首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Daenam mine, which produced over 9250 tons of iron oxide ore from 1958 to 1962, is situated in the Early Cretaceous Yeongyang subbasin of the Gyeongsang basin. It consists of two lens-shaped, hematite-bearing quartz veins that occur along faults in Cretaceous leucocratic granite. The hematite-bearing quartz veins are mainly composed of massive and euhedral quartz and hematite with minor amounts of pyrite, pyrrhotite, mica, feldspar and chlorite.Fluid inclusions in quartz can be divided into three main types: CO2-rich, CO2–H2O, and H2O-rich. Hydrothermal fluids related to the formation of hematite are composed of either H2O–CO2–NaCl ± CH4 (homogenization temperature: 262–455 °C, salinity <7 eq. wt.% NaCl) or H2O–NaCl (homogenization temperature: 182–266 °C, and salinity <5.1 eq. wt.% NaCl), both of which evolved by mixing with deeply circulating meteoric water. Hematite from the quartz veins in the Daenam mine was mainly deposited by unmixing of H2O–CO2–NaCl ± CH4 fluids with loss of the CO2 + CH4 vapor phase and mixing with downward percolating meteoric water providing oxidizing conditions.  相似文献   

2.
Fluid inclusion microthermometry and structural data are presented for quartz vein systems of a major dextral transcurrent shear zone of Neoproterozoic–Cambrian age in the Ribeira River Valley area, southeastern Brazil. Geometric and microstructural constraints indicate that foliation–parallel and extensional veins were formed during dextral strike–slip faulting. Both vein systems are formed essentially by quartz and lesser contents of sulfides and carbonates, and were crystallized in the presence of CO2–CH4 and H2O–CO2–CH4–NaCl immiscible fluids following unmixing from a homogeneous parental fluid. Contrasting fluid entrapment conditions indicate that the two vein systems were formed in different structural levels. Foliation–parallel veins were precipitated beneath the seismogenic zone under pressure fluctuating from moderately sublithostatic to moderately subhydrostatic values (319–397 °C and 47–215 MPa), which is compatible with predicted fluid pressure cycle curves derived from fault–valve action. Growth of extensional veins occurred in shallower structural levels, under pressure fluctuating from near hydrostatic to moderately subhydrostatic values (207–218 °C and 18–74 MPa), which indicate that precipitation occurred within the near surface hydrostatically pressured seismogenic zone. Fluid immiscibility and precipitation of quartz in foliation–parallel veins resulted from fluid pressure drop immediately after earthquake rupture. Fluid immiscibility following a local pressure drop during extensional veining occurred in pre-seismic stages in response to the development of fracture porosity in the dilatant zone. Late stages of fluid circulation within the fault zone are represented dominantly by low to high salinity (0.2 to 44 wt.% equivalent NaCl) H2O–NaCl–CaCl2 fluid inclusions trapped in healed fractures mainly in foliation–parallel veins, which also exhibit subordinate H2O–NaCl–CaCl2, CO2–(CH4) and H2O–CO2–(CH4)–NaCl fluid inclusions trapped under subsolvus conditions in single healed microcracks. Recurrent circulation of aqueous–carbonic fluids and aqueous fluids of highly contrasting salinities during veining and post-veining stages suggests that fluids of different reservoirs were pumped to the ruptured fault zone during faulting episodes. A fluid evolution trending toward CH4 depletion for CO2–CH4–bearing fluids and salinity depletion and dilution (approximation of the system H2O–NaCl) for aqueous–saline fluids occurred concomitantly with decrease in temperature and pressure related to fluid entrapment in progressively shallower structural levels reflecting the shear zone exhumation history.  相似文献   

