首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-resolution pre-industrial control simulation with the regional climate model REMO is analyzed in detail for different European subregions. To our knowledge, this is the first long pre-industrial control simulation by a regional climate model as well as at comparable resolution. We assess the ability of the climate model to reproduce the observed climate variability in various parts of the continent. In order to investigate the representation of extreme events in the model under pre-industrial greenhouse gas concentrations, selected seasons are examined with regard to the atmospheric circulation and other climatic characteristics that have contributed to the occurrences. A special focus is dedicated to land-atmosphere interactions. Extreme seasons are simulated by the model under various circumstances, some of them strongly resemble observed periods of extraordinary conditions like the summer 2003 or autumn 2006 in parts of Europe. The regional perspective turns out to be of importance when analyzing events that are constituted by meso-scale atmospheric dynamics. Moreover, the predictability of the European climate on seasonal to decadal time scales is examined by relating the statistics of surface variables to large-scale modes of variability impacting the North Atlantic sector like the Meridional Overturning Circulation, the El Niño Southern Oscillation, and the North Atlantic Oscillation. For this purpose, we introduce a measure of tail dependence that quantifies the correlation between extreme values in two variables that describe the state of the climate system. Significant dependence of extreme events can be detected in various situations.  相似文献   

2.
The high variability of the Mediterranean climate from year to year and within each year makes it difficult to assess changes that could be associated with a climate change. In this paper some indices, such as changes in the precipitation concentration during the year, maximum 1-day and 5-day precipitation, number of wet days (total and those with precipitation higher than the 75th and 95th percentile), magnitude and frequency of extreme events (considered as the rainfall higher than that corresponding to the 99th percentile), fraction of annual total precipitation due to events exceeding the 95th and 99th percentile, strength of the events, and length and frequency of dry period (days between consecutive rains) are evaluated for the Penedès-Anoia region (NE Spain). A 80-year daily dataset (1923–2002) and two 40-year series were used to assess possible trends. The indices indicate an increase in precipitation in winter and summer and a positive trend of concentration in autumn, with a higher number of extreme events separated by longer dry periods. The total number of wet days per year increased, although it was irregularly distributed over the year, with an increase in the extremes and in the fraction of total rainfall that these events represent in autumn and winter, and with an increase of the strength of the events in autumn. These changes in rainfall distribution have negative effects on water availability for crops and contribute to accelerate erosion processes in the area.  相似文献   

3.
Summary ?Small changes in the mean and standard deviation values can produce relatively large changes in the probability of extreme events. The seasonal precipitation record in San Fernando (SW Spain) for 1821–2000 is used to investigate how much the relative frequency of dry and wet seasons changes with changes in mean value and standard deviation. The percentiles P10, P25, P75 and P90 of the reference period 1961–1990 are used to define dry and wet seasons. The probability of extreme seasons as function of mean and standard deviation is analysed. The main conclusion is a non-linear relationship between changes in mean and standard deviation values and extreme seasons probability. With these threshold values, the main influence corresponds to changes in mean value. Results are discussed bearing in mind projections of General Circulation Models on future climate in southern Iberian Peninsula. Received June 11, 2001; Revised March 3, 2002  相似文献   

4.
中国近50a极端降水事件变化特征的季节性差异   总被引:12,自引:2,他引:12  
利用中国419个测站1958-2007年逐日降水资料集,分析了近50a中国不同区域年和季节极端降水事件的基本变化特征。结果表明,多年平均极端降水事件的空间分布具有明显的纬向分布特征,并表现出显著的季节性差异。长江以南地区是春、冬季极端降水事件发生频次较高的区域;而年、夏季以及秋季极端降水事件发生频次在西南地区较高,在西北东部较低。年极端降水事件频次的长期变化趋势与夏季相似,华北和东北有增加趋势,其他地区为弱的减少趋势;其他季节的长期变化趋势存在明显的区域和季节性差异。年和季节极端降水事件的发生频次具有显著的年际和年代际变化特征。年极端降水事件时间序列的多项式拟合曲线的变化情况与夏季基本一致;而其他季节的变化则存在较大差异,表现出显著的季节性差异。  相似文献   

5.
Summary Time series of observed monthly mean temperatures of European stations and at grid points are decomposed into different kinds of trends (linear, progressive, degressive), constant or significantly changing annual cycles, episodic and harmonic components, extreme events and noise. A stepwise regression is used to test whether the components are significant. Special emphasis is given to extreme events which we distinguish from extreme values. While extreme values may likely occur by chance, it is very unlikely that extreme events would be in accordance with the features of the time series. On one hand, extreme events alter the estimates (and test results) of trends and other components. On the other hand, such components have to be known to recognize extreme events. To deal with this problem, an iterative procedure is introduced that converges fast to robust estimates of all the components. Applying this procedure to the last 100 years of European temperatures reveals that the phase of the annual cycle is shifted backward within the year in western Europe but foreward in eastern Europe. In the latter region, the amplitude of the annual cycle has also increased significantly. Most of the trend components found in the time series are positive and linear. Nearly all detected extreme events are cold events which occurred in winter. Their number has significantly grown. Significant harmonic components with a period of 92.3 months (about 7.7 years) are found mainly in northern and western Europe. Received August 15, 2000 Revised June 20, 2001  相似文献   

