首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
丘陵山地总辐射的计算模式   总被引:23,自引:0,他引:23       下载免费PDF全文
李占清  翁笃鸣 《气象学报》1988,46(4):461-468
本文根据对丘陵山地地形参数(平均坡向、坡度和地形遮蔽角)的数值模拟结果,应用试验观测资料,较详细地讨论了山地总辐射的理论计算模式。文中主要讨论了三个问题:山地总辐射理论模式的建立;模式参数的数值试验;模式在大别山南部局部地区的模拟结果及其分析。结果表明,山区总辐射受地形影响非常明显。本模式原则上适用于任何地区各种地形下总辐射的数值模拟。  相似文献   

2.
To improve the simulating ability of a model,this paper presents a scheme of calculating direct radiation at land surface with topography in the model.A numerical study is conducted for the topographic effects of the Tibetan Plateau on the direct radiation using NCEP terrain data.Results show that,after taking account into the topographic radiation effect,the regional average of the radiation over the Plateau obviously increases in the local early morning and late afternoon,but changes less around noon.The effect is stronger in winter than that in summer.And heterogeneous topography has also affected the distribution of the radiation in this area.A simple numerical experiment shows that considering the effect will lead ground temperature to increase on the slope having more sunshine,and vice versa.  相似文献   

3.
To improve the simulating ability of a model,this paper presents a scheme of calculatingdirect radiation at land surface with topography in the model.A numerical study is conducted forthe topographic effects of the Tibetan Plateau on the direct radiation using NCEP terrain data.Results show that,after taking account into the topographic radiation effect,the regional averageof the radiation over the Plateau obviously increases in the local early morning and late afternoon,but changes less around noon.The effect is stronger in winter than that in summer.Andheterogeneous topography has also affected the distribution of the radiation in this area.A simplenumerical experiment shows that considering the effect will lead ground temperature to increase onthe slope having more sunshine,and vice versa.  相似文献   

4.
An analysis is made of the effects of topography on the summer atmospheric energetics of the Northern Hemisphere in a low-resolution global spectral model. The numerical model is a global, spectral, primitive equation model with five equally spaced sigma levels in the vertical and triangular truncation at wavenumber 10 in the horizontal. The model includes comparatively full physical processes.Each term of the energy budget equations is calculated in four specific latitudinal belts (81.11°S-11.53°S; 11.53°S-11.53°N; 11.53°N-46.24°N; 46.24°N-81.11°N) from a five-year simulation with mountains and a one-year simulation without mountains, respectively. Differences between them are compared and statistically tested. The results show that synoptical scale waves transport available potential energy and kinetic energy to long waves and increase conversion from available potential energy of the zonal flow to eddy’s and from the eddy kinetic energy to the zonal kinetic energy in region 3 (11.53°N-46.24°N) due to mountains; topography intensifies the atmospheric baroclinity in region 3, consequently the baroclinic conversion of atmosphere energy is increased. The seasonal characteristics associated with the summer atmospheric energy source in region 3 are caused by seasonal variation of the solar radiation and the land-ocean contrasts and independent of topographic effects. The mechanism of topographic effects on the increase of long wave kinetic energy is also discussed.  相似文献   

5.
An analysis is made of the effects of topography on the summer atmospheric energetics of the Northern Hemisphere in a low-resolution global spectral model. The numerical mode! is a global, spectral, primitive equation model with five equally spaced sigma levels in the vertical and triangular truncation at wavenumber 10 in the horizontal. The model includes comparatively full physical processes. Each term of the energy budget equations is calculated in four specific latitudinal belts (81.11°S–11.53°S; 11.53°S–11.53°N; 11.53°N–46.24°N; 46.24°N–81.11°N) from a five-year simulation with mountains and a one-year simulation without mountains, respectively. Differences between them are compared and statistically tested. The results show that synoptical scale waves transport available potential energy and kinetic energy to long waves and increase conversion from available potential energy of the zonal flow to eddy's and from the eddy kinetic energy to the zonal kinetic energy in region 3 (11.53°N-46.24°N) due to mountains; topography intensifies the atmospheric baroclinity in region 3, consequently the baroclinic conversion of atmosphere energy is increased. The seasonal characteristics associated with the summer atmospheric energy source in region 3 are caused by seasonal variation of the solar radiation and the land-ocean contrasts and independent of topographic effects. The mechanism of topographic effects on the increase of long wave kinetic energy is also discussed.  相似文献   