3.
The Spanish Central System (SCS) has been subjected to repeated deformation and fluid flow events which have produced both sulphide-bearing and barren vein systems. Although several hydrothermal episodes took place between 300 and 100 Ma, fluid circulation during the Permian was especially important, giving rise to a range of different types of deposits. This study presents a multidisciplinary approach leading to the characterisation of the chemistry and age of the hydrothermal fluids that produced the As–(Ag) mineralised stockwork of Mónica mine (Bustaviejo, Madrid). Fluid inclusion data indicate the presence of two different fluids. An initial ore stage (I) formed from a low- to moderate salinity (3–8 wt.% eq. NaCl) H2O–NaCl–CO2–CH4 fluid, at minimum trapping temperature of 350±15 °C and 0.3 kbar. A second H2O–NaCl fluid is found in three types of fluid inclusions: a high temperature and low salinity type (340±20 °C; 0.8–3.1 wt.% eq. NaCl) also associated to ore stage I, a moderate temperature and very low salinity type (160–255 °C; 0–1.5 wt.% eq. NaCl) represented in ore stage III, and a very low temperature and hypersaline type (60–70 °C; 30–35 wt.% NaCl), unrelated to the mineralising stages and clearly postdating the previous types. 40Ar–39Ar dating on muscovite from the early As–Fe stage (I) has provided an age of 286±4 Ma, synchronous with the late emplacement phases of La Cabrera plutonic massif (288±5 Ma) and with other Permian hydrothermal events like Sn–W skarns and W–(Sn) sulphide veins. δ18O of water in equilibrium with stage I quartz (5.3–7.7‰), δD of water in equilibrium with coexisting muscovite (−16.0‰ to −2.0‰), and sulphide δ34S (1.5–3.6‰) values are compatible with waters that leached metamorphic rocks. The dominant mechanism of the As–(Ag) deposition was mixing and dilution processes between aqueous–carbonic and aqueous fluids for stage I (As–Fe), and nearly isobaric cooling processes for stages II (Zn–Cu–Sn) and III (Pb–Ag). The origin and hydrothermal evolution of As–(Ag) veins is comparable to other hydrothermal Permian events in the Spanish Central System.  相似文献   

4.
The Luning–Fencemaker fold-thrust belt (LFTB) of central Nevada reflects major Mesozoic shortening in the western US Cordillera, and involved contractional deformation in Triassic and lower Jurassic back-arc basinal strata. Structural analyses in the Santa Rosa Range, in the northern LFTB, provide new insight into the evolution of this belt. Four phases of deformation are recognized in the Santa Rosa Range. D1 involved tight to isoclinal folding, cleavage development under low-grade metamorphic conditions, and reverse faulting. This deformation phase reflects NW–SE shortening of 55–70% in the Early and/or Middle Jurassic. D2 structures are similar in orientation to D1 but involved much less overall strain and are well developed only to the southeast. D2 appears to be related to thrusting along the eastern margin of the LFTB in the Middle and/or Late Jurassic. D3 deformation reflects very minor shortening (<5%) in a subvertical direction, and is tentatively interpreted to reflect stresses generated during initial intrusion of mid-Cretaceous plutons in the area. D4 deformation demonstrably occurred synchronously with emplacement of Cretaceous granitoids dated at 102 Ma (U–Pb zircon) based on syntectonic relations between D4 structures and thermal metamorphism associated with intrusion, and an upgrade in D4 strain in the thermally softened metamorphic aureoles of the intrusions. This last phase of deformation reflects minor regional NE–SW shortening, coupled with localized strain associated with pluton emplacement.Formation of the LFTB structural province was accomplished during the D1 and D2 phases of deformation, and most shortening occurred during the D1 event. This Jurassic deformation led to structural closure of the back-arc basin by top-to-the-SE tectonic transport and development of a largely ductile fold-thrust belt. Subsequent deformation (D3 and D4) is >50 m.y. younger and unrelated to development of the LFTB. The younger deformation reflects a combination of minor regional shortening, interpreted to be related to the Cretaceous Sevier orogeny, plus localized shortening related to emplacement of Cretaceous intrusions.  相似文献   

5.
We report fluid inclusion data for skarn, formed at the contact between Hercynian granitoids and dolomite of the Proterozoic Bayan Obo Group, in the vicinity of Bayan Obo REE–Nb–Fe deposit, Inner Mongolia, China. Three types of fluid inclusions are identified: two-phase CH4-rich, three-phase liquid–vapour–solid and two-phase aqueous inclusions. Using microthermometry and laser Raman microprobe analysis to calculate isochores for CH4-bearing inclusions, we estimate fluid trapping conditions at T=280 to 344 °C and P<1 to 2.3 kbar. Such conditions are compatible with formation of CH4 inclusions as a result of reaction between graphite in the country rocks (black slate sequence) and fluids derived from magma. The lack of carbonaceous material in the inclusions supports the hypothesis that CH4 was generated during fluid migration rather than by in situ reaction. In contrast to the skarn, and despite the fact that similar graphite-bearing slates are found in the host rocks, no CH4-bearing inclusions have been so far reported from Bayan Obo REE ores. We therefore conclude that the skarn-forming fluids in the contact aureole of the Hercynian granitoids were not involved at any stage in the formation of the Bayan Obo deposit.  相似文献   

