthquake-generated tsunami. According to the spectrum analysis, the predominant period of noticeable high-frequency tsunami waves recorded by the George Town tide gauge occurred only two minutes after the earthquake. This indicates that the source of the small-scale tsunami was close to the George Town station and the possible tsunami source was 150 km away from George Town station. These facts suggest that a submarine landslide was caused by the strike-slip earthquake. The comprehensive analysis showed that the small-scale tsunami was not caused solely by co-seismic seafloor deformation from the strike-slip event but that an earthquake-triggered submarine landslide was the primary cause. Therefore, the combined impact of two sources led to the small-scale tsunami.

  相似文献   

10.
Radon measurements were made in the soil and spring/seepage water in and around an active landslide located along the Pindar river in the Chamoli District of Uttaranchal in Garhwal Lesser Himalaya, to understand the application of radon in geological disasters. The landslide is a compound slide i.e. a slump in the crown portion, and debris slide and fall in the lower part. The bedrock consists of gneisses and schists of the Saryu Formation of the Almora Group of Precambrian age. The presence of several small slump scars and debris slide/fall scars along the length of the slide indicates continuous downward movement. The radon concentrations in the present study are much lower in comparison to values reported from other regions. However, the present radon data show relative variation in the slide zone. The concentration of radon measured in landslide zones varies from 3.1 Bq/l to 18.4 Bq/l in spring water and from 2.3 kBq/m3 to 12.2 kBq/m3 in the soil gas of the debris. Along the section of the slide, the radon values in water and soil are slightly higher in the upper slopes i.e. toward the crown portion of the landslide as compared to the distal portion. The relatively low concentration of radon both in soil gas and water in the toe portion of the landslide may be due to the high porosity of the debris, which does not allow radon to accumulate in the soil and water, whereas, towards the crown portion, the high frequency of fractures increases the surface area due to particle size reduction, and the near absence of debris enhances the radon emanation in soil.  相似文献   

11.
Evidences of landslide earthquake triggering due to self-excitation process   总被引:2,自引:0,他引:2  
The basin-like setting of stiff bedrock combined with pre-existing landslide masses can contribute to seismic amplifications in a wide frequency range (0–10 Hz) and induce a self-excitation process responsible for earthquake-triggered landsliding. Here, the self-excitation process is proposed to justify the far-field seismic trigger of the Cerda landslide (Sicily, Italy) which was reactivated by the 6th September 2002 Palermo earthquake (M s = 5.4), about 50 km far from the epicentre. The landslide caused damage to farm houses, roads and aqueducts, close to the village of Cerda, and involved about 40 × 106 m3 of clay shales; the first ground cracks due to the landslide movement formed about 30 min after the main shock. A stress–strain dynamic numerical modelling, performed by FDM code FLAC 5.0, supports the notion that the combination of local geological setting and earthquake frequency content played a fundamental role in the landslide reactivation. Since accelerometric records of the triggering event are not available, dynamic equivalent inputs have been used for the numerical modelling. These inputs can be regarded as representative for the local ground shaking, having a PGA value up to 0.2 m/s2, which is the maximum expected in 475 years, according to the Italian seismic hazard maps. A 2D numerical modelling of the seismic wave propagation in the Cerda landslide area was also performed; it pointed out amplification effects due to both the structural setting of the stiff bedrock (at about 1 Hz) and the pre-existing landslide mass (in the range 3–6 Hz). The frequency peaks of the resulting amplification functions (A(f)) fit well the H/V spectral ratios from ambient noise and the H/H spectral ratios to a reference station from earthquake records, obtained by in situ velocimetric measurements. Moreover, the Fourier spectra of earthquake accelerometric records, whose source and magnitude are consistent with the triggering event, show a main peak at about 1 Hz. This frequency value well fits the one amplified by the geological setting of the bedrock in correspondence with the landslide area, which is constituted of marly limestones and characterised by a basin-like geometry.  相似文献   