6.
At high latitudes and in mountainous areas, evaluation and validation of water and energy flux simu-lations are greatly affected by systematic precipitation errors. These errors mainly come from topographic effects and undercatch of precipitation gauges. In this study, the Land Dynamics (LAD) land surface model is used to investigate impacts of systematic precipitation bias from topography and wind-blowing on water and energy flux simulation in Northwest America. The results show that topographic and wind adjustment reduced bias of streamflow simulations when compared with observed streamflow at 14 basins. These systematic biases resulted in a -50%-100% bias for runoff simulations, a -20%-20% bias for evapotranspiration, and a -40%-40% bias for sensible heat flux, subject to different locations and adjustments, when compared with the control run. Uncertain gauge adjustment leads to a 25% uncertainty for precipitation, a 20% 100% uncertainty for runoff simulation, a less-than-10% uncertainty for evapotranspiration, and a less-than-20% uncertainty for sensible heat flux.  相似文献   

7.
为了检验中尺度区域大气模式在中国高原复杂下垫面区域气候模拟中的适用性,文中采用该模式在40余种不同的初始参数条件下模拟了1991年6月20日至7月20日黑河区域的近地面辐射收支平衡和空气温度。并分析了中尺度区域大气模式应用于中国西北部大起伏地形和高原地区复杂下垫面(HEIFE)的模拟能力。结果表明,在仅使用NCEP再分析资料、探空资料和常规地面观测资料(RAMS标准输入),而不根据当地特征调整区域大气模式初始参数的情况下,对近地面层的辐射收支和空气温度具有一定的模拟能力,但可能引发较大的误差;特别是地面向上长波辐射通量和2 m空气温度,其模拟结果与实测结果相差甚远。只有合理地调整模式的初始参数,主要是初始土壤层的温度和湿度,才能得到与实测资料符合良好的结果;而要进一步地模拟出这些物理量在复杂天气情况下的细致变化,则需要把土壤深度扩大到4 m左右,并使用较为可靠的数据初始化垂直非均匀的土壤湿度。  相似文献   

8.
Global radiation is an important parameter necessary for most ecological models. However, in situ data barely meets the needs of modelling mountainous ecosystems since most field stations are located in flat areas. Consequently, it is usually necessary to extrapolate radiation measurements obtained from an adjacent flat area to the complex terrain of concern. The distribution of radiation in complex terrain depends upon two factors: the local atmospheric conditions, which determine the radiation potentially available to a supposed flat surface in a given location, and the topographic effects on this possible radiation. The latter have been included in detail in most radiation models for complex terrain, but the former are often only simply treated as constant or estimated by over-simplified empirical algorithms. In this paper we propose a novel model that uses a parametric atmospheric model to calculate the potential radiation for a supposed flat surface in a given location, and then account for topographic effects. Direct radiation, diffuse radiation and reflected radiation are calculated separately in the model due to the distinctive characteristics of and the effects by topography. Based on the parametric model, this paper has investigated the relationship between radiation transmittance, clearness indices and altitude under a series of water vapour content and turbidity conditions. This combines three ratios, R b, R d, and R r, defined as the direct radiation, diffuse radiation and reflected radiation received by the arbitrary surface, respectively, to their counterparts in the horizontal surface, to estimate the global radiation for any given location. The model has been validated with data from measurements in National Park Berchtesgaden, Germany, where six measurement sites with various altitudes and topographic characteristics have been deployed. The r 2 of modelled and measured hourly global radiation are greater than 0.90 in all six sites, with RMSE varies from 16 to 100 W m−2. Sensitivity analysis revealed that the model was not sensitive to change in water vapour content, which suggests the possibility to use an exponential algorithm of water vapour content when there is no in situ water vapour content information in complex terrains. The NRMSE was only reduced by 0.04, on average, in five of the six sites when water vapour content information was calculated from the in situ air temperature and relative humidity measurements.  相似文献   