6.
A method of moving precipitation totals is described and applied for the analysis of precipitation extremes in Estonia. Numbers of extremely wet and extremely dry days and other indices of precipitation extremes were calculated using the daily precipitation data measured at 51 stations over Estonia during 1957–2009. Mean regularities of spatial and seasonal distribution were determined. Long-term changes were detected using Sen's method and Mann–Kendall test. The highest risk of heavy precipitation is in the regions of higher mean precipitation on the uplands and on the belt of higher precipitation in the western part of continental Estonia. Wet spells have their sharp maxima in July and August. The highest risk of droughts is observed in the coastal regions of West Estonia. In the coastal area, droughts appear mostly in the first half of summer, while in the eastern Estonia, they are usually observed during the second half of summer. Extreme precipitation events have become more frequent and intense. Statistically significant increasing trends were, first of all, found in the time series of winter extreme precipitation indices. In summer and autumn, trends existed in some indices, but in spring, there were no trends at all. There were no trends in time series of dryness indices in Estonia in 1957–2009.  相似文献   

7.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   

8.
A fuzzy hierarchical clustering technique using the pairwise similarity matrix is employed to find the homogenous climate subregions over southwest Iran, based on the similarity of meteorological drought characteristics (i.e., duration, intensity, onset, and ending dates). The representative subregions are recognized for different rainy seasons; for each, the regional rainfall anomalies are computed. To find appropriate drought predictors, the lag relationships of regional rainfall with seasonal Southern Oscillation Index (SOI) and North Atlantic Oscillation (NAO) are examined using a conditional probability approach. The results suggest a significant negative correlation between autumn rainfall and June–August SOI. The NAO is also negatively correlated with autumn rainfall such that it is least likely for an extreme autumn drought to occur when June–August NAO is negative. A spring drought is preceded by an October–December NAO greater than 0.5. However, winter droughts do not appear to be lag-correlated with either SOI or NAO. In addition to the findings for droughts, these indices also emerged having considerable influence on wet seasons. A wet autumn tends to occur when either May–July SOI is less than ?0.5 or June–August NAO is less than about ?0.3. It is also apparent that the extreme wet springs are absent when October–December NAO is positive. This season is influenced most by NAO in both dry and wet spells. However, similar to droughts, the wet winter seasons are not found to be associated with either SOI or NAO.  相似文献   

9.
Global warming alters the hydrological cycle since a rise in temperature leads to an increase in the moisture-holding capacity of the atmosphere at a rate of about 7 %/°C. This fact can influence the global, but also local characteristics of precipitation, such as total amount and intensity. Therefore, it is important to study changes in rainfall regime in regions with complex orography, like Tuscany, where there are strong spatial gradients in precipitation amounts. The aim of this study is to look for temporal change in precipitation from 1955 to 2007 searching for spatial differences. Daily data of 21 meteorological stations were analyzed to identify trends in seasonal and annual precipitation indices. Cluster analysis applied to principal components was applied to identify homogeneous groups of stations. A decrease in precipitation was observed at annual time scale, during winter and spring, especially in northwestern areas. Wet days highlighted a decrease in all of Tuscany, due to the same seasons. In northern Tuscany, the decrease in rainfall amount was mainly determined by a lower frequency of rainy events which in turn caused a decrease in the occurrence of extreme daily precipitation events (75th, 90th, and 95th percentile). In central-southern Tuscany, no significant changes were observed except for an increase in precipitation fraction, due to extreme events and in mean daily total amount for wet days. These results are consistent with recent findings for the Mediterranean area and confirm the usefulness of cluster analysis for the analysis of the spatial distribution of precipitation.  相似文献   

10.
Europe has been warming over the past 30?years. In particular all seasonal temperature records have been broken since 2003, which altered socio-economic and environmental systems. Since we expect this trend in both mean and extreme temperatures to continue along the twenty first century under enhanced radiative forcing, it is crucial to understand the underlying mechanisms of such climate variations to help in considering adaptation or mitigation strategies to reduce the impacts of a warmer climate. From a statistical analysis we show that the inter-annual variability of European seasonal temperatures can be reconstructed from North-Atlantic atmospheric circulation only, but not their recent trends and extreme seasons. Adding North-Atlantic sea-surface temperature (SST) as a predictor helps improving the reconstruction, especially in autumn and winter. Sensitivity experiments with the MM5 regional model over 2003?C2007 suggest that the anomalous SST enhance European land temperatures through the upper-air advection of heat and water vapor, interacting with radiative fluxes over the continent. This mechanism is pronounced in autumn and winter, where estimates of SST influence as obtained from MM5 are in agreement with those obtained from statistical regressions. We find a lesser SST influence in spring and summer, where local surface and radiative feedbacks are the main amplifiers of recent extremes.  相似文献   