12.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

13.
基于地震滑坡危险性评估的Newmark累积位移模型,利用震前获取的震区地形数据、区域地质资料,结合地震动近实时获取技术,开展了四川九寨沟M_s7.0级地震诱发滑坡的应急快速评估。地震滑坡位移分析结果表明,同震滑坡活动的中—高强度区分布在断层两侧宽约4 km的带状区域内,整体沿北西方向延伸。其中,极震区的丰雪塘、日则和干海子等城镇驻地及附近道路的滑坡强度相对较高;震前、震后影像对比表明九寨沟地震诱发的滑坡类型以浅表型碎屑流及小规模崩塌为主,且同震碎屑流多是在震前已有碎屑流的基础上进一步活动扩展而来,震后汛期泥石流隐患也不容忽视;通过典型地区滑坡位移分析结果与震前、震后影像对比,表明滑坡位移分析结果能够较好的反映同震滑坡的宏观分布特征,但在场地尺度上吻合程度欠佳,后续将通过提升岩性和地形等数据质量进行改进。研究结果可为灾情研判提供宝贵信息,对提高灾害应急救援效率具有重要意义。  相似文献   

14.
S. C. Cox  S. K. Allen 《Landslides》2009,6(2):161-166
Rock avalanches fell from Vampire (2,645 m) Peak in the Southern Alps of New Zealand during January 2008. There were no direct witnesses, casualties or damage to infrastructure. Field observations indicate about 150,000 m3 (±50,000) of indurated greywacke collapsed retrogressively from a 73° slope between 2,380 and 2,520 m. Debris fell 800 m down Vampire’s south face and out 1.7 km across Mueller Glacier, with a 27.5° angle of reach. The resulting 300,000 m2 avalanche deposit contains three distinct lobes. The national seismograph network recorded two pulses of avalanche-type shaking, equivalent in amplitude to a M L 2.4 tectonic earthquake, for 60 s on Monday 7 January at 2349 hours (NZDT); then 45 s of shaking at M L 2.5 on Sunday 13 January at 0923 hours (NZDT). Deposit lobes are inferred to relate directly with shaking episodes. The avalanche fell across the debris from an older avalanche, which was also unwitnessed and fell from a different source on Vampire’s south face between February and November 2003. The 2003 avalanche involved 120,000 m3 (±40,000) of interlayered sandstone and mudstone which collapsed from a 65° slope between 2,440 and 2,560 m, then fell 890 m down across Mueller Glacier at a 24° angle of reach. Prolonged above-freezing temperatures were recorded during January 2008, but no direct trigger has been identified. The event appears to be a spontaneous, gravitationally induced, stress failure.  相似文献   

15.
On 8th August 2017, a magnitude Ms 7.0 earthquake struck the County of Jiuzhaigou, in Sichuan Province, China. It was the third Ms ≥?7.0 earthquake in the Longmenshan area in the last decade, after the 2008 Ms 8.0 Wenchuan earthquake and the 2013 Ms 7.0 Lushan earthquake. The event did not produce any evident surface rupture but triggered significant mass wasting. Based on a large set of pre- and post-earthquake high-resolution satellite images (SPOT-5, Gaofen-1 and Gaofen-2) as well as on 0.2-m-resolution UAV photographs, a polygon-based interpretation of the coseismic landslides was carried out. In total, 1883 landslides were identified, covering an area of 8.11 km2, with an estimated total volume in the order of 25–30?×?106 m3. The total landslide area was lower than that produced by other earthquakes of similar magnitude with strike-slip motion, possibly because of the limited surface rupture. The spatial distribution of the landslides was correlated statistically to a number of seismic, terrain and geological factors, to evaluate the landslide susceptibility at regional scale and to identify the most typical characteristics of the coseismic failures. The landslides, mainly small-scale rockfalls and rock/debris slides, occurred mostly along two NE-SW-oriented valleys near the epicentre. Comparatively, high landslide density was found at locations where the landform evolves from upper, broad valleys to lower, deep-cut gorges. The spatial distribution of the coseismic landslides did not seem correlated to the location of any known active faults. On the contrary, it revealed that a previously-unknown blind fault segment—which is possibly the north-western extension of the Huya fault—is the plausible seismogenic fault. This finding is consistent with what hypothesised on the basis of field observations and ground displacements.  相似文献   