9.
地形非均匀性对网格区地面长波辐射通量计算的影响   总被引:2,自引:1,他引:2  
从理论和数值试验两个方面证明地形的非均匀性(如海拔高度)对网格区地面长波辐射通量的计算有重要影响,海拔高度场的区域平均值及其变差系数是影响网格区地面长波辐射通量的主要因素,仅仅用地表均匀假定下的区域平均参量(如平均海拔高度和平均温度)所计算的网格区地表有效辐射通量值与其真实值之间存在着一定的误差。由于地表有效辐射通量是海拔高度的非线性函数,在特定情况下,其影响相当大,可产生不容忽略的误差。相对而言,海拔高度自身非均匀性对误差的影响远大于地表温度非均匀性项及其混合扰动项所产生的误差。对于不同的地形平均高度,地形非均匀性影响的程度并不相同。平均高度较小时,非均匀性的影响几乎可以忽略,但随着地形平均高度的增加,地形非均匀性的影响程度呈非线性增长趋势。因而,在复杂地形区域,考虑次网格地形的热力作用非常必要。  相似文献   

10.
Summary In this paper, we investigate the role that horizontal resolution plays in the simulation of East Asia precipitation. Two sets of numerical experiments are performed using the Regional Climate Model (RegCM2) nested in one-way mode within the CSIRO global coupled atmosphere-ocean model. In the first set we use the actual RegCM2 topography at the selected model resolutions, which are 45, 60, 90, 120, 180, 240 and 360 km. In the second set of the experiments, the same coarse CSIRO model topography is used in all simulations using the different resolutions of the first set. The results demonstrate that the simulation of East Asian precipitation improves as the horizontal resolution is increased. Moreover, it is shown that the simulations using a higher resolution along with the coarse CSIRO topography perform better than the simulations using a coarser model resolution with corresponding model topography. This suggests that over East Asia adequate spatial resolution to resolve the physical and dynamical processes is more important than topography. Lastly, the results indicate that model resolutions of 60 km or higher are needed to accurately simulate the distribution of precipitation over China and East Asia.  相似文献   

11.
It is shown how symmetric dipolar vortices can be formed by the action of an impulsive jet in a homogeneous single layer of fluid in a rotating tank. These dipoles are allowed to interact with a constant topographic slope, which can model a β-plane or a continental shelf. A dipole's trajectory bends toward the right when climbing a slope and to the left when descending, as predicted by numerical simulations and analytical arguments. The maximum penetration of the dipoles over a slope, the adjustment to the slope, and formation of trailing lobes are compared with both numerical simulations and a two-point vortex model. The results suggest that Rossby wave radiation plays an important role in the interaction process.  相似文献   

12.
丘陵山区地面热平衡场数值模拟的初步探讨   总被引:1,自引:0,他引:1  
李慧  翁笃鸣 《气象学报》1992,50(4):485-491
本文根据丘陵山区地形参数(平均坡度、坡向及地形遮蔽角)的数值模拟结果,以及在完成山区地面辐射场计算的基础上,从地表能量平衡方程出发,初步建立起零维地表能量平衡模式,并利用考察资料和附近气象站资料,对大别山南段赵公岭山区3.0×3.5km~2范围内100m网格点进行计算,首次绘制出热平衡各分量在该山区的分布图。结果表明,山区地面热平衡场与地形要素配合较好,显示出地形条件的决定性作用。  相似文献   

13.
使用RegCM2区域气候模式单向嵌套澳大利亚CSIRO R21L9全球海-气耦合模式,进行了CO2加倍对中国区域气候变化影响的数值试验研究,分析了控制试验(1×CO2)即模式对中国当代气候的模拟情况.首先给出了全球模式控制试验在中国地区的结果,分析表明它对中国区域的地面气温和降水具有一定的模拟能力,其结果可以用来制作驱动区域气候模式的初始场和侧边界.对RegCM2 5 a时间长度控制试验积分结果的分析与检验表明,区域气候模式由于具有较高的分辨率和较完善的物理过程,它对中国区域地面气温和降水的模拟效果较全球模式有了较大提高,如它模拟的各月气温与实况的相关系数全年12个月的平均由全球模式的0.83提高到0.92,降水由0.48提高到0.65.  相似文献   