11.
Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the clustering extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961-2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autumn-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.  相似文献   

12.
Summary We use the regional climate model RegCM nested within time-slice atmospheric general circulation model experiments to investigate the possible changes of intense and extreme precipitation over the French Maritime Alps in response to global climate change. This is a region with complex orography where heavy and/or extended precipitation episodes induced catastrophic floods during the last decades. Output from a 30-year simulation of present-day climate (1961–1990) is first analysed and compared with NCEP reanalysed 700 hPa geopotential heights (Z700) and daily precipitation observations from the Alpine Precipitation Climatology (1966–1999). Two simulations under forcing from the A2 and B2 IPCC emission scenarios for the period 2071–2100 are used to investigate projected changes in extreme precipitation for our region of interest. In general, the model overestimates the annual cycle of precipitation. The climate change projections show some increase of precipitation, mostly outside the warm period for the B2 scenario, and some increase in the variability of the annual precipitation totals for the A2 scenario. The model reproduces the main observed patterns of the spatial leading EOFs in the Z700 field over the Atlantic-European domain. The simulated large scale circulation (LSC) variability does not differ significantly from that of the reanalysis data provided the EOFs are computed on the same domain. Two similar clusters of LSC corresponding to heavy precipitation days were identified for both simulated and observed data and their patterns do not change significantly in the climate change scenarios. The analysis of frequency histograms of extreme indices shows that the control simulation systematically underestimates the observed heavy precipitation expressed as the 90th percentile of rainday amounts in all seasons except summer and better reproduces the greatest 5-day precipitation accumulation. The main hydrological changes projected for the Maritime Alps consist of an increase of most intense wet spell precipitation during winters for both scenarios and during autumn for the B2 scenario. Case studies of heavy precipitation events show that the RegCM is capable to reproduce the physical mechanisms responsible for heavy precipitation over our region of interest.  相似文献   

13.
14.
中国极端强降水日数与ENSO的关系   总被引:13,自引:0,他引:13       下载免费PDF全文
利用G分布函数对中国1951-2004年地面台站逐日降水观测资料进行雨日降水量概率分布拟合并定义极端降水事件,在此基础上对极端降水日数与ENSO的关系进行分析研究。结果表明,ENSO对同期的极端降水发生频率在不同地区和不同季节表现出不同的影响作用。总体而言,中国极端降水事件更易发生在厄尔尼诺年的冬春季和拉尼娜年的夏秋季。极端降水在对ENSO强信号的滞后响应上,其发生频率在时空上发生了变化,主要表现为,多数地方更易在ENSO暖位相出现后的半年左右发生极端降水事件。研究表明,ENSO冷暖信号对我国极端降水事件多寡的影响具有不对称性。  相似文献   

15.
This paper presents the analysis of mean daily temperature and precipitation from 1950 to 2010 in an area with Mediterranean climate of NE Spain including some coastal areas near Barcelona and the Penedès and Camp de Tarragona Depressions located between the Coastal Mountain Range and the Mediterranean Sea. Their variability, with especial attention to the frequency of extreme events, was analysed by using 18 indexes: seven for temperature and 11 for precipitation were analysed for four meteorological observatories. A multivariate analysis was performed in order to analyse the temperature and precipitation trends. During the analysed period, an increase in mean annual maximum temperature was observed in all observatories ranging between 1.5 and 2.2°C associated with an increase in the number of days with high extreme temperatures. Minimum temperature only increased significantly in the coast observatories (about 1.4°C). By seasons, temperature trends were greater at Vilafranca del Penedès and Barcelona observatories and lower at Reus airport. Maximum spring temperature increased between 1.5 and 2.5°C, summer temperature increased between 1.6 and 2.5°C and autumn temperature increased by up to 2.2°C. Precipitation presented a high variability from year to year, without significant trends. The most significant results were related to the dry conditions observed in spring 2000s, the wet conditions recorded in summer 2000s and 1980s and the longer dry periods in autumn 2000s. The increase of temperatures determined the increase of evapotranspiration, and due to the higher irregular distribution, water deficits for crop development were recorded. An advance of phenological dates and a reduction of grape yield are associated to climate trends.  相似文献   