6.
Carbonic fluid inclusions were observed in quartz-bearing veins at the Proterozoic Bidjovagge AuCu deposit within the Kautokeino greenstone belt in Norway, where mineralization occurred in oxidation zones of graphitic schists. A primary fluid inclusion zonation was observed with C02-rich fluid inclusions in the structural footwall of the deposit, and CH4-rich inclusions within the ore zone in the oxidation zone. Microthermometry of the primary hydrocarbon inclusions revealed 2 groups; (1) a group which homogenized between −125°C and the critical temperature of CH4 (−82.1°C), which indicated the presence of pure CH4, and (2) a group which homogenized between the critical temperature of CH4 and −42°C, which indicated the presence CH4 and higher hydrocarbons (HHC). Raman microprobe analyses of the first group confirmed the presence of CH4. The second inclusion group were fluorescent, and Raman spectra clearly displayed CH4,C2H6, and rarer C3H8 peaks. A typical feature of the Raman spectra were elevated baselines at the hydrocarbon peaks. Carbon peaks were also usually detected in each inclusion by Raman analysis. Bulk gas chromatography analyses of samples containing the first group (CH4) indicated the presence of CH4 and low concentrations of C2H6 and C3H8. Gas chromatography analyses of samples containing the second group (CH4 and higher hydrocarbons) confirmed the presence of CH4, and higher hydrocarbons such as C2H6 and C3H8 and also butanes. Based on the spacial zonation of hydrocarbons and the estimated PT conditions of 300 to 375°C and 2 to 4 kbars, the authors suggest an abiotic origin for the hydrocarbons. It is suggested that the hydrothermal fluids oxidized the graphitic schist, precipitated Cu and Au and formed light gas hydrocarbons.  相似文献   

7.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

8.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

9.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

10.
The Bujinhei Pb–Zn deposit is located in the southern Great Xing'an Range metallogenic belt. It is a representative medium‐ to high‐temperature hydrothermal vein type deposit controlled by fractures, and orebodies hosted in the Permian Shoushangou Formation. The hydrothermal mineralization is classified into three stages: pyrite ± arsenopyrite–quartz (Stage 1), polymetallic sulfide–quartz (Stage 2), and polymetallic sulfide–calcite (Stage 3). Fluid inclusion petrography, laser Raman analyses and microthermometry indicate that the liquid‐rich aqueous inclusions (L) and vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 1 and as medium‐ to high‐ temperature and low‐ to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids. The liquid‐rich (L) and rare vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 2 with medium‐temperature and low‐salinity NaCl–H2O ± CO2 ± CH4 hydrothermal fluids. The exclusively liquid‐rich (L) fluid inclusions are observed in the Stage 3, and the hydrothermal fluid belongs to medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids. The results of hydrogen and oxygen isotope analyses indicate that ore‐forming fluids were initially derived from the magmatic water and mixed with local meteoric water in the late stage (δ18OH2O‐SMOW = 6.0 to 2.2‰, δDSMOW = ?103 to ?134‰). The carbon isotope compositions (?18.4‰ to ?26.5‰) indicate that the carbon in the fluid was derived from the surrounding strata. The sulfur isotope compositions (5.7 to 15.2‰) indicate that the ore sulfur was also primarily derived from the strata. The ore vein No. 1 occurs in fractures and approximately parallel to the rhyolite porphyry; orebodies have a close spatial and temporal relationship with the rhyolite porphyry. The rhyolite porphyry yielded a crystallization age of 122.9  ± 2.4 Ma, indicating that the Bujinhei deposit may be related to the Early Cretaceous magmatic event. Geochemical analyses reveal that the Bujinhei rhyolite porphyry is high in K2O and peraluminous, and derived from an acidic liquid as a result of strong interaction with hydrothermal fluid during the late magmatic stage; it is similar to A2‐type granites, and formed in a backarc extensional environment. These results indicate that the Bujinhei Pb–Zn deposit was a vein type system that formed in Early Cretaceous and influenced by the Paleo‐Pacific tectonic system. Bujinhei deposit is a representative hydrothermal vein type deposit on the genetic types, and occurs on the western slope of the southern Great Xing'an Range. The ore‐forming fluids were medium‐ to high‐temperature and low‐to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids, which became medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids in later stages, and came from magmatic water and mixed with meteoric water, whereas the ore‐forming materials were mainly derived from the surrounding strata. The LA–ICP–MS zircon U–Pb dating indicates that the Bujinhei deposit formed at the period of late Early Cretaceous, potentially in a backarc extensional environment influenced by the Paleo‐Pacific tectonic system.  相似文献   