14.
Based on previous research results on river re-distribution models, a modification on the effects of topographic slopes for a runoff parameterization was proposed and implemented to the NCAR's land sur face model (LSM). This modification has two aspects: firstly, the topographic slopes cause outflows from higher topography and inflows into the lower topography points; secondly, topographic slopes also cause decrease of infiltration at higher topography and increases of infiltration at lower topography. Then changes in infiltration result in changes in soil moisture, surface fluxes and then in surface temperature, and eventual ly in the upper atmosphere and the climate. This mechanism is very clearly demonstrated in the point bud gets analysis at the Andes Mountains vicinities. Analysis from a regional scale perspective in the Mackenzie GEWEX Study (MAGS) area, the focus of the ongoing Canadian GEWEX program, shows that the modi fied runoff parameterization does bring significant changes in the regional surface climate. More important ly, detailed analysis from a global perspective shows many encouraging improvements introduced by the modified LSM over the original model in simulating basic atmospheric climate properties such as thermodynamic features (temperature and humidity). All of these improvements in the atmospheric climate simulation illustrate that the inclusion of topographic effects in the LSM can force the AGCM to produce a more realistic model climate.  相似文献   

15.
地形对涡旋自组织影响的初步研究   总被引:1,自引:3,他引:1  
用一个带有地形项的f平面准地转正压涡度方程,实施5组积分时间长度为72h的试验,研究了中尺度地形对涡旋自组织的影响。结果指出:无地形时,准终态涡是一个带有螺旋带的类似台风的涡旋;有地形时,准终态涡是一个无螺旋带但有两个低涡量区的准圆形涡旋。有无地形两个准终态涡中心的位置可以相距100km以上。  相似文献   

16.
《大气与海洋》2013,51(4):405-422
Abstract

To develop an understanding of the complex internal tidal phenomena observed near and inside Dixon Entrance, an idealized numerical model was developed for the area, which explores the influence of various topographic features on the scattering of internal tides. The model uses a non‐linear, two‐layered, frictionless finite difference formulation of the shallow water equations and is forced by a barotropic wave over simplified topography. It was found that the main bathymetric features responsible for the generation of semi‐diurnal internal tides are the steep continental slope together with the orientation of Dixon Entrance. The prevalent baroclinic wave pattern, which is similar to the one found by Buchwald (1971), suggests that the western end of Dixon Entrance can be considered as an internal tide generation region for the open ocean. Use of the simple model allows easy identification of the generated waves. When the model is run with a non‐flat channel it reproduces features observed inside Dixon Entrance.  相似文献   

17.
Impacts of greenhouse effects(2×CO2) on climate change over China as simulated by a regional climate model have been investigated.The model was based on RegCM2 and is nested in one-way mode within a global coupled atmosphere-ocean model(CSIRO R21L9 AOGCM).Two multi-year simulations,the control run with normal CO2 concentration and the sensitivity run with doubled CO2 concentration are conducted. As Part I of the publications,results of control run of the CSIRO,i.e.its simulation of present climate in China,are analyzed briefly.It shows that the model can basically reproduce the surface air temperature and precipitation pattern over China.Therefore,its outputs can be used to drive the regional model. Analysis of control run of RegCM shows that with a high resolution,the model improves the simulations of surface air temperature and precipitation in China as compared to the CSIRO model, especially for the precipitation.The spatial correlation coefficient between simulated and observed annual temperature increased from 0.83 in the CSIRO to 0.92 in the RegCM and for annual precipitation from 0.48 in the CSIRO to 0.65 in the RegCM.A similar improvement in the RegCM compared to the CSIRO was found in all simulated months.The main improvement for surface temperature is that RegCM can simulate the fine scale structure of temperature caused by topography.RegCM greatly improved the spatial distribution of precipitation by eliminating the virtual precipitation center in central China,which was simulated by many other GCMs.The precipitation simulated by RegCM in North and Northwest China is smaller than that by CSIRO, which makes it closer to the observation.  相似文献   