16.
The May 12, 2008 Wenchuan, China Earthquake which measured Mw = 8.3 according to Chinese Earthquake Administration – CEA (Mw = 7.9 according to the USGS) directly triggered many landslides, which caused about 20,000 deaths, a quarter of the total. Rock avalanches were among the most destructive landslides triggered by this seismic event, and have killed more people than any other type of landslide in this earthquake. The Donghekou rock avalanche, one example of a catastrophic avalanche triggered by the Wenchuan earthquake, occurred in Qingchuan and buried one primary school and 184 houses, resulting in more than 780 deaths, and in addition, caused the formation of two landslide dams, which formed barrier lakes.Combining aerial images (resolution of 0.5 m) with field investigations, this paper lists some parameters of 66 cases in one table, and details source characteristics of six typical cases. It has been found that most of the long runout rock avalanches have source areas with high relief and steep inclination, causing the debris in the travel courses to accelerate. There was also a large amount of saturated Holocene-age loose deposits formed by a river or gully that existed in the travel courses. Comparison studies indicate that saturated Holocene loose deposits in the travel courses could be the most important factor for the causes of the long runout characteristic of the rock avalanches especially when they traveled over gentle or even flat ground surfaces.Furthermore, the relationships among the relief slope gradient, runout and covered area are investigated, and a threshold line for predicting the maximum horizontal runout distance under certain change in elevation is presented.  相似文献   

17.
Stability of landslide dams and development of knickpoints   总被引:2,自引:0,他引:2  
The Wenchuan earthquake triggered many landslides and numerous avalanches and created 100 odd quake lakes. The quake lakes may be removed or preserved. The removal strategy was applied to several large landslide dams, which were dangerous because massive amounts of water pooled up in the quake lakes. The dams could eventually fail under the action of dam outburst flooding, potentially endangering the lives of people in the downstream reaches. This paper studied the stability of landslide dams and the development of knickpoints by field investigations and experiments, and analyzing satellite images. The study concluded that if landslide dams were preserved, they would develop into knickpoints and act as a primary control of riverbed incision and, thus, reduce the potential of new landslide. The stability of landslide dams depends mainly on the development of the step-pool system and stream power of the flood flow. If a landslide dam consists of many boulders, a step-pool system may develop on the spillway channel of the dam, which would maximize the resistance, consume most of the flow energy and consequently protect the dam from incision. The development degree of the step-pool system is represented by a parameter S p, which was measured with a specially designed instrument. A preservation ratio of landslide dams is defined as the ratio of preserved height after flood scouring to the original height of the dam. For streams with peak flood discharge lower than 30 m3/s, the preservation ratio is linearly proportional to S p. For rivers with a peak flood discharge higher than 30 m3/s (30–30,000 m3/s), the minimum S p value for stable channel increases with log p, in which p is the unit stream power. For a landslide dam with a poorly developed step-pool system, S p is smaller than the minimum value and the outburst flood incises the spillway channel and causes failure of the dam. For preserved landslide dams, sediment deposits in the quake lakes. A landslide dam may develop into a knickpoint if it is stabilized by long-term action of the flow. Large knickpoints can totally change the fluvial processes and river morphology. Uplift of the Qinghai–Tibetan Plateau has caused extensive channel bed incision along almost all rivers. For many rivers, the incision has been partly controlled by knickpoints. Upstream reaches of a knickpoint have a new and unchanging base level. This brings about a transition from degradation to aggradation and from vertical bed evolution to horizontal fluvial process. Multiple and unstable channels are prominent in the reaches, upstream of the knickpoints. If hundreds of landslide dams occurred simultaneously on a reach of a mountain river, the potential energy of bank failure and the slope erosion would be greatly reduced and sediment yield from the watershed may be reduced to nearly zero. The quake lakes may be preserved long term and become beautiful landscapes. Streams with long-term unfilled quake lakes have good aquatic ecology.  相似文献   