11.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

12.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   

13.
Tin-polymetallic greisen-type deposits in the Itu Rapakivi Province and Rondônia Tin Province, Brazil are associated with late-stage rapakivi fluorine-rich peraluminous alkali-feldspar granites. These granites contain topaz and/or muscovite or zinnwaldite and have geochemical characteristics comparable to the low-P sub-type topaz-bearing granites. Stockworks and veins are common in Oriente Novo (Rondônia Tin Province) and Correas (Itu Rapakivi Province) deposits, but in the Santa Bárbara deposit (Rondônia Tin Province) a preserved cupola with associated bed-like greisen is predominant. The contrasting mineralization styles reflect different depths of formation, spatial relationship to tin granites, and different wall rock/fluid proportions. The deposits contain a similar rare-metal suite that includes Sn (±W, ±Ta, ±Nb), and base-metal suite (Zn–Cu–Pb) is present only in Correas deposit. The early fluid inclusions of the Correas and Oriente Novo deposits are (1) low to moderate-salinity (0–19 wt.% NaCl eq.) CO2-bearing aqueous fluids homogenizing at 245–450 °C, and (2) aqueous solutions with low CO2, low to moderate salinity (0–14 wt.% NaCl eq.), which homogenize between 100 and 340 °C. In the Santa Bárbara deposit, the early inclusions are represented by (1) low-salinity (5–12 wt.% NaCl eq.) aqueous fluids with variable CO2 contents, homogenizing at 340 to 390 °C, and (2) low-salinity (0–3 wt.% NaCl eq.) aqueous fluid inclusions, which homogenize at 320–380 °C. Cassiterite, wolframite, columbite–tantalite, scheelite, and sulfide assemblages accompany these fluids. The late fluid in the Oriente Novo and Correas deposit was a low-salinity (0–6 wt.% NaCl eq.) CO2-free aqueous solution, which homogenizes at (100–260 °C) and characterizes the sulfide–fluorite–sericite association in the Correas deposit. The late fluid in the Santa Bárbara deposit has lower salinity (0–3 wt.% NaCl eq.) and characterizes the late-barren-quartz, muscovite and kaolinite veins. Oxygen isotope thermometry coupled with fluid inclusion data suggest hydrothermal activity at 240–450 °C, and 1.0–2.6 kbar fluid pressure at Correas and Oriente Novo. The hydrogen isotope composition of breccia-greisen, stockwork, and vein fluids (δ18Oquartz from 9.9‰ to 10.9‰, δDH2O from 4.13‰ to 6.95‰) is consistent with a fluid that was in equilibrium with granite at temperatures from 450 to 240 °C. In the Santa Bárbara deposit, the inferred temperatures for quartz-pods and bed-like greisens are much higher (570 and 500 °C, respectively), and that for the cassiterite-quartz-veins is 415 °C. The oxygen and hydrogen isotope composition of greisen and quartz-pods fluids (δ18Oqtz-H2O=5.5–6.1‰) indicate that the fluid equilibrated with the albite granite, consistent with a magmatic origin. The values for mica (δ18Omica-H2O=3.3–9.8‰) suggest mixing with meteoric water. Late muscovite veins (δ18Oqtz-H2O=−6.4‰) and late quartz (δ18Omica-H2O=−3.8‰) indicate involvement of a meteoric fluid. Overall, the stable isotope and fluid inclusion data imply three fluid types: (1) an early orthomagmatic fluid, which equilibrated with granite; (2) a mixed orthomagmatic-meteoric fluid; and (3) a late hydrothermal meteoric fluid. The first two were responsible for cassiterite, wolframite, and minor columbite–tantalite precipitation. Change in the redox conditions related to mixing of magmatic and meteoric fluids favored important sulfide mineralization in the Correas deposit.  相似文献   