16.
2004年的极端天气和气候事件及其他相关事件的概要回顾   总被引:8,自引:5,他引:3  
韩国3月暴雪,德国7月飞雪,我国华南近50年最严重的秋冬连旱、东北百年一遇的春旱,加勒比海地区连续异常猛烈的飓风,欧洲夏季高温,东太平洋上出现一次弱El Nino现象.2004年仍是气象灾害频繁发生的一年,创历史记录的极端天气继续出现.  相似文献   

17.
The use of a relatively high resolution general circulation model (the Meteorological Office 5-layer model) to determine climate changes for impact studies is evaluated. The simulation of present day climate over Western Europe is assessed by comparing not only different seasons with climatological data, but also the mean annual cycle and the frequency of extreme events. It is found that while the broad features of the simulation are satisfactory, the model produces too many cold episodes in spring, and an excessive number of wet days over northern Europe. When atmospheric CO2 concentrations are quadrupled, and sea surface temperatures and sea ice extents changed appropriately, the number of cold episodes is reduced and precipitation is less frequent in summer and autumn over much of Europe, and throughout the year in the south. The relevance of both the model data and the statistical tests to climate impact studies is discussed.  相似文献   

18.
1958—2007年天津降水量和降水日数变化特征   总被引:6,自引:0,他引:6       下载免费PDF全文
采用1958—2007年天津逐日降水观测数据,探讨降水变化特征。结果表明:近50 a来天津年降水量和年降水日数总体减少,二者每10 a分别减少8.9 mm和4.1 d,其中年降水日数的减少比年降水量的减少显著;四季中,夏冬季降水量明显减少而春秋季呈增加趋势,四季的降水日数均减少;年降水日数在1980年前后有一次明显突变,夏季降水量和春夏秋的降水日数在20世纪70年代和80年代均存在一次明显突变。降水日数和降水量的不同步变化反映发生极端降水事件的概率增加,这对农业生产和生态环境不利。  相似文献   

19.
The behaviour of precipitation and maximum temperature extremes in the Mediterranean area under climate change conditions is analysed in the present study. In this context, the ability of synoptic downscaling techniques in combination with extreme value statistics for dealing with extremes is investigated. Analyses are based upon a set of long-term station time series in the whole Mediterranean area. At first, a station-specific ensemble approach for model validation was developed which includes (1) the downscaling of daily precipitation and maximum temperature values from the large-scale atmospheric circulation via analogue method and (2) the fitting of extremes by generalized Pareto distribution (GPD). Model uncertainties are quantified as confidence intervals derived from the ensemble distributions of GPD-related return values and described by a new metric called “ratio of overlapping”. Model performance for extreme precipitation is highest in winter, whereas the best models for maximum temperature extremes are set up in autumn. Valid models are applied to a 30-year period at the end of the twenty-first century (2070–2099) by means of ECHAM5/MPI-OM general circulation model data for IPCC SRES B1 scenario. The most distinctive future changes are observed in autumn in terms of a strong reduction of precipitation extremes in Northwest Iberia and the Northern Central Mediterranean area as well as a simultaneous distinct increase of maximum temperature extremes in Southwestern Iberia and the Central and Southeastern Mediterranean regions. These signals are checked for changes in the underlying dynamical processes using extreme-related circulation classifications. The most important finding connected to future changes of precipitation extremes in the Northwestern Mediterranean area is a reduction of southerly displaced deep North Atlantic cyclones in 2070–2099 as associated with a strengthened North Atlantic Oscillation. Thus, the here estimated future changes of extreme precipitation are in line with the discourse about the influence of North Atlantic circulation variability on the changing climate in Europe.  相似文献   

20.
Summary In dry farming areas, where rainfall is the only source of water for crops, changes in both quantity and distribution of rainfall during the year could affect the economy of an area. Inter-annual variability makes it difficult to assess rainfall variability, especially in areas with Mediterranean climate. In this paper, interannual rainfall variations in the Alt Penedès region were evaluated using 24-h rainfall records at Vilafranca del Penedès (1889–1999) and at Sant Sadurni d’Anoia (1960–1999). The distribution patterns during the year and their changes over the time were also analysed. Rainfall data were normalised and the values corresponding to the percentiles 0.1, 0.25, 0.5, 0.75 and 0.9 were calculated to analyse whether they were very dry, dry, normal, wet and very wet periods. Annual rainfall and the rainfall recorded during the main rainfall periods during the year and its trend were analysed. Annual rainfall did not show a clear tendency, although during the last decade reduced interannual variability occurred. The percentage of dry years did not increase but the percentage of wet and very wet years decreased. During the last decade, an increase of dry spring seasons andwet autumn seasons was observed, even in normal or wetyears. These changes could affect the timing of whencrops receive water and could therefore affect their yields. Received May 31, 2000/Revised February 26, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号