18.
近年来,在汶川地震等强震区常发生一种特大的高位滑坡地质灾害,它从高陡斜坡上部位置剪出并形成凌空加速坠落,具有撞击粉碎效应和动力侵蚀效应,导致滑体解体碎化,从而转化为高速远程碎屑流滑动或泥石流流动,并铲刮下部岩土体,使体积明显增加。新磨滑坡就是这种典型,它发生于2017年6月24日,滑坡后缘高程约3450m,前缘高程约2250 m,高差1200 m,水平距离2800 m,堆积体体积达1637×10~4m~3,摧毁了新磨村村庄,导致83人死亡。新磨滑坡地处叠溪较场弧形构造带前弧西翼,母岩为中三叠统中厚层变砂岩夹板岩,是1933年叠溪Ms7.5级震中区(烈度X度)和汶川Ms8.0级强震区(烈度IX度),形成震裂山体。滑源区分布多组不连续结构面,将厚层块状岩体分割成碎裂块体,在高程3150~3450 m区间形成明显的压裂鼓胀区,特别是存在2组反倾节理带,具有典型的"锁固段"失稳机理。滑坡体高位剪出滑动,连续加载并堆积于斜坡体上部,体积达390×10~4m~3,导致残坡积岩土层失稳并转化为管道型碎屑流;碎屑流高速流滑至斜坡下部老滑坡堆积体后,因前方地形开阔、坡度变缓,转化为扩散型碎屑流散落堆积,具有"高速远程"成灾模式。据此,可建立强震山区高位滑坡的早期识别方法,当陡倾山脊存在大型岩质高位滑坡时,应当考虑冲击作用带来的动力侵蚀效应和堆积加载效应,特别是沿沟谷赋存丰富的地下水时,发生高速远程滑坡的可能性将明显增加。因此,在地质灾害调查排查中,在高位岩质滑坡剪出口下方的斜坡堆积体上的聚居区等应划定为地质灾害危险区。在强震山区地质灾害研究中,不仅应采用静力学理论分析滑坡的失稳机理,而且应采用动力学方法加强运动过程的成灾模式研究。  相似文献   

19.
A homogenous earthquake catalog is a basic input for seismic hazard estimation, and other seismicity studies. The preparation of a homogenous earthquake catalog for a seismic region needs regressed relations for conversion of different magnitudes types, e.g. m b , M s , to the unified moment magnitude M w. In case of small data sets for any seismic region, it is not possible to have reliable region specific conversion relations and alternatively appropriate global regression relations for the required magnitude ranges and focal depths can be utilized. In this study, we collected global events magnitude data from ISC, NEIC and GCMT databases for the period 1976 to May, 2007. Data for mb magnitudes for 3,48,423 events for ISC and 2,38,525 events for NEIC, M s magnitudes for 81,974 events from ISC and 16,019 events for NEIC along with 27,229 M w events data from GCMT has been considered. An epicentral plot for M w events considered in this study is also shown. M s determinations by ISC and NEIC, have been verified to be equivalent. Orthogonal Standard Regression (OSR) relations have been obtained between M s and M w for focal depths (h < 70 km) in the magnitude ranges 3.0 ≤ M s  ≤ 6.1 and 6.2 ≤ M s  ≤ 8.4, and for focal depths 70 km ≤ h ≤ 643 km in the magnitude range 3.3 ≤ M s  ≤ 7.2. Standard and Inverted Standard Regression plots are also shown along with OSR to ascertain the validation of orthogonal regression for M s magnitudes. The OSR relations have smaller uncertainty compared to SR and ISR relations for M s conversions. ISR relations between m b and M w have been obtained for magnitude ranges 2.9 ≤ m b  ≤ 6.5, for ISC events and 3.8 ≤ m b  ≤ 6.5 for NEIC events. The regression relations derived in this study based on global data are useful empirical relations to develop homogenous earthquake catalogs in the absence of regional regression relations, as the events catalog for most seismic regions are heterogeneous in magnitude types.  相似文献   

20.
汶川八级地震触发何家沟碎屑流滑坡基本特征及形成机理   总被引:1,自引:0,他引:1  
汶川地震造成大量次生斜坡地质灾害,包含崩塌、滑坡及泥石流等灾种,其中以滑坡分布最为广泛、破坏力最强,且多以高速碎屑流为表现形式,何家沟滑坡即是其中典型例证。滑坡距发震断裂——映秀-北川南枝断裂不足5km,震前斜坡为双向临空的单薄山脊,其走向与断裂走向小角度相交,岩层走向与坡面斜交,中风化基岩结合紧密,结构面延伸性较好,强风化基岩较破碎,浅表部残坡积物较为松散。调查分析表明:残坡积物与强风化基岩是碎屑流滑坡的物质基础;中风化基岩面构成碎屑流滑坡滑床;斜坡临空面是滑坡产生的地形条件;高强度、长历时强震是导致滑坡产生的根本因素。滑坡的形成经历以下4个阶段:强震导致坡体表层残坡积物与强风化基岩松弛和解体;在强震作用下滑体从高位整体下错;松散物质沿中风化基岩面溃滑形成碎屑流和碎屑流堆积阶段。碎屑流产生后,受地形限制,停积于沟床内,在随后的“9.24”特大暴雨过程中进一步转化为泥石流次生灾害。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号