14.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

15.
The small Pirilä gold deposit, which is located in the southeastern part of the Svecofennian complex near the Archean/Proterozoic boundary, is hosted by quartz veins and lenses occurring in mica schist. The rocks of the area were metamorphosed under conditions of amphibolite facies. Gold is invariably associated with sulphides. Microthermometry of fluid inclusions in quartz indicates four types of inclusions: (1) weakly saline H2O-CO2 (< 4.0 eq.wt% NaCl) with small amounts of CH4 (< 10 mole% CH4); (2) CO2 (< 10 mole% CH4); (3) CH4; and (4) H2O (< 25 eq.wt% NaCl) with less than 0.85 mole% CO2 in the vapour phase. Texturally these inclusion types are classified as primary (H2O-CO2) and secondary (H2O, CO2 and CH4). Leachate analysis shows that, in addition to Na, the aqueous fluids contain Ca and Fe with minor amounts of K and Mg. The primary H2O-CO2 and the secondary H2O inclusions contain sulphide and unidentified opaque grains, respectively. The secondary CH4 inclusions are often associated with short trails of arsenopyrite grains. Fluid inclusion and geological data suggest ore mineral mobilization, crystallization of host quartz, and deposition of sulphides controlled by the D2 and D3 structures in the presence of a H2O-CO2 fluid mainly during the plastic D3 deformation and during the amphibolite facies metamorphism (i.e. 3.4 kbars/540–670°C). During ductile-brittle deformation (probably D4), precipitation of tectonic remobilized gold from sulphides in fractures occurred in the presence of CH4 and H2O fluids at lowered temperature (< 440°C) and pressure (< 2 kbars).  相似文献   

16.
Petroleum and aqueous fluid inclusions from the Encantada–Buenavista fluorite mineralized zone in northern Mexico were analyzed by microthermometry, UV fluorescence, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) and Confocal Scanning Laser Microscopy (CSLM) to evaluate the geochemical evolution of the mineralizing fluids. Two-phase (petroleum or brine+vapor) and three-phase (petroleum+brine+vapor) inclusions are described. Aqueous and petroleum-rich inclusions commonly occur in the same plane. Vapor-decrepitated and stretched fluid inclusions are present. A low-salinity methane-saturated fluid and a high salinity-fluid with highly variable methane contents are recognized. H2S is not quantified but is always detected in close association with methane. Petroleum inclusions are of two types: a low methane petroleum fluid (20 mol%) with low Th (60 °C) and a petroleum fluid with a methane of content near 30 mol% and a Th of 90 °C.Pressure and temperature diagrams for the aqueous and petroleum inclusions show three main intersects that allow PTX reconstruction of fluid evolution at La Encantada–Buenavista. A CH4- and H2S-rich low-salinity brine was mixed with oil that migrated under hydrostatic conditions with a thermal gradient of 70 °C/km. The arrival and mixing of a high-salinity aqueous fluid produced overpressure to 300 bars. A return to hydrostatic conditions was accompanied by an increase in the thermal gradient.The brine related to the fluorite orebodies appears to have a genetic relationship with the brines reported from the Jurassic petroleum basins located west of the fluorite bodies and similarities with reported fluids from Mississippi Valley type deposits. It is interpreted that the fluorine-rich fluids migrated toward the platform margins during the mid-Tertiary (30 to 32 Ma) using extension zones related to Basin and Range tectonism. Mixing of two different brines was responsible for precipitation and mineralization. Heat from magmas, related to tectonic extension, caused decrepitation and changes in the shape of fluid inclusions near the contact zones.  相似文献   

17.
A. Proyer  E. Mposkos  I. Baziotis  G. Hoinkes 《Lithos》2008,104(1-4):119-130
Four different types of parageneses of the minerals calcite, dolomite, diopside, forsterite, spinel, amphibole (pargasite), (Ti–)clinohumite and phlogopite were observed in calcite–dolomite marbles collected in the Kimi-Complex of the Rhodope Metamorphic Province (RMP). The presence of former aragonite can be inferred from carbonate inclusions, which, in combination with an analysis of phase relations in the simplified system CaO–MgO–Al2O3–SiO2–CO2 (CMAS–CO2) show that the mineral assemblages preserved in these marbles most likely equilibrated at the aragonite–calcite transition, slightly below the coesite stability field, at ca. 720 °C, 25 kbar and aCO2 ~ 0.01. The thermodynamic model predicts that no matter what activity of CO2, garnet has to be present in aluminous calcite–dolomite-marble at UHP conditions.  相似文献   