18.
陈良吕  吴钲  高松 《暴雨灾害》2019,38(6):649-657

基于在重庆市气象局业务运行的对流可分辨尺度(3 km)集合预报系统,在已有初值扰动、模式物理过程扰动和侧边界扰动的基础上,对不同集合成员采用不同地形插值方案和地形平滑方案实现对模式静态地形高度的扰动,体现数值模式中地形转换过程的不确定性,开展集合预报批量平行试验。结果表明:(1)实现对模式静态地形高度的扰动后,各集合成员地形高度的离散度与实际地形的起伏程度对应关系较好,两者空间分布特征非常相似,地形较平坦的平原地区离散度较小,而地形较复杂的高原地区或山区离散度较大;(2)加入模式地形扰动方案后,集合扰动能量总体上有所增大,且低层比中、高层更明显,能量增幅在较短预报时效(12 h)内最显著,随着预报时效延长呈逐渐减小趋势,且能量增幅大值中心主要出现在地形较复杂、集合成员地形高度离散度较大地区;(3)模式地形扰动方案一定程度上能提高降水概率预报技巧及改进集合平均降水预报,在对高空要素和2 m温度、10 m风场等近地面要素的集合平均均方根误差和集合离散度无负面影响的前提下,能一定程度上优化集合分布。

  相似文献   

19.
Typical numerical weather and climate prediction models apply parameterizations to describe the subgrid-scale exchange of moisture, heat and momentum between the surface and the free atmosphere. To a large degree, the underlying assumptions are based on empirical knowledge obtained from measurements in the atmospheric boundary layer over flat and homogeneous topography. It is, however, still unclear what happens if the topography is complex and steep. Not only is the applicability of classical turbulence schemes questionable in principle over such terrain, but mountains additionally induce vertical fluxes on the meso-γ scale. Examples are thermally or mechanically driven valley winds, which are neither resolved nor parameterized by climate models but nevertheless contribute to vertical exchange. Attempts to quantify these processes and to evaluate their impact on climate simulations have so far been scarce. Here, results from a case study in the Riviera Valley in southern Switzerland are presented. In previous work, measurements from the MAP-Riviera field campaign have been used to evaluate and configure a high-resolution large-eddy simulation code (ARPS). This model is here applied with a horizontal grid spacing of 350 m to detect and quantify the relevant exchange processes between the valley atmosphere (i.e. the ground “surface” in a coarse model) and the free atmosphere aloft. As an example, vertical export of moisture is evaluated for three fair-weather summer days. The simulations show that moisture exchange with the free atmosphere is indeed no longer governed by turbulent motions alone. Other mechanisms become important, such as mass export due to topographic narrowing or the interaction of thermally driven cross-valley circulations. Under certain atmospheric conditions, these topographical-related mechanisms exceed the “classical” turbulent contributions a coarse model would see by several times. The study shows that conventional subgrid-scale parameterizations can indeed be far off from reality if applied over complex topography, and that large-eddy simulations could provide a helpful tool for their improvement.  相似文献   

20.
A new scheme for the estimation of daily global solar radiation over sloped topography in China is developed based on the Iqbal model C and MODIS cloud fraction. The effects of topography are determined using a digital elevation model. The scheme is tested using observations of solar radiation at 98 stations in China, and the results show that the mean absolute bias error is 1.51 MJ m~(-2) d~(-1) and the mean relative absolute bias error is 10.57%. Based on calculations using this scheme,the distribution of daily global solar radiation over slopes in China on four days in the middle of each season(15 January,15 April, 15 July and 15 October 2003) at a spatial resolution of 1 km × 1 km are analyzed. To investigate the effects of topography on global solar radiation, the results determined in four mountains areas(Tianshan, Kunlun Mountains, Qinling,and Nanling) are discussed, and the typical characteristics of solar radiation over sloped surfaces revealed. In general, the new scheme can produce reasonable characteristics of solar radiation distribution at a high spatial resolution in mountain areas,which will be useful in analyses of mountain climate and planning for agricultural production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号