18.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

19.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

20.
This study provides evidence for the existence of halite and sylvite solid inclusions in igneous quartz and feldspars, the first to be reported in intrusive rocks, and to partially constrain the physicochemical environment that lets halides crystallize under magmatic conditions.Halite and sylvite solid inclusions were found included in quartz and feldspars from a micrographic–granophyric assemblage in a miarolitic aplite and, rarer, in alkali-feldspar from a miarolitic monzogranite. Monzogranite and aplite represent I-type, K-enriched postcollisional rocks of the Late Cambrian–Early Ordovician Sierra Norte–Ambargasta batholith in the Eastern Sierras Pampeanas. Both granitoids fall among the most evolved felsic rocks of the batholith, with aplite approaching haplogranitic compositions. Halite is far more common than sylvite and the presence and distribution of one or both halides are erratic within the felsic intrusive bodies. Halides occur as small skeletal grains, commonly in cross-shaped aggregates of less than 50 μm. No K or Na was found at the detection limits of EDS in either halite or sylvite respectively. Textural relationships suggest that the alkali-chlorides separated from the melt near the minima along the quartz–feldspar cotectics of PH2O > 160 < 200 MPa in a silica-, and potassium-rich magmatic system at approximately 750–700 °C, prior to the H2O-vapor saturated miarole-forming stage.Computed ratios for the magmatic volatile phase (MVP) coexisting with melt at the early stage of aplite crystallization are: NaCl/HCl = 0.11–0.97 and KCl/HCl = 0.24–1.62, being the highest range of values (0.79–0.97 and 1.45–1.62, respectively) found in those alkali-chloride-bearing samples. Maximum HCl/ΣCl(MVP) (0.28 to 0.31) indicates higher total Cl concentration in the MVP of alkali-chloride-bearing aplites, which is much higher in the halite-free aplite samples (HCl/ΣCl(MVP) = 0.59 to 0.74). One miarolitic monzogranite sample, where halite solid inclusions are present, also yielded the highest ratios for NaCl/HCl(MVP) (0.91) and KCl/HCl(MVP) (1.46), and the HCl/ΣCl(MVP) is 0.30. A high HCl concentration in the fluid phase is suggested by the log f(HF)/f(H2O) = − 4.75 to − 4.95, log f(HCl)/f(H2O) = − 3.73 to − 3.86, and log f(HF)/f(HCl) = − 0.88 to − 1.22, computed at 750 °C after biotite composition. The Cl concentrations at 800 °C, computed with a Dv/lCl = 0.84 + 26.6P (P at 200 MPa), yielded values within the range of  70 to 700 ppm Cl in the melt and  4000 to 40 000 ppm Cl in the coexisting MVP. The preferential partitioning of Cl in the vapor phase is controlled by the Dv/lCl; however, the low concentration of Cl in the melt suggests that high concentrations of Cl are not necessary to saturate the melt in NaCl or KCl.Cl-saturation of the melt and coexisting MVP might have been produced by a drop in Cl solubility due to the near-haplogranitic composition of the granitoids after extreme fractionation, probably enhanced by fluctuating reductions of the emplacement pressure in the brittle monzogranite host. Liquid immiscibility, based in the differential viscosity and density among alkali-chloride saturated hydrosaline melt, aluminosilicate felsic melt, and H2O-rich volatiles is likely to have crystallized halite and sylvite from exsolved hydrosaline melt. High degrees of undercooling might have been important at the time of alkali-chloride exsolution. The effectiveness of alkali-chloride separation from the melt at magmatic temperatures is in line with the interpretation of “halite subtraction” as a necessary process to understand the origin of the “halite trend” in highly saline fluid inclusions from porphyry copper and other hydrothermal mineralizations, despite the absence of the latter in the Cerro Baritina aplites, where this process preceded the exsolution of halite-undersaturated fluids.Pervasive alteration of the monzogranite country rock as alkali-metasomatic mineral assemblages, the mineral chemistry of some species, and the association of weak molybdenite mineralization are compatible with the activity of alkaline hypersaline fluids, most likely exsolved during the earliest stages of aplite consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号